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Abstract: The given research employs high-resolution air quality monitoring and contemporary
statistical methods to address gaps in understanding the urban air pollution in Pavlodar, a city
with a significant industrial presence and promising touristic potential. Using mobile air quality
sensors for detailed spatial data collection, the research aims to quantify concentrations of particulate
matter (PM, 5, PMjp), carbon monoxide (CO), nitrogen dioxide (NO;), sulfur dioxide (SO;), and
ground-level ozone (O3); assess their distribution; and identify key influencing factors. In this study,
we employed Geographic Information Systems (GISs) for spatial analysis, integrating multi-level
B-spline interpolation to model spatial variability. Correlation analysis and structural equation
modeling were utilized to explore the relationships between variables, while regression analysis was
conducted to quantify these relationships. These techniques were crucial for accurately mapping
and interpreting spatial patterns and their underlying factors. The study identifies PM; 5 and NO,
as the primary contributors to air pollution in Pavlodar, with NO, exceeding the 24 h threshold in
87.38% of locations and PM, 5 showing the highest individual air quality index (AQI) in 75.7% of
cases. Correlation analysis reveals a positive association between PM; 5 and AQI and a negative
correlation between NO; and AQ], likely due to the dominant influence of PM; 5 in AQI calculations.
Structural equation modeling (SEM) further underscores PM; 5 as the most significant impactor
on AQI, while NO, shows no significant direct impact. Humidity is positively correlated with
AQ], though this relationship is context-specific to seasonal patterns observed in May. The sectoral
analysis of landscape indices reveals weak correlations between the green space ratio (GSR) and
air quality, indicating that while vegetation reduces pollutants, its impact is minimal due to urban
planting density. The road ratio (RR) lacks sufficient statistical evidence to draw conclusions about
its effect on air quality, possibly due to the methodology used. Spatial variability in pollutant
concentrations is evident, with increasing PM, 5, PM1g, and AQI towards the east-northeast, likely
influenced by industrial activities and prevailing wind patterns. In contrast, NO, pollution does
not show a clear geographic pattern, indicating vehicular emissions as its primary source. Spatial
interpolation highlights pollution hotspots near industrial zones, posing health risks to vulnerable
populations. While the city’s overall AQI is considered “moderate”, the study highlights the necessity
of implementing measures to improve air quality in Pavlodar. This will not only enhance the city’s
attractiveness to tourists but also support its sustainable development as an industrial center.

Keywords: air pollution; air quality index (AQI); particulate matter (PM, 5; PMyg); green space ratio;
road ratio; Pavlodar, Kazakhstan
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1. Introduction

Air pollution is a critical environmental issue with far-reaching impacts on human
health, ecosystems, and climate change. According to World Health Organization (WHO) [1],
air pollution emerged as a significant health threat in 2019, contributing to approximately
6.7 million fatalities. Notably, noncommunicable diseases (NCDs) accounted for nearly
85% of these deaths. The range of affected NCDs included ischemic heart disease, stroke,
lung cancer, asthma, chronic obstructive pulmonary disease (COPD), and diabetes. These
statistics position air pollution as the second most prevalent cause of NCDs worldwide,
surpassed only by tobacco use.

Urban areas, in particular, face significant challenges due to high concentrations of
pollutants resulting from industrial activities, vehicular emissions, and other anthropogenic
sources. Monitoring and managing air quality in cities is essential for safeguarding public
health and ensuring sustainable urban development [2,3]. The necessity of studying the
ecological state of the atmosphere for planning sustainable cities is emphasized in the
works of Menconi et al., Wang et al., Zaini et al., and many others [4-6].

The city of Pavlodar in Kazakhstan is a prime example of where industrial emissions
significantly contribute to air quality degradation. According to the statistical collection of
the Ministry of Health of the Republic of Kazakhstan for 2020 [7], the number of cases of
cancer in the Pavlodar region increased from 1111.1 to 1265.7 cases per 100 thousand people
living. The number of oncological diseases in Pavlodar region is growing. So, in 2019, the
Pavlodar region was in fourth place, and in 2020 it moved to first place in this indicator.

Tourism, as a growing industry, increasingly depends on the environmental quality of
urban areas, especially in industrial cities where pollution levels can significantly influence
the attractiveness of the destination [8]. In cities like Pavlodar, where industrial activities
are prevalent, understanding the spatial distribution of air pollutants is critical not only for
public health but also for the sustainable development of tourism infrastructure.

Previous studies have highlighted the adverse health effects associated with exposure
to air pollutants such as particulate matter (PM, 5 and PM;), carbon monoxide (CO), sulfur
dioxide (50,), nitrogen dioxide (NO;), and ground-level ozone (O3) [9]. These pollutants
are known to cause respiratory and cardiovascular diseases, and long-term exposure can
lead to severe health outcomes, including premature death [10]. However, there is a gap in
localized, high-resolution studies that integrate comprehensive air quality monitoring with
advanced statistical and spatial analysis techniques. Many studies on urban air pollution
rely on data from a limited number of fixed monitoring stations, which do not provide
sufficient spatial resolution to capture local variations in pollutant concentrations. This limi-
tation hampers the ability to identify specific areas within a city that may experience higher
levels of pollution. In Kazakhstan, the problem of studying the spread of air pollutants has
been poorly studied [11-14]. Basically, periodic fluctuations in the level of pollution are
studied. The spatial distribution and mapping of pollutants were not carried out. At the
same time, such information should be studied and updated regularly. Previous research
often focuses on individual pollutants or specific environmental factors without consider-
ing the complex interplay between multiple pollutants and environmental variables [15].
There is a lack of studies that integrate various data sources and analytical methods to
provide a holistic view of air quality dynamics. Finally, most existing studies are conducted
in cities with different industrial profiles and climatic conditions from Pavlodar. There is a
dearth of research specifically tailored to the unique industrial and environmental context
of Pavlodar, which includes significant contributions from petrochemical, aluminum, and
other heavy industries.



Sustainability 2024, 16, 7834

30f25

This study employs high-resolution air quality monitoring and advanced statistical
methods to address gaps in understanding urban air pollution in Pavlodar, a city with a
significant industrial presence. Using mobile air quality sensors for detailed spatial data
collection, the research aims to quantify pollutant concentrations, assess their distribution,
and identify key influencing factors. Advanced analytical techniques, including correlation
analysis, structural equation modeling, and multilevel B-spline interpolation, enable a com-
prehensive examination of relationships between pollutants and environmental variables.

It is hypothesized that in the industrial city, the spatial distribution of air pollutants is
significantly influenced by both industrial emissions (not only from technological processes
but also from dust, trucks, and building sites) and landscape characteristics like greening
and roads. Specific areas may experience higher concentrations due to the complex inter-
play between these factors. Advanced spatial and statistical analyses reveal significant
correlations between air quality indicators and environmental conditions, providing a
detailed understanding of pollution dynamics that is essential for targeted measures and
sustainable urban development.

This localized approach provides insights directly applicable to cities with similar
industrial profiles, contributing to the broader field of urban air quality management.
The resulting detailed understanding of pollution sources and their interactions with
environmental variables is crucial for developing targeted interventions and policies to
improve air quality and protect public health in industrial urban settings. Moreover, this
study’s findings are essential for enhancing the tourism potential of industrial cities by
promoting sustainable urban development practices.

2. Materials and Methods
2.1. Research Area

The Pavlodar region is one of the largest economically developed regions of Kaza-
khstan. A diversified industrial complex has developed in the territory of the region [16].
The economic specialization of the region is metallurgy (production of aluminum and
ferroalloys), power engineering, petrochemical industry, machine building, and mining.
The industrial potential of the region is determined by large export-oriented industrial
enterprises [17]. The main city of the Pavlodar region, Pavlodar, is one of the largest
industrial centers of Kazakhstan, and the city has several major industrial zones: the North-
ern Industrial Zone located on the northern side of the city and the Central and Eastern
Industrial Zones located on the eastern side [18].

