Variational calculations of the $\mathrm{H}^{\!+}_2$ and $\mathrm{HD}^{\!+}$ rovibrational energies

Cite as: AIP Conference Proceedings **2163**, 090003 (2019); https://doi.org/10.1063/1.5130125 Published Online: 22 October 2019

Askhat K. Bekbaev, Damir T. Aznabayev and Vladimir I. Korobov

ARTICLES YOU MAY BE INTERESTED IN

 $B \rightarrow \rho$ decay form factors from covariant confined quark model AIP Conference Proceedings **2163**, 090006 (2019); https://doi.org/10.1063/1.5130128

Investigation of the excited states of ¹¹B in interactions with alpha particles AIP Conference Proceedings **2163**, 070001 (2019); https://doi.org/10.1063/1.5130113

HILAC-Booster transport channel: The magnetic elements power supply and beam profile measurements

AIP Conference Proceedings 2163, 080002 (2019); https://doi.org/10.1063/1.5130117

APL Quantum

CALL FOR APPLICANTS Seeking Editor-in-Chief

AIP Conference Proceedings **2163**, 090003 (2019); https://doi.org/10.1063/1.5130125 © 2019 Author(s). 2163, 090003

Variational Calculations of the H₂⁺ and HD⁺Rovibrational Energies

Askhat K.Bekbaev^{1,2, a)}, Damir T.Aznabayev^{2,3, b)}, and Vladimir I.Korobov^{2, c)}

¹Al-Farabi Kazakh National University, 71 al-Farabiave.050040 Almaty, Republic of Kazakhstan ²Joint Institute for Nuclear Research, 6 Joliot-Curie, 141980 Dubna, Moscow region, Russia ³L.N.Gumilov Eurasian National University, 2 Satpayev str.010008Nur-Sultan, Republic of Kazakhstan

> ^{a)}Corresponding author: bekbaev-askhat@mail.ru ^{b)}buski_dn@mail.ru ^{c)} korobov@theor.jinr.ru

Abstract. We use the exponential explicitly correlated variational basis set of the type $\exp(-\alpha_n R - \beta_n r_1 - \gamma_n r_2)$ to calculate systematically the nonrelativistic bound-state energies for the hydrogen molecular ion H_2^+ and HD^+ . We perform calculations for the states of the total angular momentum L=0-4 with the complete set of vibrational numbers v=0-10.

I. INTRODUCTION

The precision theoretical study of H_2^+ and HD^+ hydrogen molecular ions has been performed [1] with the aim to improve determination of, the proton-to-electron mass ratio, m_e/m_p [2,3] via rovibrational spectroscopy. The experimental results [4] demonstrate the feasibility of this project.

We use the following notation for the coordinate system of the three particles. Coordinates \mathbf{R} , i = 1,2,3, are position vectors of the two proton and electron for the H_2^+ , and proton, deuteron and electron for HD⁺ respectively, in the center-of-mass frame. The vector $\mathbf{R} = \mathbf{R}_2 - \mathbf{R}_1$ is a relative position of the proton with respect to the proton (HD^+) , deuteron (HD^+) , while \mathbf{r}_1 and \mathbf{r}_2 are the relative positions of the electron with respect to proton and proton (HD^+) , and proton and deuteron (HD^+) . Atomic unites are used throughout: $\mathbf{m}_c = \hbar = e = 1$.

II. VARIATIONAL WAVE FUNCTION

The variational bound-state wave functions were calculated by solving the three-body Schrödinger equation with Coulomb interaction:

Proceedings of the 23rd International Scientific Conference of Young Scientists and Specialists (AYSS-2019) AIP Conf. Proc. 2163, 090003-1–090003-5; https://doi.org/10.1063/1.5130125 Published by AIP Publishing, 978-0-7354-1908-7/\$30.00

$$\left[\frac{\mathbf{P}_{1}^{2}}{2M_{1}} + \frac{\mathbf{P}_{2}^{2}}{2M_{2}} + \frac{\mathbf{p}_{e}^{2}}{2m_{e}} - \frac{Z_{1}}{r_{1}} - \frac{Z_{2}}{r_{2}} + \frac{Z_{1}Z_{2}}{R}\right]\psi_{0} = E_{0}\psi_{0}$$
(1)

using the variational approach based on the exponential expansion with randomly chosen exponents. This approach has been discussed and developed in a variety of works [5-7]. Details and the particular strategy for choosing the variational nonlinear parameters and basis structure that have been adopted in the present work can be found in [8].

