

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ БІЛІМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛІГІ

Л.Н. ГУМИЛЕВ АТЫНДАҒЫ ЕУРАЗИЯ ҰЛТТЫҚ УНИВЕРСИТЕТІ

Студенттер мен жас ғалымдардың

«Ғылым және білім - 2016»

атты XI Халықаралық ғылыми конференциясының

БАЯНДАМАЛАР ЖИНАҒЫ

СБОРНИК МАТЕРИАЛОВ

 XI Международной научной конференции

студентов и молодых ученых

«Наука и образование - 2016»

PROCEEDINGS

of the XI International Scientific Conference

for students and young scholars

«Science and education - 2016»

2016 жыл 14 сәуір

Астана

ӘӨЖ 001:37(063)

КБЖ 72:74

 Ғ 96

Ғ96 «Ғылым және білім – 2016» атты cтуденттер мен жас

ғалымдардың ХІ Халық. ғыл. конф. = ХІ Межд. науч. конф. студентов и

молодых ученых «Наука и образование - 2016» = The XI International

Scientific Conference for students and young scholars «Science and education -

2016» . – Астана: http://www.enu.kz/ru/nauka/ nauka-i-obrazovanie/, 2016. –

б. (қазақша, орысша, ағылшынша).

ISBN 978-9965-31-764-4

 Жинаққа студенттердің, магистранттардың, докторанттардың және жас

ғалымдардың жаратылыстану-техникалық және гуманитарлық ғылымдардың

өзекті мәселелері бойынша баяндамалары енгізілген.

 The proceedings are the papers of students, undergraduates, doctoral

students and young researchers on topical issues of natural and technical sciences

and humanities.

В сборник вошли доклады студентов, магистрантов, докторантов и

молодых ученых по актуальным вопросам естественно-технических и

гуманитарных наук.

ӘОЖ 001:37(063)

КБЖ 72:74

ISBN 978-9965-31-764-4

©Л.Н. Гумилев атындағы Еуразия

ұлттық университеті, 2016

457

СЕКЦИЯ 2

СОВРЕМЕННЫЕ ИНФОРМАЦИОННЫЕ И КОММУНИКАЦИОННЫЕ

ТЕХНОЛОГИИ

Подсекция 2.1 Вычислительная техника и автоматизированные системы

управления

UDK 629.78.002.5.

CONTAINER-BASED SYSTEM FOR MALWARE ANALYSIS IN HIGH FIDELITY

ENVIRONMENT

Anton Kopeikin
1
, Arnur G. Tokhtabayev

2
 and Nurlan Tashatov

3

1

MS Student, L.N. Gumilyov Eurasian National University, Kazakhstan
2

CEO, T&T Security, Kazakhstan
3

Scientific advisor, L.N. Gumilyov Eurasian National University, Kazakhstan

I. INTRODUCTION

In the past years, malware developers continuously have been searching for yet new ways to

attack hosts and evade existing popular cyber-defense systems, e.g. anti-viruses (AV) and intrusion

detection systems (IDS). To intrude, an attacker must solve at least two challenges: develop a

malware that is not detected by AVs and deliver the malware to a victim host. Attackers advanced

in both challenges.

To avoid detection, adversaries develop complex zero-day malware that is not yet known for

current versions of AV. This ensures that each malware sample is unique and AV signature created

for it will not match any other sample, which makes signature approach obsolete. In addition

attackers tend to use so-called distributed malware by partitioning malicious functionality among

several files, making each file individually benign, yet in combination they achieve malicious goal.

Since modern AV hardly correlate activity of several processes, such an attack will progress

undetected.

One of the recent malware distribution method widely adopted by adversaries are user-

oriented attacks, which are directed to user errors. These attacks include spear phishing, strategic

web compromise, contaminated SEO, social network malware and insider threat. In fact such

attacks are often preceded by social engineering phases. As a result, the user is persuaded to

ignore/overwrite alerts and recommendations of IDS. Then the user performs dangerous operations

with vulnerable applications such as opening suspicious/malicious web links, executing suspicious

files or opening documents with mistrustful script. In combination with zero-day exploits this leads

to proliferation of malicious objects.

Due to high efficiency of these offensive approaches, they are also frequently used in

professional targeted attacks against organizations or groups of people such as Advanced

Persistence Threat (APT).

Unfortunately, current IDSs do not offer credible defensive solutions for these problems. It is

clear, that one needs innovate solutions that must provide security even for a ignorant user.