The industrial zones of Pavlodar have a significant impact on the local economy,
creating thousands of jobs and reducing unemployment. Furthermore, the presence of these
zones attracts domestic and foreign investment, which contributes to economic growth
and the modernization of production facilities. Many enterprises in these industrial zones
implement modern technologies to minimize the environmental impact, which contributes
to the improvement of the environmental situation in the city and the region [19].

The study area encompasses the residential sector of Pavlodar city, 28 square kilome-
ters in total. The boundaries of the study area are illustrated in Figure 1. The research
area used in this study covers an extent defined by the following coordinates: 8,562,113,
6,843,819 (minimum X, minimum Y), and 8,574,562, 6,856,769 (maximum X, maximum Y).
This extent delineates the specific area of interest, ensuring that all spatial analyses and data
manipulations are confined within these geographic boundaries. The coordinate values
are presented in the EPSG:3857-WGS 84 /Pseudo-Mercator, which was chosen to maintain
consistency and accuracy in spatial data processing.
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Figure 1. Detection of outliers using graphical IQR method on examples of scatter plots for PM; 5 (a)
and CO (b).

2.2. Data Collection

Concentrations for pollutants PM; 5, PMg, CO, NO,, SO;, and O3 as well as air
temperature and relative humidity were obtained in the study area at 762 points. Data
collection was performed in two sessions: from 9 A.M. to 9 PM. on 19 May 2024 and
from 9 A.M. to 1 PM. on 20 May 2024. The standard interval between measurements
was 1 min. Measurement was performed automatically with a mobile unit using an
AQSO008A air quality sensor (Sichuan Weinasa Technology Co., Ltd., The International
Creative Federation Cross-Border E-Commerce Industry Park, Mianyang, China). The
main specifications of the AQS008A sensor are presented in Table 1. The detection principles
employed are laser measurement for PM, 5 and PM;, and electrochemical sensors for CO,
50,3, NOy, and O3. Obtained data were collected with Meteorological data logger AWS00X
(Sichuan Weinasa Technology Co., Ltd., The International Creative Federation Cross-Border
E-Commerce Industry Park, Mianyang, China).

Table 1. Specifications of air quality sensor AQS008A.

Monitoring Parameter Measuring Range Resolution Accuracy
PM, 5 0-1000 pg/m?3 1 ug/m? +(10 + 10%) (<500 pg/m?3) *
PMjy, 0-1000 pg/m? 1 ug/m? +(10 =+ 10%) (<500 ug/m?)
Carbon monoxide 0-10 ppm <10 ppb +5%F.S. **
Sulfur dioxide 0-5000 ppb <10 ppb +5%FES.
Nitrogen dioxide 0-5000 ppb <10 ppb +5%ES.
Ozone 0-5000 ppb <10 ppb +5%F.S.
Temperature —40-85 °C 0.1°C +0.3 °C (25 °C)
Humidity 0-100%RH 0.1% +3%RH (10-80%RH when no condensation)

* The accuracy for PM2.5 and PM10 is specified as +10 pg/m? with an additional uncertainty of +10% of the
measured value for concentrations below 500 pg/ m?3. This means that for measurements under 500 ug/ m3, the
total possible error includes a fixed error of +10 pig/m? plus an additional variable error of + 10% of the actual
reading. ** ES. (full scale) indicates that the specified accuracy of £5% applies to the full scale of the measuring
instrument. For example, if the instrument has a full scale of 100 units, the possible error is 45 units, regardless of
the current measurement value.

During the study, data outliers were identified in an initial sample of 762 measure-
ments. As an essential part of data validation, the finding of outliers was conducted.
Identifying and addressing outliers helped us to improve the quality and accuracy of
data analysis, leading to more reliable and meaningful insights. The interquartile range
(IQR) method was used to identify outliers in the data. During data analysis, the first (Q1)
and third (Q3) quartiles were calculated for each column of data. The interquartile range
(IQR) was defined as the difference between Q3 and Q1. The lower and upper limits were
defined as Q1 — k x IQR and Q3 + k x IQR. The k value, which determines the threshold
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for outlier detection, was selected using a graphical method tailored to each pollutant’s
distribution characteristics. For PM; 5, PM1y, NO,, and O3, a k value of 3 was chosen, while
for CO and SO», a higher k value of 5 was used. This differentiation was based on visual
analysis of scatter plots for each pollutant, where data points were plotted against their ID
(representing the relative time of measurement).

In the case of PM; 5 (Figure 1a), a k value of 3 effectively identified extreme values
without excluding too many data points that followed the overall trend. This can be seen
by the position of the upper and lower fences (red dashed lines), which capture most of the
data variation while still identifying clear outliers.

For CO (Figure 1b), a higher k value of 5 was necessary due to the greater natural
variability observed in the data. The wider range between the upper and lower fences
accommodates this variability, ensuring that only the most extreme points (well separated
from the main data cluster) are classified as outliers.

This graphical approach allowed for a balance between sensitivity to true outliers and
robustness against false positives, accounting for the unique distribution patterns of each
pollutant. The selected k values effectively isolate unusual spikes or dips in concentration
levels while preserving the overall trend and variability of the data. Thus, all points outside
these thresholds were categorized as statistical outliers and removed from the dataset.

Thus, after applying data processing and cleaning techniques, the sample was reduced
to 713 measurements, improving the accuracy and reliability of the subsequent analysis.
The obtained dataset points are presented in Figure 2.
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Figure 2. Map of Pavlodar city with research area and sampling points.

To facilitate a comprehensive and systematic analysis, the scope of the study area was
divided into 650 sectors of 0.09 km?2 each, so each sector represents a square unit of the
grid. Nevertheless, the sectoral analysis was performed for only 347 sectors lying within
or adjoining the borders of the research area. This methodological approach allows for a
more detailed examination of spatial variations and ensures that different parts of the city
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can be studied in a structured manner. The landscape indicators were calculated for the
sectors that intersect or lie within the boundaries of the research area. The grid of sectors is
presented in Figure 2.

2.3. Landscape Indicators
2.3.1. Green Space Ratio (GSR)

Urban green spaces were defined as any land that is partly or completely covered with
vegetation, such as parks, community, allotment or residential gardens, urban forests, or
street trees [20]. For calculation and analysis, GSR was defined as a relation of Total Green
Space Area to Total Land Area (1), where Total Green Space Area is the combined area of
all greenery within the defined area, including trees and bushes and Total Land Area refers
to the entire area being assessed, including both developed and undeveloped land. The
formula for calculating the GSR is

Total Green Space Area

GSR = Total Land Area

100 1)

The detection of trees and shrubs was performed using a convolutional neural network
YOLOS (abbreviation from You Only Look Once, 8th version). YOLOS is a state-of-the-art
deep learning model designed for the rapid and precise detection of objects within images.
The model exhibits high performance and is capable of efficiently processing images in
real time, rendering it an optimal tool for segmentation and object classification tasks on
satellite and aerial images [21].

The YOLOS neural network was trained on available Maxar orthophotos captured
in July 2022, which were segmented according to the sector grid defined for the study
area. During the image analysis process, the number of pixels belonging to the detected
image segments was counted. Subsequently, a manual correction of the detected objects
was conducted.

The total land area was defined as the total number of pixels in the analyzed or-
thophoto segment. Figure 3 illustrates an example of an orthophoto with segment bound-
aries and the resulting black-and-white mask.

Figure 3. Orthophoto (a) with segment boundaries (b) and the resulting black-and-white mask (c).

