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Abstract: The Sulfur Production Unit with Hydrogen Extraction (SPUHE) plays a critical
role in oil refineries by converting hydrogen sulfide into high-quality sulfur and hydro-
gen. However, optimizing SPUHE operations is challenging due to the uncertainty in
process parameters and qualitative assessments of sulfur properties. This study proposes
a systematic modeling approach that integrates deterministic, statistical, and fuzzy logic
methods to enhance process efficiency and accuracy. Mathematical models were developed
for key SPUHE units, including the thermoreactor, Claus reactor, and Cold Bed Absorp-
tion reactors. The inclusion of fuzzy logic allows the incorporation of expert knowledge,
enabling the assessment of non-measurable sulfur characteristics and improving model
reliability. The proposed system accounts for interdependencies between process units,
ensuring a comprehensive optimization framework. A comparative analysis with tradi-
tional deterministic models demonstrates that the proposed approach improves sulfur
recovery efficiency by 11.94%, enhances hydrogen extraction, and reduces operational
costs through energy-efficient process adjustments. The developed system provides a
robust decision-support tool for refineries, contributing to environmental sustainability and
energy optimization. This research offers significant implications for oil refining, hydrogen
energy, and industrial process control, demonstrating the advantages of hybrid modeling
in managing complex refinery operations under uncertain conditions.

Keywords: modeling system; fuzzy information; sulfur and hydrogen production unit;
hydrogen energy; qualitative sulfur indicators; oil refining processes

1. Introduction

The Sulfur Recovery Unit with Hydrogen Extraction (SRUHE) is one of the key
technological facilities at oil refineries, as it enables the conversion of harmful acidic
gases and sulfur-containing hydrogen sulfide into valuable products: high-quality sulfur
and hydrogen [1,2]. The sulfur produced is further used to manufacture pharmaceutical
products, dyes, explosives, fertilizers, and other chemical products [3,4]. The hydrogen
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extracted in the sulfur production process is utilized for hydrogen energy [5,6]. Traditional
deterministic models often fail to account for the uncertainty inherent in refinery processes,
particularly in sulfur recovery and hydrogen extraction. By integrating fuzzy logic, the
proposed system enhances adaptability to uncertain operating conditions, ensuring a more
accurate and efficient optimization of SPUHE operations.

Thus, SRUHE not only enhances the economic performance of refineries by producing
and selling sulfur and hydrogen, which are in high demand in various chemical, medical,
construction, and energy industries [6,7] but also addresses environmental issues in oil
refining by converting toxic hydrogen sulfide and other acidic gases into useful products.

Recently, the share of high-sulfur crude oil extracted in Kazakhstan and other countries
has been increasing, leading to higher emissions of harmful and toxic sulfur-containing
gases during processing. Therefore, improving the efficiency of SRUHE operations, based
on advancements in modern science and information technologies, while ensuring strict
environmental standards and reducing its impact on the environment, is a top priority.
The SRUHE at oil refineries is a highly complex technological system, consisting of inter-
connected and interacting units where physical and chemical processes take place, many
of which are still insufficiently studied, have parameters that are not measured, and are
difficult to formalize, making mathematical modeling challenging [8]. Thus, the main
units of the SRUHE operate in conditions of data scarcity and uncertainty, as some critical
parameters and indicators (such as sulfur quality and others) are not directly measurable
but rather evaluated by decision-makers (DMs) and experts responsible for managing
its operation modes. These immeasurable production indicators are assessed based on
expert knowledge, experience, and intuition, using natural language, which introduces
fuzziness. The optimization of SRUHE operating modes using modeling techniques is
characterized by a vector of economic and environmental criteria, which are often con-
flicting in terms of finding effective solutions, making this a decision-making problem in
a fuzzy environment. All of this highlights the importance and relevance of developing
a system of interconnected models for the main SRUHE units under conditions of data
scarcity and uncertainty, to achieve effective multi-criteria optimization and control of
its operational modes. The urgency of this problem has significantly increased due to
tightening environmental regulations, stricter industrial requirements, and the need to
minimize environmental pollution. This situation motivates the current study, which aims
to develop a system of models for the main interconnected units of the SRUHE at the
Atyrau Oil Refinery (Atyrau, Kazakhstan), considering data scarcity and uncertainty. The
developed model is then used to optimize and manage the operating conditions of the unit.

