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Despite the significant accomplishments of general relativity, numerous unresolved issues
persist in our understanding of the cosmos. One of the most perplexing challenges is the
ongoing accelerated expansion of the Universe, which continues to elude a complete ex-
planation. Consequently, scientists have proposed various alternative theories to general
relativity in pursuit of a deeper understanding. In our analysis, we delve into the recently
proposed modified f(Q) gravity, where Q represents the nonmetricity scalar responsible for
gravitational effects. Specifically, we investigate a cosmological model characterized by the
functional form f(Q) = Q + « Q", where « (with « # 0) and n serve as free parameters. Utiliz-
ing this functional form, we construct our Hubble rate, incorporating a specific equation of
state to describe the cosmic fluid. Furthermore, we leverage a dataset consisting of 31 data
points from Hubble measurements and an additional 1048 data points from the Pantheon
dataset. These data serve as crucial constraints for our model parameters, and we employ
the Markov Chain Monte Carlo (MCMC) method to explore the parameter space and de-
rive meaningful results. With our parameter values constrained, our analysis yields several
noteworthy findings. The deceleration parameter suggests a recent accelerated phase in the
cosmic expansion. In addition, the EoS parameter paints a portrait of dark energy exhibit-
ing phantom-like characteristics. Furthermore, we delve into the application of cosmolog-
ical diagnostic tools, specifically the statefinder and the Om(z) diagnostics. Both of these
tools align with our previous conclusions, confirming the phantom-like behavior exhibited
by our cosmological model. These results collectively contribute to our understanding of
the dynamic interplay between gravity, dark energy, and the expanding cosmos.
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1. Introduction

Recent observations in modern cosmology, including the type Ia supernova (SN Ia) [1,2],
large scale structure (LSS) [3.4], the Wilkinson Microwave Anisotropy Probe (WMAP)
experiment [5-7], cosmic microwave background (CMB) [8,9], and baryonic acoustic oscil-
lations (BAOs) [10,11], have conclusively shown that our Universe is undergoing accelerated
expansion. Furthermore, these cosmological observations indicate that the visible matter we
observe constitutes only 5% of the total content of the Universe, with the remaining 95% ex-
isting in the form of unknown components referred to as dark energy (DE) and dark matter.
However, these findings are at odds with general relativity (GR), particularly the well-known
Friedmann equations, which are derived from the application of GR to a homogeneous and
isotropic Universe described by the Friedmann—Lemaitre-Robertson—Walker (FLRW) space-
time. Consequently, it is evident that GR cannot serve as the ultimate theory of gravity and
may instead represent a special case within a more comprehensive theory.

To address the observations regarding the accelerated expansion of the Universe, several al-
ternatives have been proposed. One such alternative within the framework of GR is the inclu-
sion of a new energy component, known as DE, characterized by a large negative pressure.
The cosmological constant (A) introduced by Einstein in his field equations is currently the
leading candidate for DE, as it aligns well with observations. The prevailing idea is that the
source of A is vacuum energy predicted by quantum theory [12]. However, this idea faces two
main challenges. The first is the fine-tuning problem, which arises due to the substantial dif-
ference between theoretical and experimental values. The second challenge is the coincidence
problem, which questions why the energy density of A remains constant despite cosmological
observations indicating that the sources of DE vary slowly with cosmic time. The latter issue
can be resolved by introducing a time-variable cosmological constant through the inclusion of
a scalar field with kinetic and potential terms, as seen in the quintessence DE model [13]. Other
dynamical models of DE, such as phantom DE [14], k-essence [15], chameleon [16], tachyon
[17], Chaplygin gas [18,19], and little sibling of the big rip [20,21], have also been proposed.

The second alternative involves modifying Einstein’s theory of GR. In GR, curvature is de-
scribed by the Ricci scalar R, based on Riemannian geometry. Modified f(R) gravity replaces
the Ricci scalar with general functions of R [22]. Additionally, there are other alternatives to
GR, such as f(7) gravity, where gravitational effects are described by the concept of torsion
T [23]. Recently, a new gravity theory based on Weyl geometry, which is more general than
Riemannian geometry, has been proposed. This theory, known as f(Q) gravity, describes gravi-
tational effects in terms of nonmetricity, which represents the variation of vector length during
parallel transport [24,25]. In Weyl geometry, the covariant derivative of the metric tensor is not
zero but mathematically determined by the nonmetricity tensor, denoted as Q, ., = —V, g0
[26]. Energy conditions and cosmography in f(Q) gravity have been explored by Mandal et al.
[27,28], whereas Harko et al. investigated matter coupling in modified Q gravity assuming a
power-law function [29]. Dimakis et al. discussed quantum cosmology for a polynomial f(Q)
model [30], and other related works include Refs. [31-33].