The recognition and marking of segments with green spaces was conducted via the
web platform app.roboflow.com [22]. As a consequence of the operation of the neural
network, the majority of the segments were identified successfully during the automatic
recognition process. Subsequently, the manual refinement of the segmentation was con-
ducted using the Smart Polygon tool [23].
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2.3.2. Road Ratio (RR)

The road ratio is an important landscape indicator used in various fields such as
urban planning, environmental studies, and landscape ecology. It provides insights into
the degree of urbanization, accessibility, and the impact of transportation infrastructure
on the landscape [24]. RR typically refers to the proportion of land area covered by roads
relative to the total land area within a specific region or sector.

The RR can be calculated using GIS data by dividing the total area covered by roads
by the total area of the region of interest (2). The formula is:

_ Total Road Area

~ Total Land Area - 100 @

The total road area was calculated in GIS using the OpenStreetMap layer (Available on-
line: https://www.openstreetmap.org/ (accessed on 8 September 2024)). OpenStreetMap
was selected due to its detailed and up-to-date mapping of road networks, which is es-
sential for the accurate calculation of RR [25]. It is known that all landscape elements in
OpenStreetMap are marked with different colors. In particular, roads are marked with
white, yellow, and orange colors depending on their traffic [26]. To calculate the total
road area, all pixels of the OpenStreetMap layer segment corresponding to the road colors
(white, yellow, and orange) were counted. The total land area was defined as the total
number of pixels in the analyzed OpenStreetMap segment. An example of a map with

roads highlighted is presented in Figure 4.

e

(a) (b)
Figure 4. Fragment of map from OpenStreetMap (a) with roads highlighted (b).

2.4. Air Quality Index (AQI)

The AQI is a numerical scale used to communicate how polluted the air currently is or
how polluted it is forecast to become. It is an important tool for conveying the potential
health effects of air pollution to the public. AQI is a critical measure that translates complex
pollution data into a simple numerical scale, indicating the level of health concern due to
air quality. The AQI focuses on health effects you may experience within a few hours or
days after breathing polluted air [27]. The pollutants used to calculate AQI in this study
include 03, PM2.5, PMlo, CO, SOz, and NOz.

The AQI is calculated based on the concentrations of various air pollutants. To
calculate the AQI for each pollutant, standardized Formula (3) is used to convert pollutant
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concentrations into an index value [28]. The highest AQI value among all pollutants is used
to calculate the total AQI.

———(C—Cip ) + [ 3
Chigh — Clow ( o ) o

where C is the measured concentration of the pollutant, Cy,y, and Cp;gp, are the ranges of
concentrations appropriate for this AQI category, and Ijo, and I,;gp are the ranges of AQI
values for a given pollution level. The ranges for each pollutant that are used to determine
AQI levels are presented in Table 2.

Table 2. Table of AQI categories and corresponding concentrations for major pollutants.

Levels of Health

AQI O3 (ppm) * PM,;5 (ug/m®) **  PMyg (ug/m?) ** CO (ppm) * SO, (ppb) ***  NO; (ppb) *** C

Range [28] [28,29] [28,30] 28] 28] [28] oncern
[28,30]

0-50 0.000-0.054 0.0-9.0 0-54 0.0-4.4 0-35 0-53 Good
51-100 0.055-0.070 9.1-35.4 55-154 4594 36-75 54-100 Moderate
101-150  0.071-0.085 35.5-55.4 155-254 9.5-12.4 76-185 101-360 Unhealthy for

Sensitive Groups

151200  0.086-0.105 55.5-125.4 255-354 12.5-15.4 186-304 361-649 Unhealthy
201-300  0.106-0.200 125.5-225.4 355-424 15.5-30.4 305-604 650-1249 Very unhealthy
301-500  0.201-0.604 **** 2255-325.4 425-604 30.5-50.4 605-1004 1250-2049 Hazardous

* 8 h average. ** 24 h average. *** 1 h average. **** 8-h O3 values do not define higher AQI values (>301). AQI
values of 301 or higher are calculated using the AQI 500 limit for 1 h O3 concentration.

2.5. Interpolations

In this study, the Multilevel b-spline interpolation (MLBS) method was employed to
interpolate the data. MLBS proved to be a robust and versatile method for interpolating
complex environmental datasets [31]. Its ability to capture both broad trends and fine details
makes it an invaluable tool in the arsenal of numerical methods for scientific research [32].
MLBS was calculated using SAGA GIS v. 9.1.0 with the “Multilevel B-Spline” tool, cell size
50, scope West—38,562,112, South—6,843,819, East—8,574,562, North—6,856,769, threshold
error 0.0001, and maximum level 9. The technique enabled the creation of high-resolution
air quality maps, providing a detailed view of pollutant distributions. The accuracy and
smoothness of the interpolated surfaces were crucial for identifying pollution hotspots and
understanding spatial patterns in air quality data.

2.6. Statistical Analysis
2.6.1. Correlation Analysis

Correlation analysis was used to identify the degree of relationship between vari-
ables, which is crucial for understanding the mutual influence of various factors in the
studied area. Both Pearson’s and Spearman’s correlation methods were initially considered.
Pearson’s method is used to determine the linear relationship between variables and is
appropriate for normally distributed data. In contrast, Spearman’s non-parametric method
estimates monotonic dependence between variables, making it suitable for data that do not
follow a normal distribution or contain outliers.

The analysis was performed using Python (v. 3.10.10) with libraries for scientific
computing and statistical analysis such as Pandas (v. 2.2.2), NumPy (v. 2.0.1), and SciPy
(v. 1.14.0). Heatmaps were generated using Matplotlib (v. 3.9.1) and Seaborn (v. 0.13.2)
libraries to visualize the correlation matrices. These heatmaps graphically represent the
degree of correlation between variables, with different color intensities indicating the
strength and direction of the relationships.

Correlation analysis was conducted on both the entire dataset (integral) and across a
grid of sectors (sectoral). For sectoral analysis, the mean value of the interpolated raster for
each parameter within each sector’s boundaries was used. This approach was necessary as
indices like GSR and RR can only be calculated for specific territories, not for point data.
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2.6.2. Structural Equation Modeling (SEM)

SEM was employed to analyze the factors affecting the AQI. The data were standardized
using the StandardScaler method from the Scikit-learn library (v. 1.5.1), which brings all
parameters to the same scale, potentially improving model convergence and interpretation.

In this analysis, the dependent variable was AQI, while the independent variables in-
cluded air temperature, air humidity, pollutant concentrations, and geographic coordinates
(latitude and longitude). The Semopy library (v. 2.3.11) was used to create and estimate
the model parameters. The model estimation results included regression coefficients and
statistical measures such as the value and significance of the coefficients.

2.6.3. Shapiro-Wilk Test

The Shapiro-Wilk test was employed to assess the normality of data distribution. This
statistical method tests the null hypothesis that a sample comes from a normally distributed
population. The test produces a p-value, which quantifies the evidence against the null
hypothesis of normality. A p-value less than the chosen alpha level (0.05) suggests that the
data significantly deviate from a normal distribution, leading to the rejection of the null
hypothesis. The p-values for the Shapiro-Wilk test were calculated using the SciPy library
(v. 1.14.0) in Python (v. 3.10.10), specifically the scipy.stats module.

2.6.4. Regression Analysis

Polynomial regression was utilized to analyze the relationship between AQI and
the landscape indicators RR and GSR. Scatter plots were created to visualize the data
distribution and assess potential patterns. Linear and quadratic regression models were
fitted to both RR and GSR data to capture both linear and non-linear relationships. The
choice of these models was based on initial exploratory data analysis and the assumption
of potential non-linearity.

The coefficients of determination (R?) were calculated for both models to assess their
overall fit. The vertex of the quadratic curve was determined by finding the RR/GSR value
associated with the minimum predicted AQI based on the model.

