
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Soliton surfaces for complex modified
Korteweg–de Vries equation
To cite this article: Gulnur Bauyrzhan et al 2019 J. Phys.: Conf. Ser. 1391 012108

 

View the article online for updates and enhancements.

You may also like
A high-performance mesoporous carbon
supported nitrogen-doped carbon
electrocatalyst for oxygen reduction
reaction
Jingjing Xu, Shiyao Lu, Xu Chen et al.

-

High Performance Hybrid Supercapacitor
Based on Graphene-Supported Ni(OH)2-
Nanowires and Ordered Mesoporous
Carbon CMK-5
Yonggang Wang, Dandan Zhou, Dan
Zhao et al.

-

Manganese Oxide Nanoparticles
Decorated Ordered Mesoporous Carbon
Electrode for Capacitive Deionization of
Brackish Water
Chunxia Zhao, Xiaoyun Lv, Junshen Li et
al.

-

This content was downloaded from IP address 82.200.168.87 on 08/12/2022 at 09:54

https://doi.org/10.1088/1742-6596/1391/1/012108
https://iopscience.iop.org/article/10.1088/1361-6528/aa9406
https://iopscience.iop.org/article/10.1088/1361-6528/aa9406
https://iopscience.iop.org/article/10.1088/1361-6528/aa9406
https://iopscience.iop.org/article/10.1088/1361-6528/aa9406
https://iopscience.iop.org/article/10.1149/2.012302jes
https://iopscience.iop.org/article/10.1149/2.012302jes
https://iopscience.iop.org/article/10.1149/2.012302jes
https://iopscience.iop.org/article/10.1149/2.012302jes
https://iopscience.iop.org/article/10.1149/2.012302jes
https://iopscience.iop.org/article/10.1149/2.0141714jes
https://iopscience.iop.org/article/10.1149/2.0141714jes
https://iopscience.iop.org/article/10.1149/2.0141714jes
https://iopscience.iop.org/article/10.1149/2.0141714jes
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvfzlwcPZfApZklmefwe5yQCMWrezD_SDM3lYfOd_-ynELZiMqzQ0fuBDJmu_kNLhtFxxGXkCHfbSnwyg3KH40qg6_307e7A-cE_Xq7kqqbBdxqxHvLRR7wGfXdeM83hMU-Ng2z4uIuep_vZGFGL32s6_ablpzEPIBQvC9WisUIUnaXKnC5JBTzedcU0o6vze8egWkNoIuBqnc3Mlok7s5-SwEWYSoQeQT0C45HXAMvE8aj0W1nce_LKbC_YXnSUJ5izvMIJOz4zY8VOO8epCxZJEZP0g9mPC-QcJScsY-vYA&sai=AMfl-YSZSW0mEJk_N4F2MA9GVVGWZcnbJiBURFMbApNA7bGmuD3g0R9kkIkWyhabwcVxEAXVROBmY34kAB-E9KsIqg&sig=Cg0ArKJSzEN7e_hRXKhe&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/243/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3D243AbstractExtended


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

8th International Conference on Mathematical Modeling in Physical Science

Journal of Physics: Conference Series 1391 (2019) 012108

IOP Publishing

doi:10.1088/1742-6596/1391/1/012108

1

Soliton surfaces for complex modified Korteweg−de

Vries equation

Gulnur Bauyrzhan1, Kuralay Yesmakhanova2, Koblandy Yerzhanov3,
Sveta Ybyraiymova4

1 L. N. Gumilyov Eurasian National University, General and Theoretical Physics, Kazakhstan
2 L. N. Gumilyov Eurasian National University, Department of Mathematical and Computer
Modeling, Kazakhstan
3 L. N. Gumilyov Eurasian National University, General and Theoretical Physics, Kazakhstan
4 Al-Farabi kazakh National University,Faculty of pre-university education

E-mail: bauyrzhan.g.b@gmail.com

Abstract. In mathematics and physics, one of the main tasks is to relate differential geometry
and non-linear differential equations, which means that the study of particular cases of
subvarieties, curves, and surfaces are of great importance. Soliton surfaces associated with
the integrable system play an essential role in many problems with the physical application.
In this paper, we study the complex modified Korteweg−de Vries (cmKdV) equation. It is
well known that the cmKdV equation is a very important integrable equation. We present the
relationship between an integrable system and soliton surfaces and namely Lax representation
of the cmKdV equation was used to obtain the first and second fundamental forms, surface area
and curvature.