In the literature, the equation of state (EoS) parameter is commonly employed to character-
ize the nature of DE in various models. The EoS parameter represents the relationship between
the pressure and the energy density of the Universe. Its value varies depending on the specific
model under consideration. For instance, in a matter-dominated Universe, the EoS parameter
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is typically w = 0, whereas for a radiation-dominated Universe, it takes the value w = 1/3. In
the case of an accelerating expanding Universe, the EoS parameter w assumes different values:
o = —1 corresponds to a cosmological constant, —1 < w < —1/3 corresponds to quintessence
(a type of DE), and w < —1 corresponds to phantom DE [34,35]. The current value of the
EoS parameter, as reported by the Planck Collaboration, is wy = —1.028 + 0.032 [36,37]. In
this study, we adopt a model-independent approach [38-40] and incorporate an effective EoS
parameter to account for the current acceleration of the Universe within the framework of f(Q)
gravity. To constrain the model parameters, we use two recent sets of observational data: Hub-
ble Hz measurements and the Pantheon datasets. The Hubble datasets consist of 31 data points
obtained through the differential age method [41,42]. In addition, the Pantheon datasets, span-
ning the redshift range 0.01 < z < 2.3, provide 1048 data points [43]. We employ the Markov
Chain Monte Carlo (MCMC) method [44] to estimate the model parameters. Moreover, we
employ two diagnostic tools to discern between different DE models. Firstly, we consider the
statefinder parameters (r, s) introduced by Sahni et al. [45,46]. For example, in the case of the
statefinder parameters, the Lambda cold dark matter (ACDM) model corresponds to (r = 1,
s = 0), the Holographic DE model corresponds to (r =1,5s= %), the Chaplygin gas model cor-
responds to (r > 1, s < 0), and the quintessence model corresponds to (r < 1, s > 0). Secondly,
we employ the Om(z) diagnostic introduced in Ref. [47]. The Om(z) diagnostic relies on the
slope of the function Omi(z), where a negative slope indicates quintessence behavior, a positive
slope indicates phantom behavior, and a zero slope corresponds to ACDM.

The paper is structured as follows. Section 2 provides a brief overview of the mathematical
formalism of f(Q) gravity in a flat FLRW Universe. In Sect. 3, we present a specific f(Q) cosmo-
logical model and derive the Hubble parameter by incorporating an effective EoS parameter.
The observational constraints on the model parameters are discussed in Sect. 4, using the Hz
datasets consisting of 31 data points and the Pantheon datasets consisting of 1048 data points.
Additionally, the behavior of cosmological parameters, including the deceleration parameter
and EoS parameter, is analyzed in this section. Sections 5 and 6 are dedicated to the examina-
tion of geometrical parameters. Section 5 focuses on the statefinder parameters, while Sect. 6
introduces the Om(z) diagnostic tool. Finally, Sect. 7 summarizes the conclusions drawn from
the study.

2. f(Q) gravity theory

In the realm of differential geometry, the metric tensor g, is regarded as a generalization of
gravitational potentials. Its primary function is to determine angles, distances, and volumes. On
the other hand, the affine connection Y7, plays a crucial role in parallel transport and covari-
ant derivatives. In the context of Weyl geometry, which incorporates the nonmetricity term Q,
the Weyl connection Y7 ,, can be decomposed into two distinct components: the Christoffel
symbol I'” ,,, and the disformation tensor LY ,,. This decomposition allows for a better under-
standing of the geometric properties and interactions within Weyl geometry [26],

Tyuu = Fy;w + Ly;w’ (1)

where the Christoffel symbol is determined in terms of the metric tensor g, by

I7 0= 28" (0u80v + &ou — 9o &uv) 2)

1
2
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and the disformation tensor L”,, is obtained from the nonmetricity tensor Q, ., as

1
Ly;w = zgya (Qvu,a + Q;wa - Q)/;u)) . (3)

The nonmetricity tensor Q,,,, is defined as the covariant derivative of the metric tensor with
respect to the Weyl connection Y7 ,,, expressed as