The required calculations were conducted using Python. Linear regression was per-
formed using the np.polyfit function, while quadratic regression involved fitting a second-
degree polynomial using the curve_fit function from scipy.optimize. The coefficients from
these models were used to generate trend lines.

It is important to note that the analysis establishes correlations between AQI and
the landscape indicators, but it does not imply causation. The identified relationships
can provide insights for urban planning and environmental management but should be
interpreted cautiously.

2.7. GIS and Mapping

The Geographic Information Systems (GISs) QGIS (v. 3.28.11) and SAGA GIS (v. 9.1.0)
were used in this study. QGIS was applied to visualize, edit, and analyze spatial data,
allowing geographic information to be processed and displayed efficiently. SAGA GIS was
used to perform complex spatial analysis and modeling, including data interpolation. The
combined use of these tools ensured the high accuracy and reliability of the results obtained.

During the study, OpenStreetMap, 2GIS maps, and Google satellite imagery were used
for spatial analysis and data visualization in GIS. OpenStreetMap and 2GIS maps provided
detailed information on the road network and infrastructure, while Google satellite imagery
provided high-resolution and accurate landscape and land use data. The use of these data
sources provided a comprehensive view of the study area and improved the accuracy of
the spatial analysis.
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3. Results
3.1. Descriptive Statistics of Data

Data on the concentrations of pollutants Oz, PM; 5, PM;g, CO, SO;, and NO, along
with coordinates, air temperature, air humidity, and AQI calculated for every 713 observa-
tions are available in Supplementary Table S1. Descriptive statistics on the obtained dataset
are presented in Table 3.

Table 3. Statistics on concentrations of pollutants and AQI values.

Shapiro-Wilk

1 1 * (O,

Pollutant Mean Median Min Max Range Std Dev Q1 Q3 CV * (%) Test p-Value
PMy 5 (ng/m?) 14.42 12.0 2.0 57.0 55.0 10.95 5.0 21.0 75.93 <0.001
PMy (ng/m?3) 16.68 13.0 2.0 74.0 72.0 13.13 6.0 23.0 78.72 <0.001

CO (ppb) 979.51 873.0 <LOD ** 4077 4077 534.95 596 1181 54.61 <0.001

SO, (ppb) 7.32 7.0 5.0 12.0 7.0 0.67 7.0 8.0 9.09 <0.001

NO; (ppb) 22.69 23.0 4.0 45.0 41.0 7.22 19.0 28.0 31.79 <0.001

O3z (ppb) 28.73 29.0 10.0 46.0 36.0 6.11 25.0 34.0 21.26 <0.001

AQI 55.50 56.0 11.0 152.0 141.0 26.39 29.0 73.0 47.54 <0.001

* coefficient of variation. ** LOD—Ilevel of detection.

The analysis of data on pollutant concentrations and AQI in the study area shows
significant variability of the parameters. The mean values of PM; 5 and PM( particulate
matter concentrations are 14.42 pg/m? and 16.68 pg/m?, respectively. These values are
slightly higher than the median values (12.0 pg/m? for PM, 5 and 13.0 pug/m3 for PMyg),
indicating that there are some high values in the sample. The standard deviation of these
parameters is also quite high, indicating significant variability in the data. The coefficients
of variation for PM; 5 and PMg are 75.93% and 78.72%, respectively, confirming the high
variation of values around the mean.

CO concentrations range widely, from lower than LOD to 4077 ppb, with a mean of
979.51 ppb and a median of 873.0 ppb. This indicates wide variations in CO levels, which
may be due to different emission sources or changes in environmental conditions. The
standard deviation for CO is 534.95 ppb, and the coefficient of variation is 54.61%, which
also indicates significant variability.

SO, shows the lowest variability among all measured parameters. The mean value
of SO, concentration is 7.32 ppb, the median is 7.0 ppb, and the range of values is only
7.0 ppb. The low coefficient of variation of 9.10% indicates the ubiquity of SO, concen-
tration, which may be the result of constant emission sources and relatively unchanged
environmental conditions.

NO, concentrations have a mean of 22.69 ppb and a median of 23.0 ppb. The range of
values is 41.0 ppb and the coefficient of variation is 31.80%, indicating moderate variability
in the data. This may be due to different sources of NO, emissions such as transportation
and industrial processes.

O3 shows a mean value of 28.73 ppb and a median of 29.0 ppb, with a spread of
36.0 ppb and a coefficient of variation of 21.26%. These data indicate a relatively stable
ozone concentration in the air, which may be related to constant photochemical reactions in
the atmosphere.

The AQI has a mean of 55.50, a median of 56.0, and a spread of 141.0. The coefficient
of variation for AQI is 47.55%, indicating that there is considerable variability in the index,
reflecting overall air quality. This may be due to variations in the levels of various pollutants
affecting air quality.

Very low p-values in the Shapiro-Wilk test indicate that the data obtained on concen-
trations of pollutants and AQI do not have a normal distribution.

3.2. Environmental Statistics

To identify the level of impact of pollutants on the environment, we compared the
indicators of pollutant levels with the threshold values recommended by WHO in 2021.
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The average daily recommended levels were used as thresholds (Table 4). For O3, the
threshold level corresponding to the 8 h average concentration was used. Additionally,
AQI level was calculated for every point.

Table 4. Air quality guidelines (AQG) levels recommended by WHO for 2021 [33].

Pollutant Averaging Time 2021 AQG Level
Annual 5
3
PM; 5, Ug/m 24h?a 15
Annual 15
3
PMyq, pg/m 24ha 45
o Jm? Peak season ° 60
3 HE/m 8ha 100 (50.94 ppb)
Annual 10
3
NOy, ug/m 2412 25 (13.29 ppb)
SOy, ug/m3 24h? 40 (15.28 ppb)
CO, mg/m? 24h? 4 (3491.61 ppb)

2 Ninety-ninth percentile (i.e., 34 exceedance days per year). b Average of daily maximum 8 h mean Os
concentration in the six consecutive months with the highest six-month running-average O3 concentration.

Table 5 provides an analysis of pollutant concentrations, their respective threshold
values, the threshold exceedance index, and the frequency of maximum AQI for every
pollutant. For PMj 5, the mean concentration is 14.42 pg/m?, which is slightly below the
threshold value of 15.00 ug/ m3. Despite this, the threshold exceedance index for PM; 5 is
relatively high at 39.83%, indicating that a significant portion of the measurements exceeds
the threshold, reflecting frequent episodes of elevated PM; 5 levels.

Table 5. Pollutant analysis: average concentrations, threshold values, and threshold exceedance index.

Threshold Frequency of
Pollutant Mean Threshold [33] Exceedance Index, % Maxi?num XQI a
PM; 5 (ug/m3) 14.42 15.00 39.83 540 (75.7%)
PMyg (ug/m3) 16.68 45.00 3.65 0
CO (ppb) 979.51 3491.61 0.56 0
SO, (ppb) 7.32 15.28 0.00 1(0.1%)
NO; (ppb) 22.69 13.29 87.38 172 (24.1%)
Os (ppb) 28.73 50.94 0.00 0

2 refers to the number of times a specific pollutant has been the primary contributor to AQI by having the highest
individual AQI value among all measured pollutants.

PM;( shows a mean concentration of 16.68 g/ m3, which is well below its threshold
value of 45.00 pg/m3. The threshold exceedance index for PMyj is low at 3.65%, suggesting
that PMyg levels rarely exceed the threshold and are generally within safe limits.

For CO, the mean concentration is 979.51 ppb, much lower than the threshold value
of 3491.61 ppb. The threshold exceedance index is very low at 0.56%, indicating that CO
levels are typically within acceptable ranges and do not frequently pose a health risk.