In practice, when studying and managing complex facilities such as SRUHE, uncer-
tainty problems may arise due to the probabilistic, random, and/or fuzzy nature of the
initial information. Uncertainty problems caused by the probabilistic nature of initial
information obtained through instrument measurements can be resolved using probability
theory and mathematical statistics methods, provided that a sufficient amount of statistical
data are available [9-11]. In cases where parameters cannot be measured, statistical data
are unavailable, or data collection is impossible or impractical, and the cause of uncer-
tainty is the fuzziness of available information, other approaches must be used, such as
non-statistical methods for solving uncertainty problems. Fuzzy logic enhances the SPUHE
modeling system by incorporating expert knowledge into process evaluation, enabling the
assessment of qualitative sulfur properties and improving prediction reliability in cases of
uncertain or incomplete data. Unlike traditional deterministic models, which struggle with
qualitative variables, fuzzy models can systematically process linguistic assessments of
sulfur quality, process stability, and operational efficiency. This ensures that expert insights
are effectively utilized in decision-making, enhancing the robustness and adaptability of



Energies 2025, 18, 1573

30f20

the SPUHE system under real refinery conditions. If parameter values are not measured
but are assessed in a fuzzy manner by decision-makers (DMs) and experts, based on their
knowledge and experience, then expert evaluation methods and fuzzy set theory are used
to address the uncertainty problem of a fuzzy nature [12-15].

The goal of this study is to develop a system of models for the main interconnected
units of the SRUHE at the Atyrau Oil Refinery (Atyrau, Kazakhstan), considering data
scarcity and uncertainty using a systematic approach, which integrates both statistical and
fuzzy methods for addressing uncertainty in initial information. Based on the developed
SRUHE model system, the process of optimization and selection of effective operating
modes is then implemented.

Currently, due to the increasing importance of effectively improving economic perfor-
mance and enhancing the environmental sustainability of the oil refining sector, research
has intensified in the field of optimizing sulfur production process management. The most
effective approach to solving this problem is based on modern scientific advancements,
specifically mathematical modeling and optimization methods, as well as information
technology tools.

Let us present the main results of the literature review on the research topic. The authors
of studies [16-20] investigated the issues of modeling and optimizing sulfur production
processes, the operation of sulfur production plants, and the Claus process technology. The
authors of [16,17] studied and proposed an approach to the development of models and
optimization based on the obtained sulfur production process models under deterministic
conditions. Kazempour et al., in their works [18-20], presented research results on the
optimization of the Claus process based on models for extracting sulfur from sulfur-containing
gases.

Zare in [21], and Hashemi et al. in their studies [22], analyzed the energy, exergy, and
exergoeconomic aspects of the modified Claus process, which can be used to optimize
the sulfur production process. Mehmood et al. in their research [23] evaluated kinetic
models for modeling Claus reaction furnaces in sulfur recovery plants under various feed
conditions. The authors of [24,25] used computational fluid dynamics (CFD) to model and
analyze sulfur extraction processes from acid gas and improve their efficiency. Ibrahim et al.,
in [26-28] studied and assessed the performance of sulfur recovery units (SRU), the impact
of feed composition on plant performance, and proposed an approach to multi-objective
optimization of high-sulfur gas purification units.

The authors of [29-32] analyzed and compared technologies and methods for sulfur
production and biological removal of hydrogen sulfide from pollutants. Zhencai et al.,
in [33,34] described the Frasch Method and sulfur and sulfuric acid production technologies.

The results of the literature review and other studies in the research field show that
the main issues of improving sulfur production efficiency have been explored and ad-
dressed, including through the use of mathematical modeling and optimization methods
in deterministic and statistical conditions. However, it is well known that real industrial
sulfur production facilities generally operate under uncertainty due to random and fuzzy
characteristics of available information. If uncertainty is caused only by the random and
probabilistic nature of measurable information, then probabilistic methods can be used to
solve these uncertainty problems, as mentioned earlier. In existing studies, while some
research has been conducted on uncertainty problems in stochastic conditions, the full reso-
lution of uncertainty problems in these conditions has not yet been achieved. Furthermore,
research dedicated to studying and solving uncertainty problems due to the fuzziness of
initial information, which often occurs in practice when modeling and optimizing sulfur
production processes, is almost absent. In this regard, the main goal of the present study
is to develop a system of models for the main interconnected units of a sulfur production
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facility, considering data scarcity and uncertainty in initial information based on previous
research by the authors. Based on the obtained results, intelligent decision support systems
(DSS) will then be developed for the effective management of operating modes of the sulfur
production facility in a fuzzy environment.

