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Abstract In this paper, we investigate a class of Horndeski scalar-tensor theory of
gravity for warm inflation. We present some models where the early-time acceleration
is realized in the weak and in the strong dissipation regime. Cosmological perturbations
are analyzed.
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1 Introduction

Since its first proposal by Guth [1] and Sato [2,3] in 1981, the inflationary paradigm is
at the basis of the theory for the early-time evolution of our Universe (see Refs. [4,5]
for some reviews). The success of such a theory is due to the fact that, if the Universe
underwent a period of strong accelerated expansion after the Big Bang, we can solve
the problem of initial conditions of our Friedmann Universe and obtain the description
of its inhomogeneities at the galactic scale.

Usually, the early-time inflation is driven by a scalar field, dubbed “inflation”,
subjected to some suitable potential. In the standard scenario, since during inflation any
field of radiation or ultrarelativistic matter is shifted away, at the end of inflation some
reheating mechanism to convert the energy of inflation in particle fields is required.
However, if one introduces a coupling between inflation and radiation, the energy
density of radiation can be maintained almost a constant during inflation and the
reheating is no longer necessary. In this sense, due to its physical implications, the
warm inflationary scenario deserves some special attention [6–15].

Warm inflation has been recently studied in the framework of many different theo-
ries, for instance in multidimensional braneworld models [16,17]. We note that at high
energy some curvature corrections, maybe motivated by quantum effects, may emerge
from the theory modifying Einstein’s gravity [18–23]. In this respect, one interesting
class of modifying theories of gravity is represented by the scalar–tensor models of
Horndeski gravity [24], where, despite the involving form of the Lagrangian, the equa-
tions of motion appear at the second order like in General Relativity. In the last years
many works about Horndeski gravity have been carried out, especially related to the
early-time inflation [25–34].

In this work, we would like to investigate a class of Horndeski scalar-theory where
the Horndeski field is coupled with the Einstein’s tensor in the context of the warm
inflationary scenario. We will achieve our results by introducing a coupling between
inflation and radiation, in order to recover the radiation dominated Universe at the
end of inflation. We will show how it is possible to obtain realistic scenarios for the
early-time acceleration in the both strong and weak dissipation regimes. Cosmological
perturbations will also be analyzed and confronted with the last Planck satellite data
[35].

The paper is organized in the following way. In Sect. 2 we will present our Horndeski
model and its Friedmann equations for warm inflation. Here, the slow-roll approxima-
tion will be adopted to describe inflation. Furthermore, two separate subsections will
be devoted to the analysis of some inflationary models in the weak dissipation regime
and in the strong dissipation regime, by assuming different forms of coupling between
inflation and radiation. In Sect. 3 we will present a reconstruction technique which
permits to find the models by starting from a specific form of inflationary solution.
In Sect. 4 we will discuss the cosmological perturbations and the spectral index and
the tensor-to-scalar ration will be derived. Conclusions and final remarks are given in
Sect. 5.

We use units of kB = c = h̄ = 1 and 8π/M2
Pl = 1, where MPl is the Planck Mass.
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2 The model

In this paper, we will consider a very popular subclass of Horndeski scalar–tensor
theory [24], where the scalar field is non-minimally coupled with gravity through the
Einstein’s tensor. As a result, one deals with higher curvature corrections to Einstein’s
gravity at the large curvature, when inflation takes place. Moreover, in order to get
the warm scenario, we will introduce an interaction between the scalar field (i.e. the
inflation) and the radiation field. The action of the model reads,

I =
∫
M

d4x
√−g

[
R

2
− gμν∂

μφ∂νφ

2
− V (φ) + αGμν∂

μφ∂νφ + Lr + Lint

]
,

(1)

where M is the space-time manifold, g is the determinant of the metric tensor gμν , R
is the Ricci scalar of the Hilbert–Einstein term of General Relativity (GR), V (φ) is a
potential of the scalar field φ, α is a constant parameter and Gμν ≡ [

Rμν − gμνR/2
]

is the usual Einstein’s tensor, Rμν being the Ricci tensor. Finally, we have added the
Lagrangian Lr of the radiation contents of the Universe, while Lint describes the
interaction between inflation and radiation.