Oyuv = =V, &uv, 4)
and it can be calculated by

Qy;w = _ayg;w + &vo Tduy + gouTUuy~ (5)

The theoretical framework employed in this study is symmetric teleparallel gravity, also
known as f(Q) gravity, which is equivalent to the well-known theory of gravity (GR) [24]. The
equivalence between f(Q) gravity and GR is established in the coincident gauge, where the Weyl
connection is set to zero, Y7, = 0. In this gauge, the curvature tensor also becomes zero, re-
sulting in a flat space-time geometry. Consequently, the covariant derivative V,, simplifies to

the partial derivative 9,,, leading to the expression Q,,, = —9, 8-
From the preceding discussion, the Levi-Civita connection I'” ,,, can be expressed in terms of
the disformation tensor L" ,, as ' ,, = =L ,.
The action for symmetric teleparallel gravity is defined as [24,25]
1
S= / Jgd'x [—Ef(Q) + Lm} , (©)

where f(Q) is an arbitrary function of the nonmetricity scalar Q, g represents the determinant of
the metric tensor g,,,,, and £,,, is the Lagrangian density for matter. The trace of the nonmetricity
tensor Q,,,, can be expressed as
QJ/ = Q)/Muv Q)/ = Q’uyu‘ (7)
It is also useful to introduce the superpotential tensor (the conjugate of nonmetricity) defined
by

4PV;LU = _Qy/,w + 2Q(My v) + ng;w - ngllv - S}EMQV) ) (8)
where the trace of the nonmetricity tensor can be obtained as
Q = _lewa;w . (9)

The field equations of symmetric teleparallel gravity are derived by varying the action S with
respect to the metric tensor g,,,, resulting in the following equations:

2 1 o o
\/_—_gvy (V _ngwa) + Efguv +fQ (Pv,oaQup —2Ppr" v) = Tuv ) (10)
where the energy-momentum tensor is given by
T _ 2 4 (\/ _g£n1) (11)
ny — .
v—g g

Here fp = df/dQ and V, represents the covariant derivative operator. By varying the action
with respect to the connection, we obtain the following equation,

VAV (V=g fo P" w) =0. (12)
The cosmological principle states that our Universe is homogeneous and isotropic on large

scales. The mathematical description of a homogeneous and isotropic Universe is given by the
flat FLRW metric, which can be expressed as

ds* = —dt* + a*(1) [dx* + dy* + dZ*], (13)

4/17

¥20z dunf L.z uo Jasn AyisisAlun [euoeN ueiselng AoAjiwing N 7 4Aq 900S6€2/L03E L L/) L/€Z0Z/8101e/de)d/Wwoo dno olwapede//:sdiy woly pspeojumoq



PTEP 2023, 113E01 M. Koussour et al.

where a(?) is the scale factor that represents the size of the expanding Universe. The nonmetric-
ity scalar corresponding to the FLRW metric is obtained as

0 = 6H?, (14)

where H is the Hubble parameter, which represents the rate of expansion of the Universe. To
obtain the modified Friedmann equations that govern the Universe when described by the spa-
tially flat FLRW metric, we consider the stress-energy momentum tensor of a perfect fluid,
given by

T, = (p+:0)uuuv + PSuvs (15)
where p represents the isotropic pressure, p is the energy density, and u* = (1, 0, 0, 0) denotes
the four-velocity components of the perfect fluid.

In view of Eq. (15) for the spatially flat FLRW metric, the field equations of symmetric
teleparallel gravity (10) yield the following modified Friedmann equations,

3H? = 2}Q (p—l—f) (16)
H+3H* + ??ui( p+f> (17)

where the dot () denotes the derivative with respect to cosmic time z. If we choose the function
f(Q) to be f(Q) = O, we obtain the standard Friedmann equations [25]. This result is expected
because, as mentioned ecarlier, this particular choice of f(Q) corresponds to the theory’s limit
equivalent to GR. When we instead use f(Q) = Q + F(Q), the field Egs. (16) and (17) can be
expressed as

F
3H2:,0—|—3—QFQ, (18)
(20Fp0 + Fp+ 1) H + ~ (Q +20Fy — F) = =2p, (19)
where Fp = and Foo = ZZQIZ