SO, has a mean concentration of 7.32 ppb, which is below the threshold value of
15.28 ppb. The threshold exceedance index for SO; is 0.00%, showing that SO, levels are
consistently within safe limits and do not exceed the threshold.

NO, presents a different scenario, with a mean concentration of 22.69 ppb, which
exceeds the threshold value of 13.29 ppb. The threshold exceedance index is very high at
87.38%, indicating that NO; levels frequently surpass the threshold, suggesting a significant
air quality concern for this pollutant.

O3 has a mean concentration of 28.73 ppb, which is below its threshold value of
50.94 ppb. The threshold exceedance index for O3 is 0.00%, indicating that ozone levels are
consistently within safe limits and do not exceed the threshold.
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Thus, the analysis highlights that while most pollutants like PM;y, CO, SO,, and O3
are generally within safe limits, there are significant concerns with PM; 5 and particularly
NO,, which frequently exceed their respective threshold values, indicating potential health
risks and the need for targeted air quality management strategies.

Since the AQI is equal to the maximum value of all individual AQISs, it is important to
identify the pollutants that have the greatest impact on this index. This can be performed
by calculating how many times each pollutant has reached the maximum AQI value.
Table 5 shows that PM, 5 and NO, contributed the most to the formation of the AQI level,
exhibiting maximum individual AQI for 75.7% and 24.1% of the points, respectively.

The categorical distribution of AQI values is presented in Figure 5. The air quality in
the study area can be characterized as follows: out of 713 surveyed points, in 300 points
(42.08%), the air is of “good” quality. This means that in a significant part of the study
area at the sampling moment, the air was safe for all categories of people without posing
health risks.

450

400 53.72%

42.08%

~N

o

o
f

Number of values

-
u
o

50 4.07%

0.14%

T T T 4
0-50 51-100 101-150 151-200
AQI category

Figure 5. Distribution of AQI Values.

In 383 points (53.72%), the air quality is moderate. This means that the air is still
relatively safe in most locations, but people with sensitive systems such as children, the
elderly, or people with respiratory conditions may experience minor discomfort. Despite
this, moderate air quality is still within acceptable standards and does not cause serious
problems for most of the population.

There are also a small number of points, precisely 29 (4.07%), where air quality is
harmful to sensitive populations. In these locations, people with asthma, allergies, or
other chronic diseases may experience worsening health conditions and should take extra
precautions. These locations require special attention and possible intervention to minimize
exposure to sensitive populations.

Additionally, one point (0.14%) with harmful air quality was recorded. In such loca-
tions, most people may experience negative effects from air pollution, especially sensitive
groups, although this figure is very small and may relate to random emissions in the data.

Thus, air quality in the study area can be considered mostly good to moderate (95.8%
of points), which is a positive indicator. Nevertheless, the presence of points with harmful
air quality (4.21%) emphasizes the importance of regular monitoring and taking measures
to improve air quality to protect the health of the population, especially vulnerable groups.

3.3. Results of the Landscape Indicators Calculation

To define the influence of landscape indicators on the air quality and pollutant levels,
the GSR and RR indices were calculated for every sector of the grid that intersects or
lies within the boundaries of the research area. Moreover, interpolation rasters were
obtained for every pollutant, and the mean value of concentrations was calculated for
every sector. Such sectoral analysis makes it possible to include GSR and RR indices in
statistical analyses.
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After calculation, the database on the sectors was obtained (Supplementary Table S2).
Every parameter was calculated for 347 sectors, so the total area of sectors included achieved
31.23 km?. The average GSR is 23.4%, which corresponds to a total greenery area of 7.31 km?.
The average RR is 4.75%, corresponding to a total road coverage area of 1.48 km?. The
relation of GSR/RR is 4.9.

3.4. Results of Correlation Analysis
3.4.1. Sectoral Correlation Analysis

Sectoral analysis was conducted to identify correlations between the urban landscape
indices, pollutants, and AQI within specific city sectors, as illustrated in the Spearman
correlation chart with p-values (Figure 6). Notably, GSR showed weak negative correlations
with PMyg, PMy5, SO, and AQ], indicating that an increase in green space is weakly
associated with a decrease in pollutant concentrations and an improvement in air quality.
These correlations were statistically significant, with p-values close to zero.

Greenery, % -

1.00
Roads, % - 0.12
p 0.02
0.75
co- 0.03 0.08
p06l  po0.l4 050
-0.08 -0.06 -0.39
NO2 -
p0.13 p0.25 p 0.00 -0.25
o3. 008 -024 -0.05 -0.03 - 0.00
p0.14 p 0.00 p0.37 p 0.62
PM10 - -0.27 -0.08 0.52 —-0.48 0.16 --0.25
p 0.00 p0.15 p 0.00 p 0.00 p 0.00
--0.50
PM2.5 - -0.26 -0.08 0.50 -0.49 0.16
p 0.00 p0.14 p 0.00 p 0.00 p 0.00
-0.75
502 - -0.20 -0.10 0.65 -0.31 -0.02 0.66 0.65
p 0.00 p 0.07 p 0.00 p 0.00 p0.75 p 0.00 p 0.00
-1.00
AQI - -0.27 -0.10 0.48 —0.48 0.19 0.63
p 0.00 p 0.06 p 0.00 p 0.00 p 0.00 p 0.00
o d D S > 0 av oy
é\. ’bb.»,. - Q.@\ Q‘SO’ & ¥
£

Figure 6. Spearman correlation between urban landscape indices, air pollutants, and AQI with
significance (p-values) based on sectoral analysis.

RR shows a weak negative correlation with O3 levels, indicating that an increase in
the road-coated area is associated with a decrease in ground-level O3 concentration. Other
correlations of RR were not statistically significant with the p-values above 0.05.

CO concentration has a moderate negative correlation with NO;; a stronger positive
correlation with PM;g, PM; 5, and AQI; and a significant positive correlation with SO,,
indicating that these pollutants are often found together. These correlations are also
statistically significant.

NO; concentration shows a negative correlation with PM;g, PM, 5, SO;, CO, and AQ],
suggesting that a decrease in NO; levels is associated with an increase in overall air pollu-
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tion. NO, appears to have independent sources. Ozone concentration has a weak negative
correlation with PM; 5 and PMj, but these relationships are not statistically significant.
PM;¢ and PMj, 5 concentrations show a high positive correlation with each other and
with AQI, which is expected since both are major components affecting the air quality
index. A very high positive correlation between PM; 5 and PM; suggests that they often
coexist and likely share common sources. AQI also shows a moderate positive correlation
with CO, and SO, indicating that these pollutants significantly impact overall air quality.
In conclusion, the analysis reveals that major pollutants such as PM;g, PM; 5, and SO,
have a significant impact on the air quality index. Importantly, the study suggests that
increasing green space can potentially improve air quality by reducing the concentration
of these pollutants. These findings have important implications for urban planning and
environmental management strategies aimed at improving air quality in cities.

3.4.2. Integral Correlation Analysis

The integral correlation analysis consolidates data from all observation points within
the study area, enabling the identification of correlations between pollutant concentration
levels at each point, AQI, geographical coordinates, and air humidity and temperature
parameters. The corresponding Spearman correlation coefficients with p-values are shown
in Table 6.

Table 6. Spearman correlation between air conditions, pollutants, geographical coordinates, and AQI
with significance (p-values) based on integral analysis.

