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Abstract. This paper describes the soliton surfaces approach to the Witten-Dijkgraaf-
E.Verlinde-H.Verlinde (WDVV) equation. We constructed the surface associated with the
WDVV equations using Sym-Tafel formula, which gives a connection between the classical
geometry of manifolds immersed in Rm and the theory of solitons. The so-called Sym-
Tafel formula simplifies the explicit reconstruction of the surface from the knowledge of its
fundamental forms, unifies various integrable nonlinearities and enables one to apply powerful
methods of the soliton theory to geometrical problems. The soliton surfaces approach is very
useful in construction of the so-called integrable geometries. Indeed, any class of soliton surfaces
is integrable. Geometrical objects associated with soliton surfaces (tangent vectors, normal
vectors, foliations by curves etc.) usually can be identified with solutions to some nonlinear
models (spins, chiral models, strings, vortices etc.) [1], [2]. We consider the geometry of surfaces
immersed in Euclidean spaces. Such soliton surfaces for the WDVV equation for n = 3 case
with an antidiagonal metric η11 = 0 are considered, and first and second fundamental forms
of soliton surfaces are found for this case. Also, we study an area of surfaces for the WDVV
equation for n = 3 case with an antidiagonal metric η11 = 0.

1. Introduction
In this paper we shall consider so-called nonlinear partial differential equations of associativity
in 2D topological field theories (see [3]-[6]) and give their description as integrable
nondiagonalizable weakly nonlinear systems of hydrodynamic type. For systems of this type
corresponding general differential geometric theory of integrability connected with Poisson
structures of hydrodynamic type can be developed. We remind very briefly following Dubrovin
[3] the basic mathematical concepts connected with the Witten-Dijkgraaf-E.Verlinde-H.Verlinde
(WDVV) system arising originally in two-dimensional topological field theories [3], [4] and its
relations with the Dubrovin type equations of associativity. The WDVV equations, in general,
have the following form [3]:

∂3F

∂ti∂tj∂tp
ηpq

∂3F

∂tq∂tk∂tr
=

∂3F

∂tj∂tk∂tp
ηpq

∂3F

∂ti∂tq∂tr
, ∀i, j, k, r ∈ {1, ..., n},

where F is a prepotential, η is a metric.
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Consider a function F (t), t = (t1, ..., tn) such that the following three conditions are satisfied
for its third derivatives denoted as [3], [4]

cαβγ(t) =
∂3F (t)

∂tα∂tβ∂tγ
:

1) normalization, i.e.,
ηαβ = c1αβ(t)

is a constant nondegenerate matrix;
2) associativity, i.e., the functions

cγαβ(t) = ηγεcεαβ(t)

for any t define a structure of an associative algebra At in the n-dimensional space with a basis
e1, ..., en:

eα · eβ = cγαβ(t)eγ

3) F (t) must be a quasihomogeneous function of its variables:

F (cd1t1, ..., cdntn) = cdFF (t1, ..., tn)

for any nonzero c and for some numbers d1, ..., dn, dF .
The resulting system of equations for F (t) is called the Witten-Dijkgraaf-E.Verlinde-

H.Verlinde (WDVV) system [5], [6] (see also [[3], [4]]). It was shown by Dubrovin [3] that
solutions of the WDVV system can be reduced by a linear change of coordinates to two special
types:

(1) in physically the most important case

F (t) =
1

2
(t1)2tn +

1

2
t1
n−1∑
α=2

tαtn−α+1 + f(t2, ..., tn)

for some function f(t2, ..., tn)
(2) in some special case

F (t) =
1

6
(t1)3 +

1

2
t1
n−1∑
α=1

tαtn−α+1 + f(t2, ..., tn).

In this work we consider the WDVV equations for n = 3 case with an antidiagonal metric
such that η11 = 0

η =

 0 0 1
0 1 0
1 0 0

 .

In this case, the dependence of the function F on the fixed variable t1 was found by Dubrovin
[7], [8] which is

F =
1

2
(t1)2t3 +

1

2
t1(t2)2 + f(t2, t3)

For this case the equation of associativity reduces to the following nonlinear equation of the
third order for a function f = f(x, t)) of two independent variables (x = t2, t = t3):
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fttt = f2xxt − fxxxfxtt (1)

.
Let us introduce new variables a, b, c as follows [8], [9]:

a = fxxx, b = fxxt, c = fxtt.

In the above variables the equation (1) can be rewritten as a system of three equations in the
following way: 

at = bx,

bt = cx,

ct = (b2 − ac)x
(2)

.
In the following sections we work with the system (2).