In Eq. (18) we can express the energy density (p) as the sum of two components, namely,
0 = pm + pr, Where p,, and p, represent the energy densities associated with dark matter and
radiation, respectively. Likewise, we can decompose the pressure (p) as p = p, + p»,. The con-
servation equation for standard matter follows as
Z—f +3H(1 4+ w)p =0. (20)

The EoS parameter denoted as w assumes distinct values depending on the specific matter
sources, such as baryonic matter and radiation. In the context of isotropic and homogeneous
spatially flat FLRW cosmologies that include radiation, nonrelativistic matter, and an exotic
fluid characterized by an EoS pg = wgp4, the Friedmann Egs. (18) and (19) take on the fol-
lowing form:

3H? = pr + P + Puer (21)

2H + 3H” = —DPr — Pm — Pde- (22)

In this context, o,, P, pm, and p, represent the energy densities of the radiation and mat-
ter components, with p,,, p, indicating the pressure associated with matter and radiation. In
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addition, we have p,. and pg ., which represent the density and pressure contributions of DE
arising from the geometry, as described by

F
Pie =5 — 0Fy, (23)
Pde = 2H(Q2QFp0 + Fp) — pae - (24)
Furthermore, the EoS parameter due to the DE component is
. 4H(20F, F,
wp = Pl — 14 (20Fpg + Fp) (25)
Pde F - 2QFQ

In the following discussion, we make the assumption that the matter pressure, whether it is
associated with baryonic matter or dark matter, can be safely disregarded. When there are no
interactions between these three distinct fluid components (radiation, nonrelativistic matter,
and DE), the energy densities obey the following set of differential equations:

b+ 4Hp, = 0, (26)
Pm +3H py, =0, (27)
pde + 3H(1 =+ a)de)pde =0. (28)

Using Egs. (26) and (27), it is straightforward to derive the evolution behaviors of pressureless
matter and radiation. Specifically, we find that p,, = p,uo(1 + 2)°, and p, = p,o(1 + z)*, where
% — 1 represents the cosmological redshift, and the subscript “0” signifies the value of the
respective quantity at the present day or current time.

z =

3. Cosmological model

For our analysis, we consider a specific functional form of symmetric teleparallel gravity, char-
acterized by the following expression,

F(Q)=a0", (29)
where « # 0 and 7 are free parameters of the model.! Solanki et al. [48] investigated the linear
model, i.e. n = 1, in the presence of a viscous fluid. Furthermore, the authors of Refs. [32,49]
explored this form of gravity within the framework of an anisotropic Universe. When n = 2, the
quadratic form of f(Q) gravity is obtained, and it has been extensively discussed by Koussour
et al. [33] using a hybrid expansion law.

For this general form of F(Q), the modified Friedmann equations, Egs. (23) and (24), can be
expressed as

1
Pde = 6" (5 — n) H™, (30)

1 .

Using Eqgs. (30) and (31), we can express the DE EoS parameter as follows:
on [ H
wge = —1 - 2 (—) . (32)

lfn).

'For dimensional consistency,  has the dimensions of H
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The time derivative of the Hubble parameter can be expressed in terms of the cosmological

redshift as
. dH dH
H=—=—(1 H B
= H () (33)

It is evident that Eqs. (30) and (31) form a system of two equations with three unknowns:
H, pge, and pg.. Therefore, to solve Eq. (32) for H(z), an additional equation is required. In
the literature, an equation for the Hubble parameter is typically employed. However, in this
study, we adopt the opposite approach by imposing a constraint on the EoS parameter. This
approach is known as the model-independent approach. To investigate DE cosmological mod-
els, it is customary to employ a parametrization for relevant variables such as the Hubble or
EoS parameters. This parametrization enables us to obtain the necessary equation to solve the
field equations. In this study, we consider the Barboza—Alcaniz (BA) parametrization of the
DE EoS parameter, which is given by Ref. [50] as
z(1+2)
(1+22)’
where wg represents the EoS value at the present time, while @, quantifies the time dependence
of the DE EoS. The BA parametrization exhibits a linear behavior in z at low redshifts, similar
to other parametrizations discussed in the literature [50]. One advantage of this parametriza-
tion is its bounded nature, ensuring it remains well-behaved throughout the entire history of
the Universe. Furthermore, it demonstrates behavior similar to quintessence and phantom DE
models at small redshifts, making it a viable choice for studying the EoS. This parametrization
has been extensively discussed in previous studies, including Refs. [51,52]. By using Eq. (34), we
can analyze the behavior of the EoS parameter at different redshift values z as follows:

wge(2) = wy + W) (34)

* wge =wp,asz =0,
* Wi = wy + wi, for z — oo,
* w4 = wy, for z — —1.