2. Object, Materials and Methods

The object of study in this work is the main units of the SRUHE at Atyrau Refinery
(Atyrau, Kazakhstan) which form a technological system characterized by a deficit and
uncertainty of some initial information. The SRUHE is designed to obtain granulated
high-quality sulfur from acid gases, the main components of which are hydrogen sulfide
and other sulfur-containing gases harmful to the environment. The produced sulfur is used
for the manufacture of medical products, dyes, fertilizers, and other demanded products,
while the hydrogen released in this process is used for hydrogen energy production. During
sulfur production, the quality of sulfur is described with uncertainty, which is expressed
through linguistic variables. The sulfur quality is evaluated using the following categories:
high, above average, average, below average, and low. These assessments are conducted
with the participation of specialists, including process engineers, laboratory technicians,
and refinery laboratory experts. To optimize the operating modes of sulfur production
processes, a set of models for the main interconnected units of the SRUHE should be
developed, allowing for systematic modeling and identifying the most efficient operating
mode. Such a set of models for the main units of the study object is created by combining
the developed models of these units, taking into account the technological scheme of sulfur
and hydrogen production in the SRUHE.

The diagram of the study object, the sulfur production unit at Atyrau Refinery (Atyrau,
Kazakhstan), is presented in Figure 1. The main units of the SRUHE, shown in Figure 1,
represent the processes of liquid sulfur production, where sulfur from the sulfur pit (SD) is
transferred to the crystallization unit, where it undergoes processing to form granulated

sulfur.
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Figure 1. Diagram of the connection of the main reactors of the sulfur production unit with hydro-
gen extraction at Atyrau Refinery (Atyrau, Kazakhstan). I—Acid gas (raw material) entering the
thermoreactor (TR), [—Regenerated amine solution from the condenser, III—Liquid sulfur from the
sulfur pit (SD) to the sulfur crystallization unit, IV—Hydrogen, E-1—Sulfur condenser; E-4—Electric
heater; RC—Claus reactor; RCBA-1, RCBA-2—CBA (Cold Bed Absorption) reactors.
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The raw material for the SRUHE is hydrogen sulfide-containing acid gas, which is
a harmful gas released during oil refining processes. From this gas, valuable and highly
demanded products are obtained for various industries. The acid gas from the separator
enters the thermoreactor (TR) for the thermal conversion process. From there, it flows into
the Claus reactor (RC), where the catalytic conversion process takes place. The sulfur from
the Claus reactor (RC) is then supplied to the parallel-connected RCBA-1 and RCBA-2
reactors, where the Cold Bed Absorption (CBA) process occurs at a lower temperature
than in the catalytic conversion process. After the CBA process, liquid sulfur is discharged
from RCBA-1 and RCBA-2 into the sulfur pit. From there, it is transferred to the sulfur
crystallization unit, where it undergoes crystallization and granulation.

As part of the study, data on process parameters and operating modes of the main
units of SRUHE at Atyrau Refinery (Atyrau, Kazakhstan) are used. These data are collected
through passive and active experiments [35-37] and analyzed using mathematical statistics
methods [9-11,38]. Passive experiments include statistical data on key parameters and
laboratory test results from process log sheets filled out by SRUHE operators (DMs).
Additional data are obtained from the SRUHE process regulations at Atyrau Refinery
(Atyrau, Kazakhstan) [39].

The immeasurable qualitative characteristics of sulfur are assessed by decision-makers
(DMs) and expert specialists from the central refinery laboratory in a fuzzy manner, based
on their experience, knowledge, and intuition. To collect, formalize, and process this fuzzy
information, the study applies expert evaluation methods (a modified Delphi Method)
and fuzzy set theory [12-15,40-45]. This research will also utilize materials on the thermal
conversion process occurring in the thermoreactor (TR), the catalytic conversion process
occurring in the Claus reactor (RC) in the presence of a catalyst, and the conversion
processes in the RCBA-1 and RCBA-2 reactors.

The volume and quality of the obtained sulfur depend on the values of the input and
operating parameters of the main SRUHE reactor units TR, E-1, E-4, RC, RCBA-1, and
RCBA-2, as well as on their operating modes. Therefore, to determine the optimal operating
mode of the SRUHE, it is necessary to develop a system of model packages for its main
interconnected units, which describe the dependencies of sulfur volume and quality on
input and operating parameters. Then, using computer modeling based on the obtained
system of models for various SRUHE operating modes, it is possible to select input and
operating parameters that ensure the most efficient mode of operation. For example, an
operating mode of the main SRUHE units that allows obtaining the maximum volume of
sulfur with the best quality indicators, while complying with the technological regulations
of the unit and other operational constraints.

The block diagram of the proposed and used method for developing the system of
models for the main SRUHE units is presented in Figure 2.

The proposed method for developing a system of models for interconnected SRUHE
units is based on available statistical and fuzzy information under conditions of data
scarcity and uncertainty.

In Block 2, values are entered for the vector of available statistical and fuzzy input,
operating, and output parameters of the SRUHE unit, represented as: x = (x1,...,Xy),
X = (Zl,...,;n) andy = (y1,.-.,Ym), ; = (]71,...,§m). At this stage, the input and
operating parameters that influence the output parameters and define the operating modes
and quality of the SRUHE performance are selected.