Pollutant Humidity Temperature Y (ig:)il;ig:;te )EL((:;I):)gri(:::iZt)e
0.63 —0.37 0.28 0.72
AQL p = 0.00 p =0.00 p = 0.00 p = 0.00
PMy.< 0.65 —0.39 0.30 0.72
: p = 0.00 p = 0.00 p = 0.00 p = 0.00
PMyo 0.62 —0.36 0.30 0.73
p = 0.00 p = 0.00 p = 0.00 p = 0.00
co 0.15 0.06 0.37 0.41
p =0.00 p=013 p =0.00 p =0.00
50, 0.21 0.04 0.40 0.51
p = 0.00 p =029 p = 0.00 p = 0.00
NO —0.52 0.35 —0.14 —0.30
2 p =0.00 p=0.00 p=0.00 p =0.00
o 0.40 —0.27 —0.29 0.11
3 p=0.00 p=0.00 p=0.00 p=0.00

Air humidity shows a moderate positive correlation with PM, 5 and PMjy concen-
trations, meaning that higher humidity levels are associated with higher concentrations
of these pollutants. Air humidity also shows a moderate negative correlation with NO,,
suggesting that higher NO; levels are associated with lower humidity.

According to the observations, air temperature shows a weak negative correlation with
AQ], and this correlation is statistically significant. However, it is reasonable to conclude
that the exact cause of this correlation cannot be determined with absolute accuracy without
long-term temporal studies.

The strongest correlations were observed between the X coordinate and AQI, PM; 5,
and PMjg levels. The correlation is strongly positive, suggesting an increase in pollution
levels in the eastern direction. Additionally, the Y coordinates weakly positively correlate
with pollutants and AQI. These correlations suggest a potential influence of geographical
location on pollutant distribution. The correlations of coordinates indicate a trend of
increasing AQI in the east-northeast direction. This trend correlates with areas influenced
by industrial zones. The periphery of the urban area in proximity to industrial zones
exhibits a distinct industrial landscape, with an abundance of construction sites, repair
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shops, garages, vehicle depots, and other facilities that have the potential to be a source
of dust pollution. Additionally, these zones tend to be less subjected to greening than
residential areas within the city.

Notably, during the sampling period, the wind direction was predominantly from the
southwest (Figure 7), which should have mitigated the influence from the industrial area
by carrying air masses away from the residential zone towards the industrial sector. The
wind directions observed during the study period generally corresponded to the average
historical wind rose diagram (Figure 8). However, despite the favorable wind direction
from the residential zone towards the industrial area, zones with elevated concentrations of
particulate matter were identified within the residential sector. These areas were adjacent
to the industrial zones. Therefore, it can be inferred that the influence of the industrial
sector could increase significantly under opposite wind conditions.

day night night day night
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0 de N 0 deg N
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(a) (b)

Figure 7. Wind directions for Pavlodar city specified to sampling period: (a) 19 May 2024; (b) 20 May
2024 measured at Pavlodar Airport at approximately 10 m above an open field. Civil twilight and
night are indicated by shaded overlays [34].

Pavlodar
52.28°N, 76.97°E (133 m asl)

Model: ERAST

<2km/h 2-5km/h 5-10 km/h ® 10-20km/h . 20-30 km/h ® 30-40km/h 40 -50 km/h @ >50km/h
Figure 8. Average historical (from 1940 till now) wind rose diagram for Pavlodar city [35].
These findings highlight the complex interplay between geographical factors, urban

development, and air quality, emphasizing the need for comprehensive urban planning
strategies that consider both industrial activities and green space distribution.

3.5. SEM Analysis

This study employed SEM to examine relationships between environmental factors
and AQI. The results of the integral path analysis using SEM are presented in Table 7.
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Table 7. Integral path analysis results from the structural equation model: effects of environmental
factors on air quality index (AQI).

Dependent Variable  Relation = Independent Variable Estimate Std. Error z-Value p-Value
AQI - Air Temperature 0.097 0.013 7.639 218 x 10714
AQI - Air Humidity 0.250 0.017 14.885 <1.00 x 10716
AQI — PM; 5 0.949 0.038 25.093 <1.00 x 10716
AQI — PMo —0.076 0.035 —2.150 3.16 x 1072
AQI — Cco 0.005 0.006 0.766 4.44 x 1071
AQI — SO, —0.033 0.006 —5.205 1.94 x 1077
AQI - NO, 0.039 0.006 6.518 7.12 x 1071
AQI — 03 0.024 0.006 3.915 9.05 x 107>
AQI — Latitude —0.012 0.005 —-2.328 1.99 x 102
AQI - Longitude 0.013 0.007 1.780 7.51 x 1072
AQI T AQI 0.014 0.001 18.881 <1.00 x 10716

The integral analysis showed that PM; 5 demonstrated the most substantial positive
impact on AQI, underscoring its critical role in air pollution. According to the low p-value,
this influence is statistically significant. Unlike correlation analysis, SEM analysis allows us
to specify not only correlations but also the more complex influence of independent factors
on the dependent variable, in our case AQI. Using this method, we were able to exclude
the significant influence of pollutants such as PM;g and NO,.

3.6. Regression Analysis for the Relationship between AQI and Landscape Indicators

The scatter plot analysis of AQI versus GSR reveals a complex relationship between
urban greenery and air quality (Figure 9). Linear regression yields y = —0.5013x + 70.4744
(R? = 0.0697), indicating a weak negative correlation, as in correlation analysis. Both
parameters (slope, intercept) in the linear function are characterized by low p-values (0.000
for both parameters), which indicates that they are highly statistically significant.

140 4 Quadratic: y = 0.0195x~2 + —1.5226x + §0.6835 R? = 0.0886

Linear:y = —0.5013x + 70.4744 R® =0.0697
. ¢ Data
. . "

1207 Lingar:y = —0.5013x + 70.4744 Quadratic Trend

R? = 0.0697 . -=- Linear Trend

*pyalue®(intercept) = 0 odoe

100 -4 p-%value <sﬁ)pr~‘ =40.0000

. -.' * '.: . .
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Figure 9. Relationship between AQI and GSR (%).

The quadratic model, y = 0.0195x%> — 1.5226x + 80.6835 (R? = 0.0886), provides a
slightly better fit, suggesting a non-linear relationship. We calculated the p-values for the
coefficients and the constant of the quadratic regression. The p-value for a (the x* term)
is 0.00787, the p-value for b (the x term) is 0.00013, and the p-value for c (the constant
term) is 0.00000. Thus, all three coefficients are less than 0.05 and are therefore statistically
significant at the standard significance level of 5%. This indicates that the components of
the quadratic model have a significant impact on the dependent variable.

The quadratic curve’s vertex (GSR ~ 38.98%, AQI ~ 51.01) represents an optimal green
space threshold for minimizing AQIL Beyond this point, further increases in GSR correlate
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with a slight AQI increase. While both models exhibit low R? values, signifying substantial
unexplained variability, they nonetheless provide valuable insights. The analysis suggests
that increasing green space by up to approximately 39% may improve air quality, after
which benefits diminish. These findings underscore the importance of balanced urban
green space planning for optimal air quality outcomes, while also highlighting the need for
the consideration of additional factors influencing urban air quality in future research.
The relationship between the AQI and RR is illustrated in Figure 10. Linear regression
analysis yields an equation of y = —1.4858x + 65.8067 with an R? value of 0.0169, indicating a
weak negative correlation between AQI and increasing road coverage. Slope and intercept
coefficients in the linear function are characterized by low p-values (0.0154 and 0.000
correspondingly), which indicates that they are highly statistically significant.

Quadratic: y = 0.2400g"2 + —3.7255x + 70.0168 R? = 0.0209

140 1
Linear: y = —1.4858x + 65.8067 R? = 0.0169
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Figure 10. Relationship between AQI and RR (%).

A quadratic model, described by the equation y = 0.2400x> — 3.7255x + 70.0168 with
an R? of 0.0209, demonstrates an improved fit to the data, albeit still representing a weak
relationship. The p-value for a (the x? term) is 0.23828, the p-value for b (the x term) is
0.06225, and the p-value for ¢ (the constant term) is 0.00000. The coefficients a and b in
the model are not statistically significant, especially a (quadratic component), which has a
p-value well above the threshold of 0.05. The coefficient b (linear component) also does not
reach the standard level of significance, although it is close to it.