Using Egs. (32), (33), and (34), we obtain the Hubble parameter in terms of the cosmological
redshift as

3wg+1) ‘;Ll
e n
n

(14277, (35)
where H, represents the present value of the Hubble parameter at z = 0. It is important to note
that the form of the Hubble parameter derived in our study is in agreement with several works
in the literature [53,54].

By substituting Eq. (35) into Eq. (30), we derive the expression for the DE density p,. as

H?(z) = Hy(1 + 2)

1 £
pae(2) = a6” (5 — n) H"(z + 1)@t (22 4-1) el (36)
Thus, the Friedmann Eq. (21) can be expressed as follows:
H(2) 4 3 ot (2 4 1) P
72 = o1+ 2)" + Quo(1+2)” + Queoz + DY (Z+1)7 (37)

0
where we have defined, for this particular model of f(Q),

ab” e
Qe = T(1 /2 —mH"Y (38)

Furthermore, we have 2,9 and 2,0 representing the present-day values of the radiation and

matter density parameters, defined as Q,0 = 354> and Q0 = 55, respectively.
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4. Observational constraints

In this section, we proceed to constrain our model parameters by comparing them with the
Hubble (Hz) and Pantheon datasets. The best values of the parameters, along with their uncer-
tainties, are determined through the utilization of the MCMC method [44] and by minimizing
the chi-square function x2. To assess the goodness of fit, we calculate the total x? by combining
the contributions from both the Hz and Pantheon samples. The expression for the total x? is
given by,

2 2 2

Xtot = XH: + X Pantheon> (39)
where x7. represents the chi-square value associated with the Hz measurements, and x3, ...
corresponds to the chi-square value of the Pantheon dataset.

4.1. Hz dataset
To begin, we use a standard compilation of 31 Hz data measurements acquired via the differ-
ential age method [41,42]. This method allows for the estimation of the Universe’s expansion

rate at a given redshift z. Specifically, H(z) can be calculated as H(z) = d2/di The y 2 function

] T (I+2)”
is defined as
31

3 [H (z:, P) — Hops(z0)T

U(Zi)2 ’

Xir= = (40)

i=1
where H(z;, P) represents the theoretical value of the model at redshifts z;, and P denotes
the parameter space, namely Hy, 0, o, wo, w1, n. On the other hand, Hyu(z;) and o(z;)?

correspond to the observed value and the error, respectively.

4.2. Pantheon dataset

Secondly, we use a dataset comprising 1048 data points from the Pantheon compilation, which
consists of SN Ia observations. These data points span the redshift range 0.01 < z < 2.3 [43].
The Pantheon sample combines data from different supernova surveys such as the Sloan Digital
Sky Survey (SDSS), Supernova Legacy Survey (SNLS), various low-z samples, and high-z sam-
ples from the Hubble Space Telescope. The corresponding chi-square Xl%antheon for the Pantheon
dataset is defined as

1048
2 —1
X Pantheon = Z A,LL,' (CPantheon)ij AM./" (41)
i, j=1

where i = pops(zi) — (P, z;). Here, 1ops(2;) 1s the observational distance modulus, (P, z;)
is the theoretical value defined as

dr(z)
,zi) =5l — 25, 42
(P, i) 0g1o <1Mpc + (42)
and C;almheon is the inverse covariance matrix. In addition, the luminosity distance dz(z) in

Eq. (42) is defined as

y4 d /
dr(z) = e(1 + 2) fo WZP) (43)

where c is the speed of light.

The 1 — o and 2 — o contours on the model parameters Hy, 2,0, &, wo, w1, 1 are presented
in Fig. 1, and the corresponding numerical results are summarized in Table 1. Figures 2 and
3 show a comparison between our cosmological model and the standard ACDM model. For
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Fig. 1. The | — 0 and 2 — o contours for the model parameters Hy, 2,9, &, wg, w1, n using the Hz + Pan-

theon dataset.