In Block 3, a systematic analysis of the operating modes of interconnected main SRUHE
units is carried out, along with their formalized description.
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Figure 2. Block diagram of the method for developing the system of models for SRUHE units.
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In Block 4, a set of criteria is determined for comparing, evaluating, and selecting
the most effective type of model for each SRUHE unit. Based on these criteria, an expert
evaluation is conducted. The results of this expert evaluation are then processed to select
the most effective types of models for the main SRUHE units that need to be developed.

From Block 5 to Block 12, the development of the selected effective model types for
the main units (TR, E-1, E-4, RC, RCBA-1, and RCBA-2) of the SRUHE is carried out. In
Block 5, the most effective model type for the main units of SRUHE is determined based on
the results of expert evaluation processing and the value of the integrated criterion (IK),
which is obtained by summing the local criteria.

To reduce the subjectivity of expert information obtained through the Delphi method,
the following approach is implemented. After each round of individual assessment, each
expert is presented with the evaluations of all other experts. Based on this analysis, each
expert may either adjust their assessment to align more closely with others or justify the
correctness of their original evaluation. Next, the degree of consensus among experts is
assessed using a well-known methodology—calculating the concordance coefficient, which
measures the consistency of expert opinions. The closer its value is to 1, the higher the level
of agreement among experts, and vice versa. This round-based procedure is repeated until
the concordance coefficient reaches 1 or approaches it, indicating a high level of consensus
among all experts. This, in turn, significantly reduces the subjectivity of expert evaluations.
To minimize the time required to reach a final decision with consensus among all experts,
and to further reduce the subjectivity of expert assessments, it is necessary to automate
the process of conducting rounds and calculating the concordance coefficient. This can
be achieved by using computers connected to a shared network between experts and the
organizers of the expert evaluation process.

In Block 6, the condition is checked again to determine whether the selected unit’s
deterministic model is effective, i.e., whether IK DM max is achieved. If the condition is met,
then in Block 7, the deterministic models for this unit are developed analytically using the
formula: y = f(xq,...,x,). Afterward, to verify the adequacy of the obtained model, the
process moves to Block 13. If the condition is not met, then the process moves to Block 8.

In Block 8, the condition is checked to determine whether the statistical model is
effective for the unit, i.e., whether IK ST max is achieved. If the condition is met, then in
Block 9, the statistical models for this unit are developed using an experimental-statistical
method, for example, with the structure: y = f(ao, ..., an, X1, ..., X,), where ay, ..., a,—are
unknown parameters to be identified. Afterward, to verify the adequacy of the obtained
model, the process moves to Block 13. If the condition is not met, then the process moves
to Block 10.

In Block 10, the following condition is checked: “Are the input and operating parame-
ters of the unit crisp (precisely defined numerical values), while the output parameters are
fuzzy (linguistically or uncertainly defined)? Additionally, does the fuzzy model satisfy the
IK FM max criterion, confirming its effectiveness for this unit?” If the condition is met, then
in Block 11, the fuzzy model for this unit is developed using the corresponding method,

with the structure: ? = f (EO, .. .,Zn,xl,. .. ,x,,), for example, based on the sequential
inclusion regression method:

~

n n n
Y= aoj+ ) ayxit) Y awixixg, j=1,m, 1)
i=1 i=1 k=i
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For each Jj the parameters ag, a1,..., a,—are fuzzy parameters that need to be
identified. They can be identified based on the x-level set and the modified least squares
method. Afterward, to verify the adequacy of the obtained model, the process moves to
Block 13.

If the condition in Block 10 is not met, then the process moves to Block 12 for the
synthesis of linguistic models of the unit.

In Block 12, the linguistic model of the unit is synthesized based on the compositional
rule of inference and the corresponding method, with the structure:

If x € ALV % € AsV, ...\ % € Ay, Then Jj S §]-,j:1,m, )

where ;i, i=1,n and ?]-, j = 1, m—are linguistic variables that estimate fuzzy values of

the input and output parameters of the unit, respectively. Zi, i=1,nand B i ] = 1, m—are
fuzzy subsets where x; and ;]» are determined, respectively. V—is the union operation
over fuzzy sets, corresponding to the logical “and” operation For the synthesis of linguistic
models, using expert evaluation methods involving decision-makers (DMs), the term-
sets T(X,Y), are defined, which describe the fuzzy parameters of the unit. For these
parameters, membership functions are constructed as: VZ, (;,), yg' (Jj), i=1mn, j= 1,m.
T These membership functions can be built using the Fuzlzy Logic Toolbox of the MATLAB
R2018b system, for example, by selecting a Gaussian-type function (gaussmf). Using the
compositional rule E i = Zi o INQl-]- we can determine ]7 i’ where ZNQij—is the fuzzy mapping
that relates x; and j- For computer-based calculations, the fuzzy mapping is formalized
through its membership function:

by, (9;) = min {Vz, (%) (97) 1=

Then, the fuzzy values of the output parameters = 1, m are determined in a formalized

l,n,jzl,m]. 3)

form based on the max-min product rule: P (;]) = max{ min [VZ (351) M (Ei, ?Jﬂ ,
] ~ i ij
Xi X

where x;,—represents the fuzzy input parameter values determined by experts. Thus, the
crisp values of the output parameters y;,j = 1, m—can be determined using the formula:

yi= argrrlgxygj (? ]-> . In Block 13, the adequacy condition of the developed models of SRUHE
v

units is Ch]ecked based on the criterion of minimizing the squared difference between the

output parameter values obtained from the models (through calculations) and the actual values

determined experimentally.

If the adequacy condition is met, then in Block 14, in accordance with the technolog-
ical scheme of the SRUHE and the sulfur production process, the developed models are
combined into a unified system that enables systematic modeling of SRUHE operating
modes. These models are then recommended for practical application. If the adequacy
condition is not met, the causes of inadequacy are identified, and the process returns to the
corresponding block to eliminate the causes and improve the model’s adequacy.

3. Results

Let us present the results of developing the system of models for the main units of the
SRUHE, including the thermoreactor, condenser, electric heater, Claus reactors, and CBA
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reactors, based on the method proposed in Section 2 for developing the system of models,
which is used for optimizing the operating modes of the unit.

In Blocks 2 and 3 of the method, the collected statistical and fuzzy input and output
parameters of the unit were defined and entered, and a systematic analysis of the operating
modes of the main SRUHE units and their interconnections was conducted. In Block 4,
the criteria for selecting the most effective model type included: Availability of the neces-
sary initial information for model development. Adequacy of the model. Cost of model
development. Efficiency of using the model for optimization. Possibility of integrating the
developed models into the overall system. Based on these criteria and the expert evaluation,
statistical models were selected as the most effective type for determining the product
output from the thermoreactor (TR), Claus reactors (RC), and Cold Bed Absorption reactor
(RCBA-2). For evaluating the quality characteristics of sulfur produced in the CBA reactors,
fuzzy models were determined to be the most effective. The condenser (E-1) and electric
heater (E-4) were modeled using statistical models, developed with the participation of the
authors in study [45].

3.1. System of Mathematical Models for the Thermoreactor TF, Claus Reactors RC, and CBA
Reactors of SRUHE at Atyrau Refinery (Atyrau, Kazakhstan)

The development of the selected effective models for the thermoreactor, Claus reactors,
and Cold Bed Absorption (CBA) reactors of the SRUHE was carried out considering the
results of expert evaluation and the integrated criterion (IK), following Blocks 5-12 of the
proposed method. The mathematical models of the thermoreactor, Claus reactors, and
CBA reactors were developed based on collected and processed experimental-statistical
data and expert information, which was processed using fuzzy set theory methods. As a
result, the structure of the developed models, based on the sequential inclusion regression
method [46] was identified in the form of the following: Multiple nonlinear regression
Equations (4)—(6) Fuzzy regression models (7):

le —ag—i-Zaxl—i—ZZa,kxxk, 4)
i=1k=i
—a0+2axl+22alkxxk, (5)
i=5k=i
RCBA 10 10 10
y3 Pt =ag+ Y a4+ ) ) apxx, (6)
i=8 i=8 k=i
~RCBA  ~ 13 13
]/] = 4aoj + le aijXij + lekz Ak XijXkj, ] - 4 8, @)
i i =i

In models (4)(6), yI R, yRC, yRCBA__represent the volumes of intermediate products

and final products obtained from the thermoreactor, Claus reactors, and CBA reactors,
~RCBA —
respectively; y; , j = 4,7—are the main fuzzy quality indicators of sulfur in liquid

sulfur from the CBA reactor outlet; The unknown crisp and fuzzy parameters of models
(5) to be identified are: ag,a;,a;, i = 1,13.j = 1,3, k = i and on, Zij, ;ijk, ;1= 11,13.
j=4,7, k=1ix;, i =1,13—The input and operating parameters of TR, RC, and CBA are:
x1—raw material feed into TR; xp, x3—temperature and pressure in TR; x;—combustion
air consumption in TR; xs—raw material feed into RC; x4, x;—temperature and pressure
in RC; xg—raw material feed into RCBA; x9, xjp—temperature and pressure in RCBA.