Thus, AQI and RR are rather poorly correlated, which is reflected in both the cor-
relation analysis results and the regression analysis calculations. The low R? values for
both models (1.69% and 2.09%, respectively) indicate that the RR accounts for only a small
fraction of the variance in AQI. This underscores the necessity of considering additional
variables to achieve more accurate air quality predictions.

3.7. Spatial Analysis of AQI Distribution in Pavlodar

During the research, two maps presenting the spatial distribution of AQI in the
residential area of Pavlodar city were obtained, utilizing different classification methods to
visualize air quality patterns (Figure 11).

In the map (Figure 11), the AQI was classified using equal intervals, providing a more
nuanced view of air quality variations across the study area. The color scheme ranges from
blue (representing the lowest AQI values of <35) through green, yellow, orange, and red
(indicating the highest AQI values of >136). This classification reveals a complex spatial
pattern of air quality within the city. The western and central parts of the study area show
predominantly lower AQI values, represented by blue and green hues, suggesting better
air quality in these regions. In contrast, the eastern and southeastern portions of the map
display higher AQI values, indicated by yellow, orange, and red colors, pointing to areas
with potentially poorer air quality.
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Figure 11. Spatial distribution of AQI in the residential area of the Pavlodar city classified with
equal intervals.

The spatial patterns revealed by this map could be valuable for urban planning,
environmental management, and public health initiatives in Pavlodar. They identify areas
where air quality improvement measures might be most needed and could guide the
placement of additional air quality monitoring stations. Table 8 provides a breakdown of
AQI values from the MLBS interpolation raster categorized by health concern levels, along
with the count and percentage of observations within each range.

Table 8. Frequency distribution of the AQI values in Pavlodar from an interpolated raster of the
research area classified according to the AQI scale defined by the US-EPA 2016 standard [36].

AQI Range Levels of Health Concern Pixel Count Percentage, %
0-50 Good 11,439 39.01
51-100 Moderate 16,728 57.05
101-150 Unhealthy for Sensitive Groups 1145 3.90
151-200 Unhealthy 11 0.04
201-300 Very unhealthy 0 0.0

The majority of AQI values fall within the “Good” and “Moderate” categories. The
“Good” category (AQI 0-50) includes 11,439 pixels, accounting for 39.01% of observations,
indicating generally favorable air quality with little health risk. The “Moderate” category
(AQI 51-100) has 16,728 pixels, or 57.05%, suggesting acceptable air quality with a slight
concern for sensitive individuals. This is the most common AQI range, indicating mostly
moderate air quality in Pavlodar.

The “Unhealthy for Sensitive Groups” category (AQI 101-150) comprises 1145 pixels
(3.90%), indicating potential health effects for sensitive groups, though the general public is
less affected. The “Unhealthy” category (AQI 151-200) is rare, with only 11 pixels (0.04%),
posing a risk to all, especially sensitive groups. There are no points in the “Very Unhealthy”
category (AQI 201-300), indicating no instances of severely poor air quality.

Given the positive correlation between AQI and PM, 5 and PMjy, it can be confidently
assumed that the spatial distribution of AQI will largely correspond to that of particulate
matter. Conversely, NO; concentration demonstrated an inverse correlation with AQI,
indicating that the spatial distribution of this pollutant will be different. Figure 12 illustrates
that exceeding the threshold level of NO, is rather permanent and exhibits no pronounced
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spatial trends. This distribution pattern suggests that motor vehicles are the primary source
of nitrogen dioxide, rather than industrial sources.

WGS 84 / Pseudo-Mercator
EPSG:3857

Research area 3

NO2 (ppb)
?3_313135 Z 1:75,000
L
0 1 2km

Figure 12. Spatial distribution of NO; in the residential area of Pavlodar city, highlighting the points
exceeding the WHO-AQG thresholds.

Overall, the data suggests that Pavlodar experiences predominantly “moderate” air
quality, with very few instances of unhealthy air conditions. This distribution highlights
the city’s generally favorable environmental conditions while also identifying the need for
continued monitoring and efforts to maintain or improve air quality to protect public health.

4. Discussion

The study identified PM;5 and NO, as the main contributors to air pollution in
the study area. In particular, NO, exceeded the 24 h threshold in 87.38% of locations,
whereas PMj; 5 had the highest individual AQI in 75.7% of cases, underscoring its dominant
influence. This observation is supported by the correlation analysis, which shows a positive
correlation between PM; 5 and AQI. Additionally, a negative correlation was identified
between NO; and AQI This inverse relationship is probably due to the overshadowing
effect of PMj 5; in areas exhibiting elevated PMj 5 levels, NO, concentrations tend to decline
while the AQI rises, as the AQI is predominantly influenced by PM; 5. This dynamic is due
to the AQI calculation method, which prioritizes the dominant pollutant.

To further clarify these interactions, the SEM analysis shows that PM; 5 has the most
significant impact on AQI (0.95), while NO; has no significant correlation or negative
impact. The strong correlation between PM; 5 and PM;( suggests common sources. In
general, pollutants such as CO, O3, PM;g, PM; 5, and SO, demonstrate a positive correlation
with the AQ]I, indicating that an increase in their concentrations is associated with an
elevation of the AQI level. However, NO, deviates from this pattern. Although it frequently
exceeds daily thresholds, its negative correlation with PM; 5 diminishes its direct effect on
AQ], as shown in the analysis.

Humidity positively correlated with AQI, so an increase in humidity increased the
AQL It is also important to note that this correlation between AQI and humidity does
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not necessarily imply a strict or universal relationship. This correlation is observed only
for the period of observations (May) and should be interpreted within this context. The
relationship can be explained by seasonal weather patterns typical for this month, such
as decreasing temperatures before rain, accompanied by increasing wind speeds. These
conditions can lead to the more active movement of dust particles, temporarily affecting
air quality. Therefore, while the data show a correlation, it may not represent a causal
relationship between humidity and AQI that holds across all seasons or locations.

The landscape indices GSR and RR were examined within a sectoral analysis. GSR
shows a weak negative correlation with AQI and the main pollutants (except CO). Statis-
tically significant correlations were found between GSR and PMj, 5, PMyg, SO,, and AQL
However, the correlations were weak, indicating that while green spaces positively impact
air quality, this influence is not strong. This is consistent with the literature, which suggests
that vegetation can reduce airborne pollutants through deposition and absorption [37-39].
However, a strong relationship is difficult to demonstrate due to urban trees being planted
in various locations, including more polluted areas. Additionally, the planting density
is insufficient to notably reduce pollutant levels, resulting in only a minimal difference
between sectors with high and low GSR. Nevertheless, regression analysis revealed a
statistically significant minimum in the quadratic trend at 39%, indicating that, despite
statistical challenges, an increase in green space till the threshold level leads to a reduction
in pollution.

Unlike GSR, RR does not provide sufficient statistical evidence to draw conclusions
about its impact on air quality. This negative result may be due to the study’s methodology,
which measured road surface area rather than traffic intensity. Given the small size of the
studied city, the road surface area often does not correlate with traffic intensity [40], which
is a major determinant of urban air pollution.

It is noteworthy that GSR and RR show a weak positive correlation (0.12, p-value = 0.02),
likely due to the approaches in urban greenery, with a significant portion planted along
roads for protective purposes [41].