1. Introduction
The term soliton - got its name from the word solitary wave, which is a localized wave, that arises
from the balance between nonlinear and dispersion effects. Despite initial research, the solitary
wave concept could not gain much recognition for many years. Korteweg− de Vries (1895)
developed a mathematical model for the shallow water problem and showed the possibility of
a solitary wave. Later, the study of solitary waves began in the mid-1960s, when the Zabusky
and Kruskal discovered stable behavior similar to a particle of solitary waves [1]-[4]. Earlier
considered the real modified Korteweg−de Vries[5]. We considered here the complex modified
Korteweg−de Vries equation. Soliton is a structural stable solitary wave propagating in a
nonlinear medium. Solitons behave like particles when interacting with each other, they are
not destroyed but continue to move to maintain their structure unchanged. Finding solutions to
complex modified Korteweg-de Vries (cmKdV) is of great importance because solutions help to
understand well the complex mechanisms of physical phenomena and dynamic processes. Partial
nonlinear equations are the cmKdV equation [6]-[11]. We begin with coupled cmKdV equations
of the form of [12]

qt + qxxx − 6qrqx = 0, (1)

rt + rxxx − 6rqrx = 0. (2)
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We introduce q = r∗ equation (1)-(2) has next form

qt + qxxx + 6 |q|2 qx = 0. (3)

Here q (x, t) - the deviation from the equilibrium position of the water surface waveform
depends on the x coordinate and time t. The indices of the characteristic q function mean the
corresponding derivatives concerning t and x. This equation is a partial differential equation.
The characterization under study in this case, q depends on the coordinate x and time t. To
solve an equation of this type means to find the dependence of q on x and t, after substituting
it into the equation we come to identify the modified Korteweg-de Vries equations that will be
introduced in this chapter. Lax representation of the cmKdV equations has next form [13]-[14]

Ψx = MΨ, (4)

Ψt = NΨ, (5)

where ψ-vector

Ψ =

(
ψ1

ψ2

)
, (6)

and M,N are matrices

M =

(
−iλ q
r iλ

)
, (7)

N = V3λ
3 + V2λ

2 + V1λ+ V0. (8)

Here

V3 =

(
−4i 0
0 4i

)
, (9)

V2 =

(
0 4q
4r 0

)
, (10)

V1 =

(
−2iqr 2iqx
−2irx 2iqr

)
, (11)

V0 =

(
−qrx + qxr −qxx + 2q2r
−rxx + 2qr2 qrx − qxr

)
, (12)

(13)

where, λ - complex parameter of eigenvalues constant.
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2. Fundamental form.
In this chapter, we used the first and second fundamental form for finding soliton surfaces
and used the Sym Tafel formula. The Sym Tafel formula gives the connection between the
theory of solitons and classical geometry Finding soliton surfaces is important when solving
integrable geometry. Geometrical objects associated with soliton surfaces can be associated
with the solutions of some nonlinear models [15]-[19].

Using Sym-Tafel formula

r = Φ−1Φλ, (14)

we find the next;

rx = Φ−1MλΦ, (15)

rt = Φ−1NλΦ. (16)

where,

Mλ =

(
−i 0
0 i

)
, (17)

Nλ =

(
−12iλ2 − 2iqr 8qλ+ 2iqx
8rλ− 2irx 12iλ2 + 2iqr

)
. (18)

(19)

2.1. The first fundamental form of the surface
Consider a parameterized surface

r = r (x, t) . (20)

Regardless of whether the parameters (x,t) are independent arguments or any functions of other
independent arguments, the total dierential dr of the radius vector r of the current surface point
is represented as a (vector) invariant linear dierential form

dr = rxdx+ rtdt. (21)

Which is a scalar quadratic differential form, has the same invariance property

dr2 = drdr = r2xdx
2 + 2rxrtdxdt+ r2t dt

2. (22)

In expanded form, we can write in the following form

ϕ1 = Edx2 + 2Fdxdt+Gdt2, (23)

where E,F,G - the first quadratic form are determined from the previously obtained expression