Let us consider the flat Friedmann–Robertson–Walker (FRW) metric,

ds2 = −dt2 + a(t)2dx2, (2)

with a(t) the scale factor of the Universe. An useful parameterization often used in
describing the dynamical evolution of the system is obtained by making use of the
e-folds number,

N = log

[
a(t0)

a(t)

]
, (3)

where a(t0) is the scale factor at the fixed time t0. In the specific, we will set t0 as the
time when inflation ends, such that 0 < N (i.e. t < t0) during inflation.

The variation of the action (1) with respect to the metric gives [33],

3H2 − 9αH4φ′2 = H2φ′2

2
+ V (φ) + ρr , (4)

(
2HH ′ − 3H2

)
= H2φ′2

2
− V (φ) + α(H2φ′2)

(
3H2 − 2HH ′) − 6αH4φ′2

+ 4αH2φ′ (H2φ′′ + HH ′φ′) + 4αH3H ′φ′2, (5)

where ρr is the energy density of radiation and the prime denotes the derivative with
respect to the e-folds number N .
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The derivative with respect to the field together with the conservation law of radi-
ation read,

H2φ′φ′′(1 + 6αH2) + φ′2H ′H(1 + 18αH2) − 3φ′2H2(1 + 6αH2)

+ Vφ(φ)φ′ = Y f (φ)Hφ′2, (6)

ρ′
r − 4ρr = −Y f (φ)Hφ′2, 0 < Y, f (φ), (7)

where we assume that the interaction between the scalar field and radiation leads to
the friction term −Y f (φ)Hφ′, Y being a positive constant and f (φ) a function of
the field [9,10]. We observe that its contribute is significative for the dynamic of the
scalar field as long as H ≤ Y f (φ), but even when Y f (φ) ≤ H it plays an important
role in the continuity equation of radiation. We note that the positivity of Y f (φ) is
required to get a positive energy density of radiation during inflation.

In order to describe inflation we must introduce the ε slow-roll parameter,

ε = H ′

H
, (8)

which has to be small and positive in order to obtain a strong accelerated expansion.
Therefore, the early-time acceleration ends when ε is on the order of the unit.

At the time of inflation the Hubble parameter is large and almost a constant. Thus,
the (quasi) de Sitter expansion takes place under the slow-roll approximation with
φ′2 � 1 and |φ′′| � |φ′|, such that Eqs. (4) and (6) read

3H2 − 9αH4φ′2 � V (φ), (9)

−3φ′H2(1 + 6αH2) + Vφ(φ) � Y f (φ)Hφ′, (10)

where we have taken into account that the contribution of the field is dominant in the
balance of energy of the inflationary Universe and ε � 1. In order to combine the
effects from the higher curvature corrections of GR with the canonical scalar field
description, we assume |α| ∼ 1/H2 during inflation, such that we get,

3H2 � V, φ′2 � V ′

3H2(1 + 6αH2) (1 + r)
, r = Y f (φ)

3H(1 + 6αH2)
, (11)

where V ≡ V (N ) and we have introduced the adimensional parameter r . The strong
and the weak dissipation regimes correspond to 1 � r and r � 1, respectively. We
see that the de Sitter expansion is well described by the potential of the field like
in the classical inflationary scenario from scalar field models, while the Horndeski
corrections and the interaction between inflation and radiation modify the exit from
inflation. We should note that, even if in the strong dissipation regime 1 � r the
Horndeski corrections drop down in the second equation of (11), they may play a role
in the perturbation theory.
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Finally, one has from (7),

ρr � Y f (φ)Hφ′2

4
= 3H2(1 + 6αH2)rφ′2

4
, (12)

and the energy density of radiation remains almost a constant. If one looks for the
ratio between the energy density of radiation and the energy density of the scalar field
ρφ = [

H2φ′2/2 + V (φ)
]

we obtain,

ρr

ρφ

� rε

2(1 + 6αH2) (1 + r)
. (13)

It means that during inflation, when ε � 1, the energy density of radiation is negli-
gible, but when the early-time acceleration ends and ε � 1, radiation emerges in the
cosmological scenario without invoking any reheating.