The study’s findings indicate significant spatial variability in concentrations of pollu-
tants such as PM; 5, PM;g, CO, SO,, NO,, and O3 across Pavlodar city. Integral correlation
analysis revealed a strong positive correlation between the X coordinate and a moderate
positive correlation between the Y coordinate and pollutants PM; 5, PMyg, and AQI. This
spatial distribution corresponds to increasing pollution levels toward the east-northeast,
likely influenced by the Northern Industrial Zone and the northern part of the Eastern
Industrial Zone. The spatial analysis shows a correlation between AQI and the proximity
to industrial zone boundaries, despite the opposite wind direction during the sampling.
This indicates the negative impact of industrial activity on the atmosphere in residential
areas adjacent to industrial zones. This outcome is expected given the presence of major
industrial facilities with extensive industrial territories, including railroads, construction
sites, warehouses, and garages. These findings are consistent with previous research high-
lighting the significant contribution of industrial activities to urban air pollution [15,42,43].
The main possible sources for the studied pollutants are vehicle and industrial emissions,
road dust, and industrial processes.

In contrast, nitrogen dioxide pollution does not exhibit a discernible correlation with
geographic coordinates. This conclusion is supported by both correlation analysis and the
map of the spatial distribution of exceedances of NO; thresholds. The observed distribution
of this pollutant suggests that vehicles represent its primary source.

The spatial interpolation of air quality data using the Multilevel B-Spline method
identified distinct pollution hotspots, particularly in areas adjacent to major industrial and
traffic zones. These hotspots pose significant public health risks, especially for vulnerable
populations such as children, the elderly, and individuals with pre-existing respiratory
conditions. The central and western parts of the city are the least affected by pollution.
The peripheral distribution of pollutants and the low incidence of pollution hotspots in
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residential areas indicate that the primary sources of pollution, including particulate matter,
are industrial sites located in industrial zones.

Overall, the air quality in Pavlodar at the time of the study was classified as “moderate”
according to AQI levels. However, the observed levels of pollutants, particularly PM, 5 and
NO,, exceeded WHO guidelines in a significant number of points, necessitating urgent
policy interventions, even though the WHO guidelines do not provide any classification
for levels of health risk [44,45].

Based on the findings, several policy measures are recommended to improve air
quality in Pavlodar city:

1.  Expansion of Green Spaces: Increasing urban green spaces can significantly reduce air
pollution and enhance the overall environmental quality. Initiatives such as creating
urban parks, green roofs, and tree planting, especially in industrial zones and along
the edges of the residential area, should be prioritized.

2. Industrial Emission Controls: Strengthening regulations on industrial emissions and
encouraging the adoption of cleaner technologies can reduce the release of harmful
pollutants from industrial activities.

3.  Public Awareness and Engagement: Raising public awareness about the sources and
health impacts of air pollution and engaging communities in air quality management
efforts can foster collective action towards a cleaner environment. Equally important
is the development of the practice of regular air quality monitoring by consolidating
private and public monitoring stations in a single network.

The implementation of the proposed recommendations is crucial for both residents
and visitors of industrialized cities. Air quality plays a pivotal role in determining the
quality of life in urban areas. For instance, Pavlodar, the city analyzed in this study, is not
only an industrial center but also holds significant cultural value, including a high tourism
potential. Pavlodar is a destination for business, ecological, and cultural tourism [16,46,47].
However, polluted air not only poses a risk to the health of residents but also diminishes
the city’s appeal to tourists seeking a healthy and comfortable environment. In this context,
up-to-date information on the atmospheric conditions in residential areas is essential for
the sustainable development of tourist infrastructure, such as hotels and parks, in regions
with better air quality. Therefore, regular monitoring and the development of methods for
assessing the ecological state of urban air are not only vital for enhancing tourist satisfaction
but also support the sustainable development of the city. Improving air quality through
the collaboration of residents, industry, and urban management is critical not only for
public health protection but also for boosting the city’s tourism potential, which in turn
contributes to economic growth and sustainability.

The findings of this study have broader implications beyond air quality management,
particularly in the areas of tourism-related infrastructure, transport, and logistics. The
identified spatial variability in pollutant concentrations and the pollution hotspots near
industrial zones provide critical insights for planning and developing sustainable urban
infrastructure. By integrating pollution data into urban planning, cities can develop more
efficient and environmentally friendly transportation systems that minimize exposure to
pollutants [48,49]. The expansion of green spaces can serve a dual purpose: improving air
quality and creating an attractive, healthy environment that enhances the city’s tourism
appeal and provides logistical advantages by improving urban aesthetics and reducing the
heat island effect [50].

This article contributes to the development of methods for improving air quality
management in industrial cities by offering tailored solutions for specific areas, taking into
account their unique environmental and industrial characteristics. These methods assist
local administrators and urban planning specialists in better understanding the complexity
of interactions between industrial zones, green spaces, and air quality, as well as in identify-
ing the most effective environmental and infrastructure measures. Additionally, the study’s
findings emphasize the importance of regular air quality monitoring and mapping to
support urban planning and transportation infrastructure development decisions aimed at
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reducing pollution levels. In conclusion, this research advances approaches for integrating
green infrastructures with technological and industrial solutions, which is a key factor in
designing sustainable and environmentally friendly cities.

While this study provides valuable insights into the spatial distribution of air pollu-
tants and their determinants, it has several limitations. The short duration of data collection
may not fully capture temporal variations in pollutant levels. Certain limitations are as-
sociated with the method of air quality analysis. Thus, it is not possible to obtain data
on a sufficiently large number of points simultaneously. Monitoring covering the whole
city area takes considerable time and can last up to two days. During this period, local
concentrations may change. However, general trends and correlations should remain
quite reliable. In addition, monitoring in different seasons could be helpful for a better
understanding of the peculiarities of air pollution in the city.

Despite the use of the road ratio index, it was not possible to measure the traffic
intensity in different sectors of the city, which could significantly contribute to the analysis
of pollution pathways.

Future research should focus on long-term monitoring to better understand tem-
poral trends and the effectiveness of implemented policies. Integrating additional data
sources, such as satellite observations and citizen science contributions, can also enhance
the robustness of air quality assessments.

5. Conclusions

In conclusion, this research provides valuable insights into the spatial distribution of
air pollutants in Pavlodar city, highlighting the significant impact of industrial activities and
vehicular emissions on air quality. The study found that PM; 5 and NO, are the primary
pollutants influencing AQI, as well as NO, frequently exceeding the WHO'’s recommended
thresholds. There is a notable correlation between higher GSR and lower AQI levels,
suggesting that urban green spaces play a crucial role in mitigating air pollution. The study
reveals significant spatial variability in pollutant concentrations across Pavlodar city, with
increasing pollution levels toward the east-northeast, likely due to the industrial landscape
and activity that brings pollutants from industrial zones to residential areas.

Pavlodar faces significant environmental challenges as an industrial hub, with high
pollutant concentrations adversely affecting public health and quality of life. The data
indicate predominantly “moderate” air quality according to the AQI level, but further long-
term monitoring is needed to capture seasonal variations. The study recommends several
policy measures to improve air quality, including expanding green spaces, strengthening
industrial emission controls, and raising public awareness about air pollution and its health
impacts. Integrating public and private air quality monitoring networks is also highlighted
as essential for comprehensive management.

This research underscores the importance of addressing air quality not only as a public
health concern but also as a critical factor in the sustainable development of urban infras-
tructure, tourism, and logistics. The spatial analysis of pollutants provides valuable data
that can be used to optimize the location of tourism-related infrastructure, ensuring that
such developments contribute to a healthier urban environment. Additionally, the findings
suggest that strategic urban planning, which includes the expansion of green spaces and
the careful routing of transport networks, can significantly contribute to reducing pollu-
tion levels. By incorporating these environmental considerations, cities can enhance their
sustainability, improve public health outcomes, and create a more attractive environment
for both residents and visitors. The integration of air quality data into urban planning,
particularly in industrial cities, is essential for developing infrastructure that supports
economic growth while safeguarding environmental and public health.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/su16177834/s1. Table S1: Integral monitoring data; Table S2:
Sectoral monitoring data.
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