Table 1. The best-fit values of the model parameters using the Hz + Pantheon dataset. Also shown are
the present values of the cosmological parameters.

datasets H, Q0 o wo n
Priors (60.,80) (0,1) (-11 (—2,2) (-2,2)  (—10,10)
Hz + Pantheon 68.07"  0.23%)30  —0.5970%  —101%03  0.4870%3 1.028F0-052

this comparison, we adopted the values €2,,0 = 0.315 and Hy = 67.4 £+ 0.5 km/s/Mpc, which
were obtained from recent measurements by the Planck satellite [37]. The figures display the
data points of the Hubble parameter (31 data points) and the Pantheon compilation (1048 data
points) along with their corresponding error bars. We can observe that our model provides
a good fit for the data. By minimizing the x? function with respect to the mode parameters

(Ho, 20, o, wg, w1, n), we obtain the best-fit values £2,,0

o3, and n = 1.02870%

—1.017073

1039 ) =0.48

—0.071

—0.22°

=0.23"020, a = —0.597020, wy =
for the Hz + Pantheon dataset (see Table 1).

These parameter values result in a best-fit value for the present Hubble parameter of Hy =
68.0:1;0. Remarkably, our model reduces the Hubble tension compared to the value obtained
by the SHOES project, Hy = 73.2 &+ 1.3 km/s/Mpc at 68% confidence level [55]. In our model,
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Fig. 2. The evolution of the Hubble parameter H(z) with redshift z: Comparison between our f( Q) cosmo-
logical model (red line) and the ACDM model (black dashed line) alongside observed H(z) data points
(green dots) with error bars.
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Fig. 3. The evolution of the distance modulus w(z) with redshift z: Comparison between our f(Q) cos-
mological model (red line) and the ACDM model (black dashed line) alongside observed Pantheon data
points (green dots) with error bars.

we have selected the f(Q) function as f(Q) = Q + F(Q), where F(Q) = «Q". It is essential to
note that to achieve what is referred to as the Symmetric Teleparallel Equivalent to GR, we
set F(Q) = 0, which implies @« = 0. However, it is not equivalent to the ACDM model, as the
cosmological constant is not present in this case. To obtain the ACDM model, we set n = 0 and
a = 2A [56]. The deviations from n = 0 introduce modifications to the model that go beyond the
GR framework and give rise to the DE component within the f(Q) model and, consequently, the
differences observed in our analysis. Specifically, it leads to variations in the cosmic expansion
scenario and provides a framework for exploring alternative cosmological dynamics. Also, it
is very important to note that we have omitted the radiation density parameter, €2,9, due to its
negligible contribution in comparison to other dominant components, and its omission does
not significantly impact the results of the MCMC analysis or the conclusions of this study.

4.3. The deceleration parameter
The deceleration parameter, a fundamental concept in cosmology, is pivotal for understanding
the dynamics of the Universe’s expansion. It is defined mathematically in relation to the Hubble
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Fig. 4. The evolution of the deceleration parameter with redshift z using constraints from the Hz + Pan-
theon dataset.

parameter as follows:

-1 . (44)

This parameter plays a central role in cosmological models, as it characterizes whether the
Universe’s expansion is accelerating or decelerating. When ¢ is negative (¢ < 0), it signifies an
accelerating expansion, as observed in the case of DE-dominated Universes. Conversely, when
¢ is positive (¢ > 0), it indicates a decelerating expansion, as typically seen in matter-dominated
Universes. Understanding ¢ is crucial to gain insight into the past, present, and future evo-
lution of our Universe. The observational data employed in this study provide evidence that
our present Universe has entered an accelerating phase, with the deceleration parameter lying
within the range of —1 < ¢ < 0. In our analysis, we can express the deceleration parameter in
terms of the cosmological parameters employed as
4) = )+ 3l + ), @s)

From the analysis presented in Fig. 4, it is clear that the deceleration parameter captures
the two distinct phases of the Universe: the deceleration phase and the subsequent acceleration
phase, which have been observed in various studies [57,58]. In our model, the transition between
these phases occurs at a redshift value of z;, = 0.64f8:83 [59,60], determined using the Hz + Pan-
theon dataset. Moreover, the present value of the deceleration parameter is gy = —0.69f8j§2
[61,62]. This negative value aligns with the observed acceleration phase of the Universe, fur-
ther supporting the validity of our model.