In what follows we will propose some explicit examples of Horndeski models for
warm inflation. For the field potential we will take a power-law form as

V (φ) = λ(−φ)n

n
, 0 < λ, n, (14)

where λ, n are positive parameters. The sign minus in front of the field has been
introduced since we require that during inflation the field is negative and its magnitude
very large, while goes to zero at the end of inflation. The direct consequence of (14) is
that the solution of the Hubble parameter during the early-time accelerated expansion
is given by,

H2 � λ(−φ)n

3n
. (15)

By starting from this solution, we will investigate different kinds of models where
the coupling between inflation and radiation brings to a strong or a weak dissipation
regimes.

2.1 Strong dissipation regime

The strong dissipation regime corresponds to 1 � r in (11), namely

3H(1 + 6αH2) � Y f (φ). (16)

Thus, by taking into account (15), we may choose

f (φ) = f0(−φ)m/2, n < m, (17)

where f0 is a positive constant and m a (positive) number larger than n. In these
expressions, we are considering α on the order of |α| ∼ 1/H2. Thus, from the second
equation in (11) with V ′ = Vφ(φ)/φ′ and 1 � r one has
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φ(N ) = −φ0N
2

4+m−n , (18)

where

φ0 =
(

(4 + m − n)
√

3nλ

2Y f0

) 2
4+m−n

. (19)

We see that, thanks to the fact that n < m, the magnitude of the field at the beginning
of inflation when 1 � N is large and leads to a large Hubble parameter, while φ′2 ∝
1/N (2+m−n)/(4+m−n) and tends to vanish.

The Hubble parameter and the ε slow-roll parameter (8) behave as

H2 = λ

3n
φn

0 N
2n

4+m−n , ε = n

(4 + m − n)N
. (20)

We can now evaluate the amount of radiation at the time of the early-time accelerated
expansion. In the strong dissipation regime 1 � r one gets from (13),

ρr

ρφ

� n

(4 + m − n)N

(
1

2(1 + 6αH2)

)
, (21)

and the radiation is negligible when 1 � N . On the other hand, for small values of N ,
the energy density of radiation becomes dominant and we enter in the weak dissipation
regime with r � 1. At this point, the friction term between inflation and radiation
becomes negligible, and the radiation dominated expansion takes place.

In the next subsection, we will analyze the case of weak dissipation regime during
the accelerated expansion.

2.2 Weak dissipation regime

The weak dissipation regime corresponds to r � 1 in (11), namely

Y f (φ) � 3H(1 + 6αH2). (22)

Thus, given the potential (14) with solution (15), a reasonable choice may be

f (φ) = f0(−φ)m/2, m < n, (23)

with f0 a positive parameter and m a (positive) number smaller than n. Now the
Horndeski correction plays an important role in the second equation of (11), and in
order to get an explicit solution we will fix the parameter n as

n = 2. (24)
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In this case, in the limit r � 1, the second equation in (11) leads to

φ(N ) = − 1√
αλ

√√
8αλN + 1 − 1. (25)

We can see again that the magnitude of φ is large and quasi a constant (φ′2 � 1) when
1 � N and tends to vanish at the end of inflation when N � 1.

We can express the Hubble parameter and the ε slow-roll parameter in terms of the
e-folds number as,

H2 =
√

1 + 8αλN − 1

6α
, ε � 1

4N
, (26)

and inflation takes place at 1 � N . Moreover, during the accelerated expansion, the
ratio between the energy density of radiation and inflation reads,

ρr

ρφ

� 2(3m−26)/8 f0Y√
3N (2−m)/8λ(2+m)/8α(m−2)/8(1 + 2

√
2αλN )

, (27)

and remains small during the accelerated phase with 1 � N , while grows up at the
end of inflation when N � 1.