2. Soliton surfaces for WDVV equation for n = 3
2.1. First fundamental form of a surface
The corresponding Lax pair for the WDVV equation for n = 3 case to the system (2) is given
by

Φx = UΦ (3)

Φt = V Φ (4)

where U = λA and V = λB. Here A and B matrices defined as follows [8], [9]:

A =

 0 1 0
b a 1
c b 0

, B =

 0 0 1
c b 0

b2 − ac c 0

. (5)

The scalar square of the total differential dr of the radius-vector of the current point of a surface
is called the first fundamental form I of the surface [10]:

I = dr2,

In expanded form, it is recorded as

I = r2xdx2 + 2rxrtdxdt + r2tdt2, (6)

where x and t are the curvatures.
To construct the surface, we now use the Sym-Tafel formula [11]. It has the form

r = Φ−1Φλ,

where r =
∑
rjσj is the matrix form of the position vector of the surface, Φ is a solution of the

equations (3)-(4). We have

rx = Φ−1UλΦ, rt = Φ−1VλΦ.

In terms of the Lax representation, equation (6) will be rewritten as follows:

I =
1

2

(
tr(U2

λ)dx2 + 2 tr(UλVλ)dxdt+ tr(V 2
λ )dt2

)
. (7)
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We now turn to finding the first fundamental form of soliton surface for the WDVV equation
for n = 3 case to the system (4)

tr(U2
λ) = a2 + 4b, (8)

tr(UλVλ) = ab+ 3c, (9)

tr(V 2
λ ) = 3b2 − 2ac. (10)

Substituting equations (8)-(10) into equation (7) we have the first fundamental form of soliton
surface for the WDVV equation to the system (2)

I =
1

2

[
(a2 + 4b)dx2 + 2(ab+ 3c)dxdt+ (3b2 − 2ac)dt2

]
2.2. Second fundamental form of a surface
The scalar product of the total differential of the second order d2r of the radius-vector r of the
current point of a surface by the orbit of the normal n at this point is called the second quadratic
form of the surface [10]:

II = −dn · dr,

where

n =
rx ∧ rt
|rx ∧ rt|

.

In an expanded form, it is recorded as

II = b11dx
2 + 2b12dxdt+ b22dt

2,

where the coefficients b11, b12 and b22 are given as

b11 = rxx · n,
b12 = rxt · n,
b22 = rtt · n,

or

b11 =
1

2
tr(rxxn), (11)

b12 =
1

2
tr(rxtn), (12)

b22 =
1

2
tr(rttn), (13)

where

rxx = Φ−1(Uλx + [Uλ, U ])Φ,

rxt = Φ−1(Uλt + [Uλ, V ])Φ,

rtt = Φ−1(Vλt + [Vλ, V ])Φ

The normal vector n is given by

n = ± Φ−1[Uλ, Vλ]Φ√
1
2 tr([Uλ, Vλ]2)

.
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Thus, the equation (11)-(13) is written as follows

b11 =
1

2

tr ((Uλx + [Uλ, U ]) [Uλ, Vλ])√
1
2 tr([Uλ, Vλ]2)

, (14)

b12 =
1

2

tr ((Uλt + [Uλ, V ]) [Uλ, Vλ])√
1
2 tr([Uλ, Vλ]2)

, (15)

b22 =
1

2

tr ((Vλt + [Vλ, V ]) [Uλ, Vλ])√
1
2 tr([Uλ, Vλ]2)

, (16)

Using equation (5) we obtain that [A,B] = 0. So, we have that n = 0 and the second fundamental
form of a soliton surface for the WDVV equation to the system (2) is

II = 0

3. Area of surfaces for WDVV equation for n = 3
In this section we consider the area of surfaces for the WDVV equation for n = 3 to the system
(2). Area of surfaces is evaluated by

S =
x √

1

2
tr
(
{Uλx + [Uλ, U ]}2

)
dxdt (17)

where the matrix A is defined as in equation (5).
So, that [Uλ, U ] = 0, we have

(Uλx)2 =

 0 0 0
axbx a2x 0
b2x axbx 0


Area of surfaces (17) for the WDVV equation to the system (2) is given by

S =
x √

1

2
a2xdxdt =

√
1

2

∫
adt+ k

where k is a constant.

4. Conclusion
In this work we considered the WDVV equations for n = 3 case with an antidiagonal metric
η11 = 0. Soliton surfaces for the WDVV equations for n = 3 cases with an antidiagonal metric
η11 = 0 was obtained. Area of surfaces for the WDVV equations for n = 3 cases with an
antidiagonal metric η11 = 0 was investigated.
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