The wave function for a state with a total orbital angular momentum L and of a total spatial parity $\pi = (-1)^{L}$ is expanded as follows:

$$\psi_{LM}^{\pi}(\mathbf{R},\mathbf{r}_{1}) = \sum_{l_{1}+l_{1}=L} Y_{LM}^{l_{l_{2}}}(\mathbf{R},\mathbf{r}_{1}) G_{l_{l_{2}}}^{L\pi}(R,r_{1},r_{2}),$$

$$G_{l_{l_{2}}}^{L\pi}(R,r_{1},r_{2}) = \sum_{n=1}^{N} \left\{ C_{n} \operatorname{Re}[e^{-\alpha_{n}R - \beta_{n}r_{1} - \gamma_{n}r_{2}}] + D_{n} \operatorname{Im}[e^{-\alpha_{n}R - \beta_{n}r_{1} - \gamma_{n}r_{2}}] \right\},$$
(2)

where the complex exponents α, β, γ are generated in a pseudorandom way. When exponents α_n, β_n , and γ_n are real, the method reveals slow convergence for molecular-type Coulomb systems. Thus, the use of complex exponents allows us to reproduce the oscillatory behavior of the vibrational part of the wave function and to improve convergence [9].

In numerical calculations, the CODATA14 recommended values [10] have been used for the masses of a proton and deuteron, namely, $m_p = 1836.15267389$ and $m_d = 36703.48296785$.

III. RESULTS

Numerical results of calculations are shown in TABLE1 and TABLE 2. All the digits presented are converged. Thus, we claim that the accuracy of about 10^{-14} - 10^{-15} a.u. is achieved. This precision is sufficient for making accurate theoretical prediction for transition frequencies in rovibrational spectroscopy of the H₂⁺ and HD⁺ molecular ions. Our results show that the accuracy of these calculations exceeds the accuracy of previous works [11], this allows us to approve that subsequent calculations, in which, will be taken into account our results, will give more accurate theoretical data.

v	Ν	E(L=0)	Ν	E(L=1)
0	10000	-0.597139 063 081 376 670963	12000	-0.596873 738 786 879 54923
1	10000	-0.587155 679 101 444 713781	10000	-0.586904 320 924 614380
2	10000	-0.577751 904 423 216 7853	10000	-0.577514 034 065 733 6467
3	10000	-0.568908 498 741 500 3994	10000	-0.568683 708 270 965639
4	16000	-0.560609 220 862 442689	16000	-0.560397 171 413 192 4453
5	16000	-0.552840 749 911 11841	16000	-0.552641 171 564 8436
6	20000	-0.545592 651 009 840162	20000	-0.545405 343 973 17974
7	24000	-0.538857 386 984 525910	24000	-0.538682 224 258 07562
8	24000	-0.532630 379 374 145566	24000	-0.532467 311 215 51050
9	24000	-0.526910 124 034 590286	24000	-0.526759 184 677 6329
10	24000	-0.521698 369 032 55114	24000	-0.521559 686 371 79901
	Ν	E(L=2)	Ν	E(L=3)
0	10000	-0.596345 205 491 918999	10000	-0.595557 638 983 371 69218
1	10000	-0.586403 631 534 449060	10000	-0.585657 611 883 906690
2	10000	-0.577040 237 171 615740	10000	-0.576334 350 228 669387
3	10000	-0.568235 992 982 634681	10000	-0.567569 034 844 973164
4	16000	-0.559974 864 833 213010	16000	-0.559345 838 241 807626
5	16000	-0.552243 738 633 085362	16000	-0.551651 852 949 522041
6	20000	-0.545032 389 922 32136	20000	-0.544477 065 066 36723
7	24000	-0.538333 500 078 76060	24000	-0.537814 375 049 1274
8	24000	-0.532142 722 751 55271	24000	-0.531659 669 699 48405
9	24000	-0.526458 806 300162	24000	-0.526011 951 642 7957
10	24000	-0.521283 780 692 0813	24000	-0.520873 535 563 8968
	Ν	E(L=4)	_	
0	10000	-0.594517 169 242 725 6300		
1	10000	-0.58467 213 423 580 2976		
2	10000	-0.575402 003 308 47469		
3	10000	-0.566688 236 641 71939		
4	16000	-0.558515 281 639 920927		
5	16000	-0.550870 506 098 78926		
6	20000	-0.543744 177 116 6975		
7	24000	-0.537129 488 129 3674		
8	24000	-0.531022 638 509 38890		
9	24000	-0.525422 972 765 8310		
10	24000	-0.520333 189 780 5849		

TABLE 1. Nonrelativistic energies (in a.u.) of rovibrational states for the orbital angular momentum L=0-4 (in a.u.) for H_2^+ . N is the number of basis function.