4.4. The EoS parameter

The EoS parameter is a fundamental quantity that provides insights into the properties of pro-
posed DE models. It is defined as the ratio of the isotropic pressure p to the energy density
p of the Universe, given by w = %. In order to explain the observed cosmic acceleration, it is
necessary for the EoS parameter to satisfy w < —%. This condition ensures that the dominant
component of the Universe’s energy density possesses negative pressure, which drives the accel-
erated expansion. The simplest and most widely studied candidate for DE is the cosmological
constant A in the framework of GR. It has a constant EoS parameter given by w, = —1.
This value indicates that the cosmological constant behaves like a fluid with negative pressure,
causing a repulsive gravitational effect that leads to cosmic acceleration. However, there are
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Fig. 6. The evolution of the density parameter with redshift z using constraints from the Hz + Pantheon
dataset.

alternative dynamical models of DE, such as quintessence, where the EoS parameter lies in the
range —1 < wge < —%. These models introduce a dynamical scalar field that evolves with time
and can mimic the behavior of DE. Another intriguing possibility is phantom energy, char-
acterized by an EoS parameter w, < —1. In this case, the energy density increases with time,
leading to a super-accelerated expansion and potential future cosmic singularities.

The behavior of the effective EoS parameter is depicted in Fig. 5, where we present the results
obtained from analyzing the Hz + Pantheon datasets. It is evident from the figure that the DE
EoS parameter of our analysis exhibits phantom-like behavior, characterized by wg < —1.
This indicates that the dominant component responsible for the accelerated expansion of the
Universe behaves in a manner similar to phantom models of DE. Furthermore, we find that
the present value of the DE EoS parameter corresponding to the Hz + Pantheon dataset is
wy = —1 .Olfgzig (see Table 1) [63-65]. This value suggests that the current cosmic acceleration
is well described by our model. The negative value of w( indicates that the Universe is currently
experiencing an accelerated expansion, consistent with the observational data.

The energy density sources in our Universe exhibit dynamic evolution over time, and they
play a pivotal role in defining cosmic history, its present state, and its future prospects. In Fig. 6,
we have provided insightful visualizations of the evolving DE density and matter density. From
this graphical representation, it becomes evident that in the early epochs, the matter density was
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the dominant force shaping the Universe, whereas in the present phase, the DE density holds
sway, even contributing to the current acceleration of cosmic expansion. In the context of the
Hz + Pantheon dataset, we have determined the present-day value of the matter density to be
approximately 0.23, with a 1 — o error range of +0.20 and —0.22. Detailed constraint values
for the matter density at the 68% and 95% confidence levels are also tabulated in Table 1. Fur-
thermore, a noteworthy observation is that throughout the entire course of their evolution, the
sum of the matter density and DE density remains remarkably close to unity (£2,, + Q4 >~ 1),
reflecting a critical balance in the cosmic energy budget. These dynamic profiles of the two en-
ergy components strongly suggest that DE is poised to continue its dominance in our Universe’s
foreseeable future, further contributing to its intriguing and complex cosmic story.

5. Statefinder analysis

The deceleration and EoS parameters are important in characterizing the expansion and na-
ture of the Universe. However, a challenge arises because many proposed DE models in the
literature share the same current values for these parameters. Consequently, these parameters
are not sufficient to effectively distinguish between the different models under study. To address
this issue, Sahni et al. [45,46] introduced a new pair of dimensionless cosmological parameters
called statefinder parameters (7, ), which offer a more discriminating diagnostic for DE models.
The statefinder parameters are defined as

= —, 46
r=-—rn (46)
—1

G -

3(¢-3)

The parameter r can be expressed in terms of the deceleration parameter as
q

=2¢° +q— —. 48
r=2+q- 4 (48)

The trajectories in the r—s plane are important for classifying different cosmological regions,
and various DE models can be characterized using this diagnostic pair as:

e the ACDM model corresponds to (r = 1, s = 0),

e the holographic DE model corresponds to (r = 1,5 = %),
 the Chaplygin gas model corresponds to (r > 1, s < 0),

* the quintessence model corresponds to (r < 1, s > 0).