3 Reconstruction of Horndeski models for warm inflation

In order to study some different evolutions of our Horndeski model during the infla-
tionary phase, we can also start by fixing some specific behaviour of the Hubble
parameter. In this section, we will consider one example that does not belong to the
class of solutions investigated above.

Let us take,

H2 = H2
0

[
1 − 1

(N + 1)λ

]
, 1 ≤ λ, (28)

where H0 is a (positive) constant and λ a number larger or equal to one. This solution
tends to the de Sitter space-time for large values of N , while vanishes at N = 0. When
1 � N one has,

ε = λ

2(N + 1)λ+1 . (29)

By using the first equation in (11) we derive the on-shell form of the potential,

V (N ) = 3H2
0

[
1 − 1

(N + 1)λ

]
. (30)
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In order to carry out our investigation, we will distingue two cases, namely the strong
dissipation regime and the weak dissipation regime.

For the strong dissipation regime, we may consider a friction term in the form,

f (N ) = f0
[
(N + 1)ζ − 1

]
, 0 < ζ, (31)

where f0 is a positive constant and ζ a positive number. This kind of function has been
constructed in order to make vanishing the coupling between inflation and radiation
at the end of inflation when N = 0. Thus, in the limit 1 � N , the second equation in
(11) leads to,

φ′(N )2 � 3H0λ

f0Y(1 + N )1+λ+ζ
. (32)

Finally, the ratio between the energy density of inflation and radiation in (13) reads,

ρr

ρφ

� λ

4(1 + 6H2
0 α)(1 + N )1+λ

, (33)

and is small for 1 � N , while grows up when N tends to zero.
Finally, we can reconstruct our model by giving the explicit expressions for the

potential and the friction term. From (32) we have

φ = −φ0

[
1 − (1 + N )

(1−ζ−λ)
2

]
, (N + 1) =

(
φ0

φ + φ0

) 2
ζ+λ−1

, (34)

where the magnitude of the field at the beginning of inflation is given by,

φ0 = 2

λ + ζ − 1

√
3H0λ

f0Y . (35)

As a consequence, one obtains

V (φ) = 3H2
0

[
1 −

(
φ + φ0

φ0

) 2λ
ζ+λ−1

]
, f (φ) = f0

[(
φ0

φ + φ0

) 2ζ
ζ+λ−1 − 1

]
.

(36)

In order to reproduce the solution (28) in the weak dissipation regime, we can use a
friction term in the form,

f (N ) = f0
1

(N + 1)ζ
, 0 < ζ, (37)
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with f0 a positive constant and ζ a positive number again. In this case the second
equation in (11) leads to

φ′2(N ) � λ

(1 + 6αH2
0 )(1 + N )1+λ

, (38)

while the ratio between the energy density of radiation and inflation can be computed
as

φr

φφ

� Y f0λ

12H0(1 + 6αH2
0 )2(1 + N )1+λ+ζ

, (39)

and is small when 1 � N .
Now from (38) we get,

φ(N ) = −φ0 log [1 + N ] , (N + 1) = e−φ/φ0 , λ = 1, (40)

φ(N ) = −φ0

(
1 − (N + 1)

(1−λ)
2

)
, (N + 1) =

(
φ0

φ + φ0

) 2
λ−1

, 1 < λ, (41)

with

φ0 = 1√
1 + 6αH2

0

, λ = 1, (42)

φ0 = 2

λ − 1

√
λ

1 + 6αH2
0

, 1 < λ. (43)

Thus, the model is fully reconstructed as

V (φ) = 3H2
0

(
1 − eφ/φ0

)
, f (φ) = f0eζφ/φ0 , λ = 1, (44)

V (φ) = 3H2
0

[
1 −

(
φ + φ0

φ0

) 2λ
λ−1

]
, f (φ) = f0

(
φ + φ0

φ0

) 2ζ
λ−1

, 1 < λ, (45)

and we see that the potential has the same form of (36) without the contribution from
the coupling between inflation and radiation (ζ → 0).