In this paper we present a novel intrusion prevention system called a secure container that

protects a host from abovementioned attacks. When necessity comes, secure container seamlessly

analyzes malicious activity of vulnerable applications being under attack in a specific virtual

environment that enables high fidelity in malicious activity analysis. Such high execution

environment fidelity is achieved by user interaction simulation in real time. The user interaction

simulator recognizes GUI components and clicks through them according to click pattern of a

typical user, e.g. office worker.

Our system allows for run-time detection of malicious functionalities. To this end, we applied

modified Hierarchal Colored Petri Nets for deep dynamic analysis of programs functionality.

The contributions of the paper are as follows: description of an emerging threat named user-

458

oriented attacks, a novel functionality detection technology, introduction and evaluation of the

developed secure container system that protects from zero-day and user-oriented attacks.

To demonstrate our approach we implemented a prototype of the secure container system.

The system has been tested for detection of several malicious functionalities employed by network

worms and bots, including self-replication engines and various malicious payloads.

II. SYSTEM DESCRIPTION

The secure container system provides seamless malware identification at the level of program

activity. The system enables object execution isolation and effective malicious activity analysis

Isolation allows for running checked malware and seamlessly imitates all user interaction

with vulnerable applications in segregated, disposable containers, which are backed by virtual

machines. It ensures that such applications will not harm the OS being checked under attacking

scenarios.

Malicious activity analysis allows for mitigating attacks by continuously monitoring

processes behavior at run-time inside each container. We employ a technology of functionality

analysis based on modified CPN [14], which detects hidden and complex malicious functionality at

the system call level.

A. Functionality recognition

From OS perspective, processes invoke API functions or system calls to perform system

object operations (manipulations) that complete some semantically distinct system actions, such as

writing data to a file or sending data to a specified IP address. We define individual functionality as

a combination of such system actions that achieve a certain high-level objective.

The functionality is recognized in two stages: system calls and object manipulation (API

traits). A manipulation may be performed through several alternative APIs operating on the same

Kernel objects. API may invoke several additional minor system calls that are not critical for the

manipulation implementation. Hence, only the essential, semantically critical part of an API should

be recognized.

In our CPN models are be employed for the recognition of malicious functionalities.

A CPN could formally be defined as a tuple [2]: CPN=(S,P,T,A,N,C,G,E,I) (2), where:

S – color set, P – set of places, T – set of transitions, A – set of arcs, N – node function, C – color

function, G – guard function, E – arc expression function, I – initialization function.

To recognize functionalities CPN must reflect objects and manipulations. Hence, CPN places

must represent the following states: created objects, which are ready to be manipulated;

manipulations on the objects; pseudo states routing the control flow and functionalities.

CPN has a set of places (P) that consists of four disjoint dedicated subsets – Object places,

Manipulation places, Functional places and Pseudo places: P=P
obj

ÈP
manip

ÈP
fun

ÈP
pseudo, such that,

each Object place is associated with a unique OS object; every Manipulation place represents a

particular (individual) operation of an object; any Functional place corresponds to a unique

functionality and a Pseudo place. Functional place tokens represent successful recognition of the

given functionality.

Places of CP-nets represent executed object operations; therefore a transition must be

attributed to execution of one of the equivalent system calls implementing the respective

manipulations. The set of transitions consists of three sets: T=T T Tman fun pseudo  , where Tman -

represent system calls or a user level manipulation. Tfun - transitions, which constitute

functionality trigger, Tpseudo - pseudo transitions that reflect conditional branches. Transition guard

expressions check manipulation handles and parameters to ensure that transitions are enabled only

by manipulations with correct attributes specified by functionality. It provides flexibility to

distinguish similar yet semantically different functionalities.

459

III. SYSTEM EVALUATION

We experimented with various malware families. By description, the selected malware family

set exposed the following malicious functionalities.

Replication engines: R1. Self code injection – a malware infects an executable file through

injecting its code into the executable body and replacing code entry points; R2. Download and

Execute – Downloads a file from the Internet and executes it. Used as a part of self-propagation

engine of network worms [3], hence exposed by exploited processes and Trojan-downloaders; R3.

Remote shell –Used as a part of propagation engine for network worms.

Malicious payloads: P1. Dll/thread injection - Injects DLL/thread to the address space of a

process. Used for password stealing or process control hijacking; P2. Self manage system script

create and execute – This malicious process creates and executes command script. The script

implements a functionality that relocates/deletes the malware image to conceal its footprint.

