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Abstract. In this paper, we study the application of the theory of solitons in differential
geometry. The recently proposed soliton equation, which is Fokas-Lenells equation, has been
investigated, and its two-dimensional soliton surface in the three-dimensional Euclidean space
(R?* — R3) has been constructed. Thus the connection between the Fokas-Lenells equation
and the surface was established by using the Sym-Tafel formula. We find the first and the
second quadratic forms, surface area, and Gaussian curvature. The obtained results have various
applications in mathematical physics, the geometry of curves and the theory of surfaces.

1. Introduction

The study of properties as geometry [1]-[4], integrability [5], and exact [6]-[10] solutions of
nonlinear equation have an impotant role in the application on of physics. The theory of
surfaces in three-dimensional Euclidean space is widely used in various fields of science, in
particular in mathematics, theoretical physics, etc. In this paper, we apply it to the theory
of integrable system. To this end, the integrable Fokas-Lenells (FL) equation, which describes
the propagation of ultrashort nonlinear light pulses in optical fibers and looks as follows, is
investigated:

it — ez + 260 — |q|* gz +ig = O, (1)
Wyt — gy — 2T + |q|2 re +ir = 0, (2)

where ¢(x,t) is the complex envelope of a field, the indices x, t denote partial derivatives with
respect to the arguments x, ¢ and ¢ are an imaginary unit. In physical applications, two natural
reductions are used (r = £¢), which are of great interest in physics, one of them is a of defocusing
case, with r = —q [11]-[13]

FL_: igu —iqes + 24z — |q°¢w +ig = 0,

and second, the of focusing case, with » = ¢

FL+ D Upt — WGpg + 2q5 + |q,2Q$ +1iq = 0.

In this paper, we consider the first case, that is

iGut — 1z + 24z — |q|* ¢ + ig = 0. (3)
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Since, the equation under consideration is integrable, it has the Lax pair (LP), which plays an
important role in the theory of integrable systems. It allows you to apply the inverse scattering
method to construct exact solutions and to study the asymptotics of problems with initial
conditions. The LP for equation (3) has next form

By, t,\) = Uz, t, \)D(x,t,\), (4)
Oy(z,t,\) = V(z,t, \)O(x,t,\), (5)

where ® = (@1, ®5)7 is called 2 x 2 the matrix eigenfunction of the eigenvalue \ (or spectral
parameter) and the matrix operators U and V are given in the following form:

U=—i\0o3+ \Q, (6)

1

. 1
V:—ZA20'3+)\Q+%+XV_1—RO'3. (7)

(0 g o ilgl _if0 ¢ (1 0
Q_<qx 0>,‘/0—’LO'3 2 g3, V—l_§ —q 0 , 03 = 0 -1/

2. The first fundamental form of the surface

The first fundamental form (1FF) plays an important role in the theory of surfaces and serves
primarily to measure infinitely small arcs on a surface. 1FF of a smooth surface P is called a
scalar square the radius of the vector dr = r dx + rdt, that is,

Here

I = dr? = (rpdx + rydt)? = r2da® + 2r ridedt + vidt>. (8)

The equation (8) at each point of the surface P represents the quadratic form of the differentials
dx and dt.
For coefficients 1FF, the following notation is often used:

E=r2 F=r,ry, G=r7, (9)
then the equation (8) is rewritten as
I = Edz? + 2Fdzdt + Gdt?, (10)

where EG — F? > 0.
Two-dimensional surfaces and integrable equations are relate by the Lax representation. This
is done with the help of the so-called Sym-Tafel formula (STF), which has the form [12]

r=o"19,, (11)

and defines a A-family of surfaces parametrized by coordinates = and ¢. From equation (11) we
can define 1FF. The surfaces are immersed in the linear space of the matrices from the equation
(11) [14].

It is very convenient to apply the STF because of the very simple rule for calculating the
derivatives with respect to r

e = (@71, 0\ + 0710, = 070,070, + 7 L(UD), =

=07 UP\+ 27 U\D+ D UD, =D U,D, (12)
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and similarly,
ry = LD, (13)

Scalar product is standard, that is, proportional to the trace of the matrix. For example:
ry -1t = ¢ tr(UxV)), where ¢ is a constant. Then, in terms of matrix operators, the equation (8)
is rewritten as follows:

I = = (tr(UR)da? + 2tr(U\Vy)dzdt + tr(V)dt?) . (14)

I.\D\H

Thus, it became obvious that the STF serves as a bridge for establishing a connection with the
soliton equation and the surface.

Now, let’s differentiate the matrix operators U and V by the spectral parameter A, we take
them in the square and find their trace, that is,

w(U) = 2ql - 422, (15)
1 (A _
a@i) = 2 (Jaaf - 4+ A2)+2A2<qqm—qqm>, (16)
_ 2 1

Substituting the equations (15)-(17) into the equation (14), we get

1 1
— (gl = 020+ (22 = 02 4 55 + 53— ) ) dedes
] 1
+ (‘Qm‘Q 4)‘2 + w(q(h - QQJJ) + /\2 4)\4 |q,2 4)\6) dtz (18)

or as equation (10)
I = Eda? + 2Fdxdt + Gdt?,

where

E = |q.|* —4)\% (19)

1 7

F = F 09z — 44z), 2
+ o 4A2(qq ) (20)

1 1

= F z — Qqx N 2_7-
+2)\2(qq 4Gz) + /\2+4/\4|\ 0

Thus, we found 1FF surfaces of the FL equation.