In the fuzzy model system (7), the evaluated quality indicators of the obtained sulfur
~RCBA  ~RCBA ~RCBA ~RCBA ~RCBA i
are: y, , Y5 ,Y¢ ,Y; andyg  —represent: Mass fraction of sulfur; Ash
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A

TR _

content; Organic substances; Acids (converted to sulfuric acid equivalent); Water content.
The input and operating parameters of CBA reactors that affect sulfur quality are: x1;—raw
material feed into RCBA; x15, x13—temperature and pressure in RCBA.

Since the models describing product output from the reactors are multiple regres-
sion models, their unknown parameters (regression coefficients) were identified using
experimental-statistical data and the least squares method, utilizing the REGRESS software
package 3.1.

The results of parametric identification of the models, which determine the dependence
of intermediate product output from TR and sulfur volume from RC and CBA reactors, are
given in Equations (8)—(10):

fi(x1, x2, %3, x4) = 3.33813035 + 0.097826087x; + 0.002812500x, -+ 3.068181818x3+
+0.011250000x4 + 0.000000781x3 4 0.929752066x3 4 0.000028125x3+ (8)

+0.044466403x1 x5 + 0.000244565x1 x4 + 0.000852273x7x3,

= fa(xs, xe, x7) = 7.04000000 + 0.146666667x5 -+ 0.011785714x—

—2.588235294x7 + 0.006518519x§ + 0.000002806365 + 0.30449827036%4— )

+0.000523810x5x4 + 0.172549020x5x7 4 0.000924370x67.

yREBA = fa(xs, x9, x10) = 6.60001768 + 0.100000000x5 + 0.011785714x9 + 4.12500000x70+

10

+0.000028061x3 + 3.437500000x%, + 0.125000000x5x1. (10)

Figure 3 shows the graph of the dependence of sulfur output from CBA reactors on

the temperature value x; while keeping other input and operating parameters constant
(xg —raw material feed, xg —temperature at the RCBA inlet, x19g —pressure in RCBA).

25
22.0
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=2
.
5 15 13.5
Q.
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o
5
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5 =o—Sulphur output, t/d
wv

5 ——Poly. (Sulphur output, t/d)

0

180.0 210.0 250.0 280.0 310.0

Temperature, C

Figure 3. Graph of the dependence y§CBA = f3(x9), xg,x10—fixed. xg—raw material feed at the
RCBA inlet—22.5 t/s; xj9—pressure in RCBA—0.80 kg/cm?.

The unknown parameters of the fuzzy models (7), which evaluate the quality indi-
cators of sulfur from the CBA reactor output, were identified based on the x-level set
method and the modified least squares method. To identify the unknown fuzzy coefficients:
on, Ei]-, Eijk i =8,10,k =i, j = 4,8 the fuzzy sets describing the product quality indicators
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were divided into the following levels: « = 0.5; 0.8; 1. For each level ag, q= 1, 3 the models
of sulfur quality indicators can be represented as a system of crisp multiple regression
equations. Thus, the identification task of the coefficients in these equations at the levels
a;*1, i = 8,10, g = 1,3 is reduced to classical parameter estimation problems in multiple
regression analysis. For the identification of parameters in these models, the REGRESS
program, implementing the least squares method, can also be used. The obtained parameter

values at levels: 4;,*, i = 8,10, g4 = 1,3 were then combined into a single value using the
fuzzy set theory formula:

2= U a%oru~ (a) = SUP min {a/ (s }, o gt — {a‘
L ae0s] #, (%) welos U (a;) g, vae a; i

wy (@) > af. (11)

1

Then, the models describing the fuzzy dependence of sulfur quality indicators, for
example, the mass fraction of sulfur ? 4 (x11, X12, x13) on the input and operating param-
eters described above x11, x12, x13, have the following form:

~RCBA
_(_ 05 038 1 08 05
Yo o (A, xi2,x13) = (0.0000160 T 0.0000T66 T 0.0000168 T 0.0000170 T 0.0000175) +

0.5 0.8 1 0.8 0.5
+ 0.2272270 + 0.2272271 + 0.2272273 + 0.2272275 + 0.2272277 X1+

0.5 0.8 1 0.8 0.5
+ 0.0701607 + 0.0701611 + 0.0701614 + 0.0701617 + 0.0701620 X127+

05 08 1 08 05
1\ 227950100 T 2238950100 T 229950100 T 229950200 T~ 24_9950300>x13+

0.5 0.8 1 0.8 0.5 2
+ 0.0103275 + 0.0103280 + 0.0103285 + 0.0103290 + 0.0103295 x11+ (12)

0.5 0.8 1 0.8 0.5 2
+ 0.0001170 + 0.0001200 + 0.0001231 + 0.0001260 + 0.0001291 X12+

05 08 1 08 05 2
- (15.6218750 T 1156218750 T 156218750 1 115.6218750 T 15.6218750>x13+