E = r2x;F = rxrt;G = r2t , (24)

where

rx = Φ−1MλΦ, (25)

rt = Φ−1NλΦ, (26)

rxrt = Φ−1MλNλΦ. (27)
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Consider two-dimentional surface

→
rx

2
= −1

2
tr(r2x), (28)

→
rt

2
= −1

2
tr(r2t ), (29)

→
rx

→
rt = −1

2
tr(rxrt), (30)

we find

r2x =

(
−1 0
0 −1

)
, (31)

tr(
→
rx

2
) = −2, (32)

r2t =

(
−144λ4 − 48λ2qr − 4q2r2 + 64λ2qr − 16qλirx + 16qxirλ+ 4qxrx

−96iqλ3 + 24λ2qx − 16iq2rλ+ 4rqqx + 96qiλ3 + 16iq2λr − 24λ2qx − 4rqqx

−96λ3ir − 16ir2q − 24λ2rx − 4qrxr + 96riλ3 − 24λ2rx + 16iqr2λ− 4qrrx
64λ2rq + 16iqxrλ− 16qλirx + 4qxrx − 144λ4 − 48λ2qr − 4q2r2

)
, (33)

tr(
→
rt

2
) = −8q2r2 − 32qrλ2 + 64rqλ2 − 288λ4 + 32rλiqx − 32qλirx + 8qxrx, (34)

rxrt =

(
−12λ2 − 2qr 8iqλ− 2qx
8irλ+ 2rx −12λ2 − 2qr

)
, (35)

tr(
→
rt

2
) = −4qr − 24λ2. (36)

We rewrite first foundation form equations as

I =
1

2

(
tr(M2

λ)dx
2 + 2 tr(MλNλ)dxdt+ tr(N2

λ)dt
2
)
, (37)

where

tr
(
M2

λ

)
= −2, (38)

tr
(
N2

λ

)
= −8q2r2 − 32qrλ2 + 64rqλ2 − 288λ4 + 32rλiqx − 32qλirx + 8qxrx, (39)

tr (MλNλ) = −4qr − 24λ2. (40)

Substituting equations (38)-(40) into equation (37), we obtain

I = dx2 − [−24iλ2 − 4qr]dxdt+ [−8q2r2 − 32qrλ2 + 64rqλ2 − (41)

−288λ4 + 32rλiqx − 32qλirx + 8qxrx]dt.

Expanded view of the first fundamental form has next view

I = Edx2 + 2Fdxdt+Gdt2. (42)
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2.2. The second fundamental form of the surface
The second quadratic form (or second fundamental form) of the surface is a quadratic form on
the tangent bundle of the surface, which, unlike the first quadratic form, defines the external
geometry of the surface in the vicinity of this point

II = −
[( →
rxx

→
n
)
dx2 + (2

→
rxt

→
n)dxdt+ (

→
rtt

→
n)dt2

]
. (43)

where

→
rxx

→
n = −1

2
tr(rxxn), (44)

→
rtt

→
n = −1

2
tr(rttn), (45)

→
rxt

→
n = −1

2
tr(rxtn). (46)

(47)

We introduce the notation

e =
→
rxx

→
n, f =

→
rtt

→
n, g =

→
rxt

→
n. (48)

Next, using the equations of Sym Tafel we find

rxx = Φ−1MλxΦ+ Φ−1 [Mλ,M ] Φ, (49)

rxt = Φ−1MλtΦ+ Φ−1 [Mλ, N ] Φ, (50)

rtt = Φ−1NλtΦ+ Φ−1 [Nλ, N ] Φ. (51)

we define normal

n =
Φ−1 [Mλ, Nλ] Φ√
1
2 tr

(
[Mλ, Nλ]

2
) . (52)

The second fundamental form has next form

e = −1

2

tr ((Mλx + [Mλ,M ]) [Mλ, Nλ])√
1
2 tr

(
[Mλ, Nλ]

2
) , (53)

f = −1

2

tr ((Mλt + [Mλ, N ]) [Mλ, Nλ])√
1
2 tr

(
[Mλ, Nλ]

2
) , (54)

g = −1

2

tr ((Nλt + [Nλ, N ]) [Mλ, Nλ])√
1
2 tr

(
[Mλ, Nλ]