Afterwards, the script usually erases itself; P3. Remote hook - sets a remote hook for a particular

event (keylogging).

These functionalities were specified and translated to CPNs. In order to verify the detection

rate, we experimented with the malware known for performing at least one of the malicious

functionalities:

file viruses (Neo, Abigor, Crucio, Savior, Nother, Halen,), network worms (Welchia, Bozori,

Iberio, HLLW.Raleka, Alasro, Kassbot, Francette), bots and trojans (Zbot, SpyBot, RxBot, Banker,

Lespy). We run each malware image in the corresponding environment enabling the malware to

execute its payloads or replicate properly. In order to evaluate the false positive rate, we run

multitude of benign software that include web-browsers, messengers, email clients, file utilities,

network/system utilities and office tools. We run the tested software under various conditions to

expose their functionalities.

A. Detection Results

The results of our experiments are shown in Table 1. For the legitimate software or malware

samples, each cell indicates how many programs secure container based on the given functionality

detected. For example, 4/4 means that there are four instances from the set that have the given

functionality and all four exposed it and were detected.

False negatives (detection rate). As Table 1 indicates, for each malware family that has the

given functionality, secure container successfully detected the functionality and blocked the

malware from propagating into host OS.

False positives. It could be seen that, Table 1 contains several false positives (FP). Below, we

give the following possible reasons of why a particular functionality was exposed by legitimate

software.

1. Executable download and execute functionality can be performed by Internet browsers or

file managers. Mostly, such activity is performed on behalf of the end-user. In addition, many

programs periodically check for updates. If there is an update available, the program downloads it

and then executes. This functionality can also be tagged as ―download and execute‖.

2. DLL/thread injection can be performed by user/system monitoring software. Particularly,

Easy Hook library injects DLL to trace API calls invoked by an arbitrary program. WinSpy

program accomplishes DLL injection in order to retrieve window objects data of a foreign program.

3. Self manage script was exposed by Easy Hook software which exiting functions run a cmd

script that waits the hooking process to end, then removes the hooked DLLs.

4. Remote hooking functionality can be executed by chat programs to identify whether a user

is idle. These programs hook into other processes for the input events such as keystroke and mouse

message.

Indeed, our methodology allows for specifying and detecting any functionality. We believe

that behavior-based detection of some complex malicious payloads, such as password stealing, may

be most successful by utilizing a strategically chosen set of several primitive functionalities. On the

other hand, secure container isolates all legitimate processes so that positives will not affect

usability.

460

Finally, we evaluated performance of our user interaction simulator with tens of thousands of

modern malware and unwanted software (such as riskware, key generators). The experiments

indicated that 25% of tested malware exposed some kind of GUI with which our system interacted.

This demonstrates effectiveness and necessity of our user activity simulating approach.

B. Runtime overhead

The secure container prototype was

executed in MS Windows 7 running on an Intel

Core i7-3517U (2,4GHz) processor with 4 Gb

of ram. We recorded overhead for three

activities: web browsing (google chrome),

video watching in the browser and PDF reading

in Acrobat Reader. Figure 1 shows system CPU

overhead imposed by these activities performed

when protected by secure container (solid line)

and natively, without secure container (dashed

line). One can see that practically the secure container overhead is not much different from the

native one. On average, secure container imposes about 7% CPU overhead versus native execution.

As per memory, the system incurs only 3% overhead.

Such a low CPU overhead could be credited to our highly efficient behavioral monitoring

module. In fact that we hook only a small subset of the system calls that are part of a given

modified CPN. Since the system call monitor is implemented in the Kernel mode, hooking a small

subset of the system calls minimizes the number of computations needed to process by functionality

detector.

IV. BACKGROUND AND RELATED WORK

The secure container could be attributed to behavior-based IDS. The IDS such as [4]-[11]

recognize only malicious activity in the context of a single process. Papers [4]-[6] propose tracing

sequences of system calls to reveal misuse in OS objects manipulations. In contrast, our approach

recognizes of complex functionalities involving interrelated sessions of object operations of

multiple processes.