At the end of inflation the Hubble parameter in (28) tends to vanish and the higher
curvature Horndeski corrections in the gravitational action do not play longer any
significative role. Moreover, the energy density of radiation becomes dominant with
respect to the energy density of inflation, as it is showed in (33) and in (39) for small
values of N . In other words, we have a phase transition and the constant (vacuum)
energy of radiation survives to the early-time acceleration. Thus, one obtains a radiation
dominated Universe without invoking any prereheating or reheating mechanism and
the Friedmann expansion takes place like in General Relativity.

We have seen how several different Horndeski models can reproduce the early-time
acceleration in the context of warm inflation. However, the scenario becomes realistic
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only if it is possible to recover the correct spectrum of the inhomogeneities at the
galactic scale in our observable Universe. In the next section we will analyze this
point.

4 Cosmological perturbations

The scalar perturbations enter in the perturbed FRW metric as,

ds2 = −(1 + 2ζ(t, x))dt2 + a(t)2(1 − 2ψ(t, x))dx, (46)

where we have used the Newton’s gauge and |ζ | ≡ |ζ(t, x)| � 1 and |ψ | ≡
|ψ(t, t, x)| � 1 are functions of the space-time coordinates. The field equations
immediately constraint these quantities as ψ = ζ . We must now distinguish between
the cases of inflation in weak dissipation regime and inflation in strong dissipation
regime.

In the weak dissipation regime with r � 1, the perturbations of the radiation
field are negligible and the oscillations of the inflation field are generated by quantum
fluctuations. As a consequence, in order to derive the cosmological scalar perturbations
inside our Horndeski model we can use the formalism well developed in Refs. [26–28],
with the account of the coupling between inflation and radiation.

The equation for perturbations assumes the form,

v̈ − c2
s

a2 � v − z̈

z
v = −c2

s
φ̇2Y f (φ)

6H
v, v = zζ, z =

√
a3Q, (47)

where the dot denotes the time derivative and Q, c2
s are functions of the field and the

Hubble parameter evaluated on the quasi de Sitter solution of the background. They
are given by:

Q = (1 + 6αH2)(1 + r)φ̇2

2H2 , (48)

c2
s = − 2H Ḣ

(H + 6αH3)(1 + r)φ̇2
, (49)

where we have considered |α| ∼ 1/H2 and φ′2 � 1. When Y = 0 we recover the
results in Refs. [26–28], while the friction term has been introduced by following the
line of Ref. [17].

Now one can decompose v in Fourier modes v = vk(t) exp[ikx], such that they are
governed by the following equation,

v̈k(t) +
(
k2 c

2
s

a2 − z̈

z

)
vk(t) = −c2

s
φ̇2Y f (φ)

6H
vk(t). (50)

The cosmological perturbations can propagate only if the speed of sound c2
s is different

to zero, otherwise the spectral index will be flat. In the specific, in terms of the e-folds
(3), the speed of sound is derived as
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c2
s � 2H ′

(H + 6H3α)(1 + r)φ′2 = 1, (51)

which is the classical result for canonical scalar field inflation.
The solution of Eq. (50) for long-wave perturbations with k2/a2 � 1 in the quasi

de-Sitter space-time is given by,

vk(t) � c0

√
a

2

aH

(csk)3/2 e±ik
∫ cs

a dt
(

e�(t)
) (

1 + icsk
∫

dt

a

)
, (52)

where the function �(t) encodes the contribution from the interaction between the
inflation and the radiation field and reads,

�(t) = − c2
s

18

∫
φ̇2Y f (φ)

H2 dt. (53)

Finally, the constant c0 in (52) must be fixed by the Bunch–Davies vacuum state
vk(t) = √

a exp[±iκ
∫
csdt/a]/(2√

csκ) in the asymptotic past, namely c0 = i/
√

2.
One obtains,

ζk ≡ vk(t)√
Qa3

= i
H

2
√
Q(csk)3/2

(
e�(t)

)
e±ik

∫ cs
a dt

(
1 + icsk

∫
dt

a

)
. (54)

The variance of the power spectrum of perturbations must be evaluated on the sound
horizon crossing csκ � Ha, namely

PR ≡ |ζk |2k3

2π2 |csk�Ha = H2
(
e�(t)

)
8π2c3

s Q
|csk�Ha . (55)

As a consequence, by taking into account (48) and by posing c2
s = 1, in terms of the

e-folds the spectral index ns defined by

(ns − 1) = d lnPR
d ln k

|k=aH/cs , (56)

results to be

(ns − 1) � (3HH ′′φ′−2HH ′φ′′)(1+6αH2)−H ′2φ′(7 + 54αH2)

2HH ′φ′(1 + 6αH2)
− φ′2Y f (φ)

18H
.