3. The second fundamental form of the surface

The second fundamental form (2FF) describes the surface in the second approximation. It shows
how the surface deviates from the tangent plane and completely determines the curvature of the
surface. 2FF regular surface f is the scalar product of vectors d’r and n:

IT = (d’rn)?, (22)

where the unit normal vector is defined as

rp, Ar ry, A1

S raAr] VEG — F2?
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and the second differential of the vector function r(z,t)
d’r = ryda’® 4 2rgdadt + rydt?. (23)
Then, the equation (22) will has written as
IT = (ryy - 1) dz® 4 2(ry - n) dzdt + (v - n) dt?. (24)
For coefficients 2FF, the following notation is used:
L=ry; n, M=ry-n N=ryu- n
This allows you to rewrite the equation (24) as
IT = Lda? + 2Mdzdt + Ndt?, (25)

where the coefficients L, M and N are calculated as
1 1 1
L= B tr(ryen), M= 5 tr(rym), N = 5 tr(ryn), (26)

where

4 q)fl[U)\,V)\]@
V3 tr([Ux, Va]?)
and the second derivatives of the equation (12)-(13) can be easily calculated
Tew = (B7ULND), = —B 10,07 1ULD + &' U, D + & 'U D, =
= -0 UU® + &7 UN\D + O TIU\UD = & H—UUy + Uy, + Up\U)® = LUy, + [Uy, U] @,

n =

(27)

(28)

and, by same way we can find,
ree = @ (Un +[Un, V], (29)
rie = O NV + [V, V])®. (30)

Thus, substituting the equations (28)-(30) into the equation (26) we get the final formula for
calculating the coefficients 2FF

1tr (Une + [Ux, U]) [Ux, Va)

L = , (31)
3 tr([Ux, Va]?)
M - ;tr((U,\tJr[UA,V])[U,\,V,\])’ (32)

3 tr([Ux, VA]?)

N = LW+ [V VD) [Ux D) (33)

2 Ltx([Un, AJ?)

So, we derive the equations for calculating the coefficients of 2FF and next step is to find it. For
this purpose we find the commutators

Uy, U] = 2i)? Gl _51“> (34)
UnV] = ia (q(l —gw>+23(—<|%12>x (M%)JH(S g), (35)
Vi, V] = i(a—%) (; ‘qu)+i(—(%\2)m <‘qt’)2)x>+5(2 g) (36)
UnVA] = ;(i _Oq””)—;ggc('%m (), —i(q g) (37)
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where
a = 2)\2+27|q\27i
2227
1 g 1
pu— 3 _—— —_—
B A2 + 202 4\

Then, substituting the equations (34)-(37) into the equations (31)-(33) we can obtain

7 _ 3 (@rer — Goloe) + 20401 — 4re — 4w + 20X (99 — quz)’ (38)
V3519l + 2000 — ) — g ((1a]2))? + 4lgl2
M 55z (Telat — Qelat) + 521601 — 10(90: — 302) + 152 ((101*)2)? — GGt — qGur — 4lq|?
Vbl + 3 (00 — ) — 7k ((1a?)a)? + 4lgl?
M + (e + @0e) — 3xl00)® + 522 (90 — @42) + 722 ((1011)e)? + 552 (@@ — aG) — 2(8 — 2)q/?
Ve lael? + E (a0 — ) — gl ((1a)e)? + 4lgl?

, (39)

N:

9

(40)
where a = o — 1/)2.
Thus, we found a 2FF surface, which is defined by the equation (25), where the coefficients
are equal to the expressions (38)-(40).

4. Surface area
If a surface in a Euclidean space is given by a parametrically smooth function r(z,t), where
the parameters z, ¢ change in the D domain on the z,¢ plane, then the surface area S can be

expressed by a double integral
S = // vy A r¢|dadt, (41)
D

where the module the vector product of the vectors r, and r; is equal to
1
vy A1y = 3 tr(rez)-

It is known that 7., is calculated by the formula (28), then the surface area S is calculated by

the following formula:
1
S = / / \/ 5t (Uns + U, U)ot (42)
D

then our required surface area S look as

S = // \/‘qu'c:c|2 + 22')\2(6_790(]3590 - qugcx) + 4>\4|Qx’2dl'dt. (43)
D

5. Gaussian surface curvature
The Gaussian curvature of a surface is the product of the principal curvatures of a regular
surface at a given point and calculate by the ratio of the discriminants of the first and second
fundamental forms [15]
LN — M?

K= G F2 (44)
that is, by substituting equations (38)-(40) and (19)-(21) into the equation (44), we can obtain
the Gaussian curvature.
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6. Conclusion

Thus, in this paper, for the Fokas-Lenells equation using the Sym-Tafel formula, 1FF and 2FF
surfaces with corresponding coefficients are found. 2FF is an effective tool for studying the
geometric properties of a regular surface. Through this form, can enter important geometric
characteristics that measure the degree and type of surface deviation from the tangent plane.
Using these forms, gave a formula for calculating the Gaussian curvature of a surface, which
is convenient to use for the classification of points of a regular surface: the sign of which at a
given point indicates the nature of the surface behavior at this point (K > 0 is elliptic, K < 0
is hyperbolic, K = 0 is parabolic). Also found the surface area.
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