Figure 7 represents the r—s plane, where the parameters are constrained by the Hz 4+ Pantheon
dataset. The plot provides valuable insights into the behavior of these parameters over cosmic
time. Notably, it becomes evident that, in the early Universe, the parameter values satisfy con-
ditions r < 1 and s > 0. These conditions suggest that the DE candidate in our model exhibits
quintessence-like behavior during these early epochs. However, as we transition to the present
epoch (at z = 0), the model manifests different characteristics. Furthermore, in the late-time
cosmic regime, as z approaches —1, the model adopts properties akin to the ACDM model.
This intriguing result corroborates our earlier findings concerning the EoS parameter, reinforc-
ing the notion that the behavior of DE in our model undergoes distinct phases, resembling
quintessence at early times and converging towards ACDM-like behavior in the late Universe.
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Fig. 7. The evolution of the r—s plane using constraints from the Hz + Pantheon dataset.

6. Om(z) diagnostic

In this section, we introduce another valuable tool for investigating the dynamic nature of cos-
mological models pertaining to DE, known as the Om diagnostic [47]. This diagnostic offers a
simpler approach compared to the statefinder diagnostic discussed earlier, as it relies solely on
the Hubble parameter H. In a spatially flat Universe, the Om(z) diagnostic is defined as

(49)

where E (z) = %ﬂ) The behavior of Om(z) provides valuable information on the nature of DE
in the cosmological model. A negative slope of Om(z) indicates quintessence behavior, where
the energy density of DE decreases with time. On the other hand, a positive slope represents
a phantom behavior, where the energy density increases with time. A constant value of Omi(z)
corresponds to the standard ACDM model.

The plot presented in Fig. 8 offers compelling insights into the behavior of the Omi(z) diag-
nostic as a function of redshift z. Notably, it becomes apparent that for z < 0, Om(z) displays
a negative slope. This intriguing observation suggests that in the early Universe, our cosmo-
logical model indeed showcases quintessence-like characteristics for DE. In quintessence, the
EoS of DE w. lies between —1 (indicating a cosmological constant) and —1/3 (representing
matter-like behavior), which is consistent with the negative slope of Om(z) at these redshifts.
However, as we extend our view to late cosmic times, a distinct transformation occurs. In this
late-time regime, when z approaches values close to —1, our model adopts properties akin to
phantom-like DE. Phantom DE corresponds to w; < —1, and it is associated with an expand-
ing Universe that accelerates at an increasing rate. The shift towards phantom-like behavior in
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the late Universe is a fascinating feature of our cosmological model, highlighting its capacity
to encompass diverse phases of DE evolution, from quintessence-like to phantom-like, as the
cosmic epoch unfolds.

7. Conclusions

In this paper, we investigate the late-time acceleration of the Universe within the framework
of f(Q) gravity. In our model, we adopt a parametrization of the EoS to describe the behavior
of DE. By performing an MCMC analysis using observational data from H(z) measurements
and the Pantheon dataset, we derive the best-fit parameters for our model (see Table 1). Our
MCMC analysis yields results that are consistent with the current understanding of the accel-
erated expansion of the Universe. Specifically, we have found that the Universe experiences a
transition from a deceleration phase to an acceleration phase at a redshift of z,, = 0.6410.07

—0.07
for the Hz + Pantheon dataset [59,60]. This transition is supported by a negative value of the
deceleration parameter, i.e. gg = —0.691“8:22 [61,62], indicating the onset of cosmic acceleration.

Furthermore, the EoS parameter exhibits a phantom-like behavior for DE (w, < —1). The
presence of phantom DE in a cosmological model leads to some intriguing consequences [66].
Specifically, it implies that as the Universe expands, the rate of cosmic acceleration increases
over time, ultimately leading to a “Big Rip” scenario [67]. In the Big Rip, the Universe’s expan-
sion becomes so rapid that it tears apart not only galaxies, stars, and planets but even atoms
themselves, resulting in a catastrophic end to the cosmos. Also, our analysis of the Hz + Pan-
theon dataset reveals that the present value of the EoS parameter is wy = —1.011“8:23 [63-65].
We also utilized two diagnostic tools, the statefinder and the Omi(z) diagnostic, to further inves-
tigate the properties of DE in our model. Ultimately, our comprehensive analysis consistently
reinforces the notion of a phantom-like behavior for DE as the driving force behind the late-
time acceleration of the Universe. This conclusion finds support across multiple cosmological
diagnostics, including the deceleration parameter, EoS parameter, statefinder, and the Om(z)
diagnostic. Collectively, these diagnostic tools converge to provide a compelling portrait of the
evolving nature of DE, unveiling its phantom-like attributes in the cosmic story’s late chapters.
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