(57)

We should observe that, generally, when warm inflation is realized in the weak dis-
sipation regime, the friction term does not play a significative role in the perturbed
theory. For example, in the case of model (14) with solution (15) with n = 2 and the
friction term as in (23) such that m < 2, the inflation described by (25)–(26) leads
to a spectral index (ns − 1) � −3/(2N ). Furthermore, the model in (44)–(45) leads
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to (ns − 1) � −(1 + λ)/N . Considering that at the beginning of inflation N � 60
and that the cosmological data [35] lead to ns = 0.968 ± 0.006, we can conclude that
these models can be viable, the second one for λ = 1 as in (44).

In the strong dissipation regime with 1 � r the oscillations of the inflation field
are no longer generated by quantum fluctuations, but are given by thermal interactions
with the radiation field whose energy density follows the Stefan–Boltzmann law,

ρr = βT 4, (58)

where T is the temperature of the thermal bath of inflation and radiation and β is a
positive constant. In our analysis we will follow Ref. [15], where Galileon G-warm
inflationary models have been considered. By perturbing the field as φ → φ+δφ(t, x)
and by decomposing δφ(t, x) in Fourier modes δ(t, x) = δφk(t)e−ikx, from the second
equation in (11) one has,

δ̇kφ(t) � 1

3H(1 + r)

(
−(k2 + Vφφ)δφk(t) + ξ(k, t)

)
, (59)

where ξ(k, t) is a thermal stochastic noise such that < ξ(t) >= 0. The solution of
(59) reads,

δφk(t) � θ(t)
∫

ξ(t)

3H(1 + r)θ(t)
dt, (60)

where

θ(t) = exp

[
−

∫ (
k2 + Vφφ

3H(1 + r)

)
dt

]
. (61)

The thermal fluctuation of the scalar field is given by [7,9,10],

δφ2 = kFT

2π2 , (62)

where kF corresponds to the freeze out wave number and follows from (61) as

(
k2
F

3H2(1 + r)

)
= 1. (63)

Here, we considered |Vφφ | � k2 and we posed the time interval �t � 1/H . The
temperature is derived from (12) and (58) as,

T 4 = 3(1 + 6αH2)r φ̇2

4β
. (64)

123



Warm inflation in Horndeski gravity Page 13 of 16 90

Finally, the power spectrum of the scalar perturbations follows from the relation [7,9],

PR =
(
H

φ̇

)2

δφ2. (65)

Thus, we get,

PR = 1

2π2

(
H

φ̇

)2 (Y f (φ)φ̇2

4βH

)1/4 √
3H2(1 + r). (66)

Now, by taking c2
s = 1, one has for the spectral index (56),

(ns − 1) = 9Ḣ

4H2 − 3φ̈

2H φ̇
+ 3φ̇ fφ(φ)

4H f (φ)
− 6α Ḣ

1 + 6αH2 . (67)

For α = 0 we recover the result of Ref. [10]. In terms of the e-folds number (3) we
obtain,

(ns − 1) = −3H ′

4H
+ 3φ′′

2φ′ − 3 f ′(φ)

4 f (φ)
+ 6αHH ′

(1 + 6αH2)
. (68)

For example, in the case of the model (14) with solution (15), when f (φ) is given by
(17) with n < m, inflation is realized in the strong dissipation regime and Eq. (68)
leads to

(ns − 1) � −12 − 9m + 7n

4N (4 + m − n)
. (69)