0.5 0.8 1 0.8 0.5
+ 0.0015915 + 0.0015930 + 0.0015945 + 0.0015960 + 0.0015975 X11%12+

0.5 0.8 1 0.8 0.5
+\ 05680672 T 05680679 T 05680682 T 05680685 05680690 ) ¥11X13 1

05 08 1 08 05
+ <0.0438501 T 0.0438505 T 0.0438500 T 0.0438514 T 0.0438520)x12x13'

Then, based on Equation (11), combining the values of fuzzy parameters at o-level
sets—on the left (0.5, 0.8), the maximum value (1), and the right (0.5, 0.8)—a convenient
model form for determining the sulfur fraction in the obtained sulfur on a computer is
obtained:

yRCBA (311, x12, x13) = 0.0000167868 + 0.227227273x11 + 0.070161404x75 + 24.995000000x13+
+0.010328512x%, 4+0.000123090x2, + 15.621875000x3, + 0.001594577x11x12+ (13)
+0.568068182.X11X]3 + 0.0438508773(123613.

The parametric identification of fuzzy models for evaluating sulfur quality indicators

~RCBA ~RCBA ~RCBA ~RCBA . . -
Ys Y Yy and yg was carried out analogously to the parametric identifica-

~RCBA
tion of the fuzzy model for sulfur fraction evaluation y, . Then, as a result of combining
the identified parameter values at the o-level sets based on Equation (11), the following
models were obtained, allowing the determination of sulfur composition indicators on

a computer: ash content yé{CBA ; organic substances y§CBA ; acid content (converted to

sulfuric acid) yI;CBA and water content in the produced sulfur yé{CBA:

yREBA (x93, x12, x13) = 0.000015909x11 4 0.000004912x1, 4 0.001750000x13 + 0.000000723x2, + (14)
+0.000000009x2, + 0.001093750x2, + 0.000000167x11x12 + +0.000019886x11 x13 -+ 0.000003070x712x13;
yRCBA (211, x12, x13) = 0.000013636x11 + 0.000004211x715 + 0.001500000x13 + 0.000000620x2, +

15
£0.0000000072, -+ 0.000937500x2; -+ 0.000000144x11 15 + +0.000017045x1 15 + 0.000002632v 57135 )
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yRCBA (x14, x12, x13) = 0.000002273x17 + 0.000000702x15 + 0.000250000:x13+
0.000000103x3, -+ 0.000000001x2, -+ 0.000156250x3, -+ 0.000000024x11 12+ (16)
+0.000002841X11 X13 + 0.000000439X12X13,‘

yRCBA(x11, x12, x13) = +0.000011364x71 + 0.000003509x7, + 0.001250000x75 + 0.000000517x%, +

17
++0.000000006x2, + 0.000781250x2, + 0.000000120x11 ¥12 + +0.000014205x7; x13 + 0.000002193x1%13. 17

In the obtained models (8)-(10) and (13)—(17), after the parametric identification of
regression coefficients, input parameters that do not influence or have negligible influence
on the output parameters are not included.

Fuzzy information, i.e., formalized knowledge, experience, and intuition of SPUHE
process operators and experts, enhances the accuracy and reliability of SPUHE models
by eliminating uncertainties in the assessment of unmeasured sulfur quality indicators.
Unlike deterministic and statistical models, which either assume precision or struggle
with data inaccuracy, fuzzy logic enables the mathematical structuring, formalization, and
resolution of the problem of determining fuzzy sulfur quality indicators and the efficiency
of processes occurring in SPUHE. The integration of the fuzzy approach with other well-
known methods within the proposed systematic approach improves the efficiency and
accuracy of modeling, ensures adaptability in uncertain conditions, and enhances the
reliability of process optimization for sulfur and hydrogen production in SPUHE under
real refinery conditions.

For systematic modeling and optimization of the SRUHE operating modes, the de-
veloped reactor models were combined into a unified system, considering their intercon-
nections, the sulfur production process, and the configuration of the main units in the
sulfur production block with hydrogen separation, as shown in Figure 1. In addition to
the developed models (8)—(10) and (13)—(17) for the thermoreactor, Claus reactor, and CBA
reactors, the modeling system also includes the condenser models E-1 and E-4 of Atyrau
Refinery (Atyrau, Kazakhstan), which were previously developed in study [45].

In the obtained system of reactor and condenser models, as shown in the scheme in
Figure 1, the interconnected main units of the SRUHE are replaced with their developed
and utilized models. Thus, the outputs of one model—i.e., the simulation results of a given
unit—are used as input data for the models of other units. For example: The simulation
results of TR serve as input data for the condenser E-1 model. The simulation results of E-1
are then used as input for the condenser E-4 model. The outputs of the E-4 model—i.e., its
simulation results—are used as input data for the Claus reactor RC model. The simulation
results of RC are then used as input data for the CBA-1 and CBA-2 reactors.