Works [6]-[8] target dynamic behavior analysis. Ones detect a ―gene of self-replication‖ from

object operations and activity blocks [7] but lack an efficient recognition mechanism [8]. Others

Table 1 Functionalities detection rate and false positive rate

 R1 R2 R3 P1 P2 P3

L
eg

it
im

at
e

so
ft

w
ar

e
 200 Windows system tools, office apps, other utilities 1 1

2 Web browsers (Opera, IE) 2 1

2 E-mail clients (Outlook Expr, Eudora)

1 Instant messaging client (Yahoo messenger) 1 1

2 File managers (FAR,Win Exp) 1

2 Network tools (Ping, Telnet)

 Total detected 4/210 1/210 1/210 2/210

M
al

w
ar

e

 File viruses ✔

 Network worm shell codes ✔ ✔ ✔ ✔

 SpyBot.gen family ✔ ✔

 Banker family ✔ ✔ ✔

 Zbot family ✔ ✔ all ✔

False positive (%) 0 1.92 0 0.48 0.48 0.96

Detection rate (%) 100 100 100 100 100 100

P
DF

Figure 1 System overheads with/without secure container

Browsing Video PDF

461

utilize so-called behavior graphs [9, 10]. Our modified CPN model represents an executed system

call chain as one token residing in the corresponding place. Such token semantics allows for

processing multiple system call chain instances to recognize an inter-process activity as well.

Adversaries may reduce ―malicious footprint‖ to make the activity less suspicious in terms of

behavioral statistics. They use mimicry attacks to match normality profile of IDS. Since we

recognize activity on the highest semantic level, it is hardly possible to conduct a mimicry attack

such that it would go unnoticed while executing certain functionality represented in our modified

CPN model.

V. CONCLUSION

We introduced secure container system that enables identification of targeted and user-

oriented attacks. To provide robust malware activity analysis secure container uses modified

Hierarchal Colored Petri Nets for run-time recognition of malicious functionalities. The secure

container provides high fidelity in malicious activity analysis, which is achieved by user interaction

simulation in real time. The user interaction simulator recognizes GUI components and clicks

through them according to click pattern of a typical user, e.g. office worker. Due such features

secure container system is instrumental in enabling security in such modes (scenarios) when typical

AV products cannot guarantee security.

We evaluated the secure container prototype with corpus of real malware families. Results

showed high efficiency of secure container in detecting and blocking various malware while having

low system overhead. Ultimately, secure container enabled us to securely and efficiently operate on

insecure/malicious resources.

ACKNOWLEDGMENT

This research effort is funded by T&T Security LLP, Kazakhstan and is partially supported by

scientific projects of L.N. Gumilyov Eurasian National University managed by the authors of this

paper.

REFERENCES

[1] Cohen, F., 1987. "Computer Viruses Theory and Experiments," Computers and Security,

vol. 6, pp

[2] Kurt Jensen. ―Coloured Petri nets (2nd ed.): basic concepts, analysis methods and practical

use‖, volume 1, Springer-Verlag, Berlin, 1996.

[3] A. G. Tokhtabayev, V. A. Skormin and A. M. Dolgikh, ―Detection of Worm Propagation

Engines in the System Call Domain using Colored Petri Nets ‖, In Proc. IEEE IPCCC ’07,

USA, Dec. 2008

[4] M. Bernaschi, E. Grabrielli, L. Mancini. "Operating System Enhancements to Prevent the

Misuse of System Calls", in Proc. ACM CCS 2000, pp. 174 – 183, 2000.

[5] D. Kang, D. Fuller, and V. Honavar. ―Learning classifiers for misuse and anomaly

detection using a bag of system calls representation‖. in Proc. 6th IEEE Systems Man and

Cybernetics Information Assurance Workshop (IAW), pp. 118-125, 2005.

[6] Ulrich Bayer at al., ―Dynamic analysis of malicious code‖, Journal of Computer Virology,

vol. 2, no. 1, pp. 67-77, 2006.

[7] V. Skormin, A. Volynkin at al., ―Run-Time Detection of Malicious Self-Replication in

Binary Executables‖ Journal of Computer Security, vol. 15, no. 2, pp. 273-301, 2007.

[8] United States Patent 6973577 B1 ―System and Method for Dynamically Detecting

Computer Viruses Through Associative Behavioral Analysis of Runtime State‖, Victor

Kouznetsov, Dec 6, 2005

[9] M. Christodorescu, S. Jha and C. Kruegel, ―Mining specications of malicious behavior‖,

In Proc. ESEC-FSE’07, NY, USA 2007.

[10] Lorenzo Martignoni at al., ―A Layered Architecture for Detecting Malicious Behaviors‖,

In Proc. RAID’08.

	111
	Обложка
	Титул.эл. сборника 2016

	факультеты
	2 ФИТ - эл.сборник