This result is in agreement with the Planck data for N � 60 when (ns − 1) � −2/N ,
namely

m = 20 − n. (70)

For the model (36) with solution (28) one has

(ns − 1) � −3(1 + 2ζ + λ)

4N
, (71)

such that we must require

ζ = 5 − 3λ

6
. (72)

Since ζ has to remain a positive quantity, λ must belong to the range 1 ≤ λ < 5/3.
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The amplitude of the tensorial perturbations return be the classical ones of Horn-
deski gravity, namely,

PT � 8

(1 + αφ̇2)

(
H

2π

)2

� 8

(
H

2π

)2

. (73)

The tensor-to-scalar ratio r ≡ PT /PR in the weak dissipation regime follows from
(55) with cs = 1 as

r ≡ PT
PR

� 8(1 + 6αH2)(1 + r)φ̇2

H2

1

e�(t)
, (74)

or, in terms of the e-folds number,

r � 8(1 + 6αH2)(1 + r)φ′2 1

e�(N )
= 16ε

1

e�(N )
, �(N ) = 1

18

∫
Hφ′2Y f (N )dN ,

(75)

where we have introduced the ε slow-roll parameter (8). For example, the solution in
(26) with (23) leads to r < 4/N , while the one in (28)–(29) leads to ε ≤ 8λ/Nλ,
1 ≤ λ. Since the last cosmological data [35] constraint the tensor-to-scalar ratio as
r < 0.11 (95% CL), we can argue that for N � 60 the values r < 8/ or r ∼ 1/Nλ,
1 < λ are acceptable and the mentioned solutions are viable.

For the strong dissipation regime with power scalar spectrum (66) the tensor-to-
scalar ratio results to be,

r ≡ PT
PR

� 4φ̇2

(1 + αφ̇2)

(
4βH

Y f φ̇2

)1/4 1√
3H2(1 + r)

, (76)

or, in terms of the e-folds number,

r � 4H2φ′2

(1 + αH2φ′2)

(
4β

Y f Hφ′2

)1/4 1√
3H2(1 + r)

. (77)

In this case we observe that, when 1 � r , this quantity will be easily suppressed,
rendering the predictions of the models in agreement with the cosmological data.

5 Conclusions

In this paper, a popular class of Horndeski scalar–tensor gravity theory for warm
inflation has been analyzed (see Refs. [36–39] for additional applications). Warm
inflation is an interesting scenario where radiation and ultrarelativistic matter survive
to the early-time accelerated expansion. As a result, when inflation ends, any reheating
mechanism for the particle production is required.
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We have proposed some models to show how warm inflation can take place in the
Horndeski framework in the weak and in the strong dissipation regimes. In order to
obtain a realistic theory for inflation, the study of cosmological perturbations plays an
important role, since the inhomogeneities of our Universe are a direct consequence of
perturbations left at the end of the early-time acceleration. Thus, we have investigated
the scalar perturbations in the weak dissipation regime and in the strong dissipation
regime. In the last case, the perturbations around the Horndeski field are no longer
generated by quantum fluctuations, but are given by the thermal interaction with the
radiation field. The spectral indexes for our models have been derived and their values
have been confronted with the last cosmological data. In the same way, we also ana-
lyzed the tensor-to-scalar ratio of tensorial perturbations. In general, Horndeski gravity
for warm inflation can bring to a realistic description for the early-time inflation.

It may be interesting to study the feature of our model in the presence of the quantum
corrections generated at high energy. For example, one may consider a R2-correction
to the gravitational action (see Refs. [40,41]). Despite to the fact that the presence of
the R2-term does not modify the de Sitter solution describing inflation (unless one
would not consider an asymptotic solution for which R2-gravity is totally dominant),
it may play a fundamental role in the dynamics of perturbations leading to significative
corrections of the predictions of our model at least in the weak dissipation regime. On
the other hand, in the strong dissipation regime where the perturbations are given by
the thermal interactions of the Horndeski field with radiation, the R2-term does not
modify the temperature of the de Sitter Universe [see Eq. (64)] and we can reasonably
argue that our results remain still valid.
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