v	Ν	E(L=0)	Ν	E(L=1)
0	10000	-0.597897 968 610 75746	12000	-0.597698 128 194 07502
1	10000	-0.589181 829 561 598 31911	10000	-0.588991 111 996 806790
2	10000	-0.580903 700 225 622 2635	10000	-0.580721 828 128 30538
3	10000	-0.573050 546 561 443788	10000	-0.572877 277 103 90243
4	12000	-0.565611 042 088 431 7035	16000	-0.565446 166 289 299394
5	18000	-0.558575 520 838 957147	16000	-0.558418 863 272 3593
6	20000	-0.551935 948 971 72246	20000	-0.551787 367 923 5169
7	20000	-0.545685 915 309 083405	24000	-0.545545 303 425 6591
8	24000	-0.539820 641 562 965801	24000	-0.539687 927 061 3431
9	24000	-0.534337 013 579 132556	24000	-0.534212 162 118581
10	24000	-0.529233 635 584 43106	24000	-0.529116 652 944043
	Ν	E(L=2)	Ν	E(L=3)
0	10000	-0.597299 643 353 92085	10000	-0.596704 882 764 44281
1	10000	-0.588610 829 394 812 3556	10000	-0.588043 264 168 244666
2	10000	-0.580359 195 207 49483	10000	-0.579818 002 035 836003
3	10000	-0.572531 810 335 88176	10000	-0.572016 269 242 75329
4	16000	-0.565117 449 775 665937	16000	-0.564626 942 074 290959
5	16000	-0.558106 548 187 500297	16000	-0.557640 555 706 619105
6	20000	-0.551491 172 855 16618	20000	-0.551049 278 520 73217
7	24000	-0.545265 015 705 94894	24000	-0.544846 905 622 25467
8	24000	-0.539423 405 228 383457	24000	-0.5390288724 751 5705
9	24000	-0.533963 339 712 74348	24000	-0.533592 290 174 06478
10	24000	-0.528883 543 933 51798	24000	-0.528536 004 615 0233
	Ν	E(L=4)	_	
0	10000	-0.595917 342 215 897764		
1	10000	-0.587291 784 380 128168		
2	10000	-0.579101 495 573 924028		
3	10000	-0.571333 786 056 66977		
4	16000	-0.563977 666 880 251251		
5	16000	-0.557023 807 071 968768		
6	20000	-0.550464 509 773 7052		
7	24000	-0.544293 707 787 20762		
8	24000	-0.538506 979 534 50243		
9	24000	-0.533101 587 096 5524		
10	24000	-0.528076 538 787 34155	_	

TABLE 2. Nonrelativistic energies (in a.u.) of rovibrational states for the orbital angular momentum L=0-4 (in a.u.) for HD^+ . N is the number of basis function.

ACKNOWLEDGMENTS

The work was supported by the Ministry of Education and Science Republic of Kazakhstan under Grant No. IRN AP05132978.

REFERENCES

- 1. V.I.Korobov, Relativistic corrections of 6 m α order to the rovibrational spectrum of H₂⁺ and HD⁺ molecular ions, Phys. Rev. A 77, 022509 (2008).
- 2. B.Grèmaud, D.Delande, and N. Billy, Highly accurate calculation of the energy levels of the H₂⁺ molecular ion, J. Phys. B: At. Mol. Opt. Phys. 31, 383 (1998).
- 3. S.Schiller and C.Lämmerzahl, Molecular dynamics simulation of sympathetic crystallization of molecular ions, Phys. Rev. A 68, 053406 (2003).
- 4. J.C.J.Koelemeij, B.Roth, A.Wicht, I.Ernsting, and S.Schiller, Vibrational Spectroscopy of HD⁺ with 2-ppb Accuracy Phys. Rev. Lett. 98, 173002 (2007).
- 5. C.M.Rosenthal, The reduction of the multi-dimensional schrödinger equation to a one-dimensional integral equation, Chem. Phys. Lett. 10, 381 (1971); R.L.Somorjai and J.D.Power, The dimensional and numerical equivalence of the space-filling-curve approach and multi-dimensional integration methods for integraltransform trial functions, Chem. Phys. Lett. 12, 502 (1972); J.D.Power and R.L.Somorjai, Upper and lower bounds to the eigenvalues of two-electron atoms: Proof that the 2^{1,3} S States of H⁻ are not bound, Phys. Rev. A 5, 2401 (1972).
- A. J. Thakkar and V. H. Smith, Jr., Compact and accurate integral-transform wave functions. I. The 1¹S state of the helium-like ions from H⁻ through Mg¹⁰⁺, Phys. Rev. A 15, 1 (1977).
- 7. A. M. Frolov and V. H. Smith, Jr., Universal variational expansion for three-body systems, J. Phys. B 28, L449 (1995).
- V. I. Korobov, D. Bakalov, and H. J. Monkhorst, Variational expansion for antiprotonic helium atoms, Phys. Rev. A 59, R919 (1999);
- 9. V. I. Korobov, Coulomb three-body bound-state problem: Variational calculations of nonrelativistic energies, Phys. Rev. A 61, 064503 (2000).
- 10. Peter J. Mohr, David B. Newell, and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, J. Phys. Chem. Ref. Data, Vol. 45, No. 4, 2016
- 11. V.I. Korobov, Leading order relativistic corrections to the ro-vibrational spectrum of H_2^+ and HD⁺ molecular ions, Phys. Rev. A 74, 052506 (2006).