2
) . (55)

Further from the equation (53)-(55) we find the commutators;

[Mλ,M ] =

(
0 −2iq
2ir 0

)
, (56)

[Mλ, Nλ] =

(
0 −2i(8qλ+ 2qx)

2i(8rλ− 2rx) 0

)
, (57)
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[Mλ, N ] =

(
0 −8λ2i+ 4qxλ+ 2qxxi− 4q2ri

8λ2i+ 4rxλ− 2rxxi+ 4qr2i 0

)
, (58)

[Nλ, N ] =

(
−4q2r2λ+ 2iq2rrx − 2iqqxr − 32λ3qr + 12qrxiλ

2 − 12qxriλ
2 + 48iλ5

16qr3λ− 8rxxrλ+ 32rλ3 − 4qr3irx + 2rxxirx − 8rλ2irx − 16rλ2irx − 4r2xλ

−8qxxqλ+ 32qλ3 + 16q3λr − 2qxxqxi+ 8qλ2iqx + 4q2riqx + 16qqxλ
2i− 4qqxλ

−4q2r2 + 2q2rrxi− 2qxr
2iq − 32iλ3qr + 12qrxiλ

2 − 12qxriλ
2 + 48iλ5

 , (59)

also

Mλx = 0, (60)

Mλt = 0, (61)

Nλt =

(
−2i(rqt + qrt) 8qλqt + 2iqxt
8rtλ− 2irxt 2i(qtr + qrt)

)
, (62)

we substituting (56)-(62) and can get the second fundamental form in following form

II = edx2 + 2fdxdt+ gdt2. (63)

3. Surface area
In all area definitions, the first-class describes the surface class. It is easiest to determine the
area of polyhedral surfaces: as the sum of the areas of their flat faces. Not too wide for most
applications. Most often, the surface area is determined for the class of piecewise smooth surfaces
with a piecewise smooth edge. This can be done using the following construction: The surface
is divided into parts with piecewise smooth boundaries: for each part, a plane is selected and
the part in question is orthogonally projected onto it; the area of the obtained flat projections
is summarized. The surface area itself is defined as the exact upper bound of such sums. If a
surface in Euclidean space is given parametrically function r(x, t), where are the parameters x, t
in area D on surface x, t so area S can be expressed as a double integral

S =

∫ ∫ ∣∣∣→rx × →
rt
∣∣∣ dxdt. (64)

where × - a vector product, rx, rt-private derivatives by x, t and

∣∣∣→rx × →
rt
∣∣∣ =

√
→
r2x

→
r2t − (

→
rx

→
rt)2, (65)

∣∣∣→rx × →
rt
∣∣∣ = √

EG− F 2. (66)

We can write

S =

∫ ∫ √
EG− F 2dxdt, (67)
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where:

E =
1

2
tr(r2x) =

1

2
tr(M2

λ) = 1, (68)

G =
1

2
tr(r2t ) =

1

2
tr(N2

λ) = −8q2r2−32qrλ2+64rqλ2−288λ4+32rλiqx−32qλirx+8qxrx, (69)

F =
1

2
tr(rxt) =

1

2
tr(MλNλ) = 0, (70)

S =

∫ ∫ √
−8q2r2 − 32qrλ2 + 64rqλ2 − 288λ4 + 32rλiqx − 32qλirx + 8qxrxdt. (71)

4. Total and mean curvatures of the surface
In studying the properties of regular surfaces, the concepts of average surface curvature and
Gaussian curvature are widely used. The average curvature of the surface at a given point is
the half-sum of its main curvatures

H =
1

2
(k1 + k2). (72)

The Gaussian curvature of a surface is the product of its principal curvatures

K = k1k2, (73)

using the properties of the roots of the quadratic equation, we obtain the following formulas for
the average curvature H and the Gaussian curvature K:

K =
det II

det I
=

eg − f2

EG− F 2
, (74)

H =
1

2

Eg +Ge− 2Ff

EG− F 2
. (75)

5. Conclusion
In this article, we examined the complex modified KdV equation. For integrability, we introduced
the Lax pair and investigated a one-dimensional surface. The first and second fundamental forms
were found in the formula of Sym Tafel. We found the surface area, Gaussian and average surface
curvature.
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