We provide additional explanations regarding the results of model development,
detailing the process of their creation. The structures of the statistical models (4)-(6) and
fuzzy models (7) were identified using the sequential inclusion method of regressors in the
form of nonlinear crisp and fuzzy regression equations. The unknown parameters of the
statistical models (4)—(6) were identified based on collected and processed statistical data
on the operating modes of the modeled SRUHE reactors using the least squares method
with the REGRESS software package. The unknown fuzzy parameters of the fuzzy models
(7) were identified using the a-level set approach and a modified least squares method,
employing the REGRESS software package for each « value. The obtained set of crisp
values of the identified fuzzy parameters for computer modeling was then combined into a
single value based on formula (11) from fuzzy set theory.
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3.2. Results of Sulfur Production Process Modeling Based on the SRUHE Reactor System Models

Through computer modeling, the operating modes of the interconnected models for
the thermoreactor, Claus reactor, and CBA were simulated using the developed models
(8)—(10) and (13)—(17) at various input operating parameter values. The optimal SRUHE
operating modes were determined, ensuring: Maximum sulfur output Best quality indica-
tors The software implementation of the developed models for computer modeling was
performed in the Jupyter Notebook (Anaconda3) environment, using the Python 3.12.6.
programming language.

The results of computer simulations of various SRUHE operating modes, the determi-
nation of the optimal mode, and a comparison with other studies and real-world data are
presented in Table 1. In compliance with GOST 127.2-93 standards [47], the following sulfur
quality indicators were monitored: Sulfur fraction Ash content Organic substances Acid
content (converted to sulfuric acid) Water content in the produced sulfur. The real-world
data were experimentally obtained during SRUHE operation at Atyrau Refinery (Atyrau,
Kazakhstan), under the supervision of experienced operators (DMs).

The modeling results presented in Table 1, obtained using the developed system of
models for the main units, were compared with the results of known deterministic models
and were found to match real data with high accuracy, as obtained by experienced DMs
during the operation of the research facility. Additionally, the developed system of models
for the main SRUHE units allows for the fuzzy description of qualitative indicators of the
produced sulfur, which cannot be determined by traditional modeling methods.

The reliability of the obtained results, scientific statements, and conclusions is con-
firmed by: The correctness of the research methods used, based on the scientific principles
of system analysis and mathematical modeling. The use of expert evaluation methods
and fuzzy set theory. The sufficient convergence of the obtained modeling results with
experimental and industrial results (relative error not exceeding 3%).

The developed models, based on the proposed approach using fuzzy logic, provide a
more accurate representation of real refinery conditions compared to deterministic models.
This is because they account for uncertain, hard-to-measure fuzzy parameters through
expert knowledge and experience. Experimental validation under real operating conditions
of the SPUHE unit at the Atyrau Refinery (Atyrau, Kazakhstan) demonstrated that our
developed model system reduces relative error to <3%, whereas deterministic models often
fail to capture the qualitative characteristics of sulfur, leading to higher errors. Additionally,
a comparison of modeling results using the developed models and known deterministic
models, presented in Table 1, shows that the proposed models deliver better results,
improve energy efficiency, and allow for the determination of fuzzy-evaluated qualitative
sulfur indicators. The key input and operational parameters of the modeled objects were
kept identical, while the temperature and pressure of the Claus reactors were optimized.

Unlike deterministic models, which strictly rely on measured numerical data, the
developed models, through the integration of expert evaluation, enable the determination of
fuzzy qualitative properties of sulfur. This allows for real-time adjustments of temperature
and pressure in Claus reactors under uncertain conditions. Furthermore, a comparison of
the results of the developed and known models indicates that the developed models reduce
energy consumption by optimizing the adjustable parameters of sulfur production and
hydrogen extraction processes. Additionally, a comparative analysis determined that the
developed models improve sulfur recovery efficiency by 11.94% compared to deterministic
models (Table 1).
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Table 1. Comparison of Simulation Results and Determination of the Optimal Operating Mode of the
SRUHE at Atyrau Refinery (Atyrau, Kazakhstan), based on: Developed models, Known deterministic

models [48] experimental data from the research facility.

Optimal Values of Sulfur Quantity, Quality

Imdicsors o the SRURE and he nput Sl Rl Simulion KesultsBsed e Dt Obined from
and OperatlnEg Paratmeters of the Reactors Models Models [48] Refinery Experimentally
nsuring Them
Sulfur Output from TR, t/day 225 20.1 21.9
Sulfur Output from RC, t/day 22 19.7 214
Sulfur Output from RCBA-1, t/day 22 19.7 21.4
Sulfur Output from RCBA-2, t/day 22 19.6 21.3
Sulfur Quality Indicators:
Mass Fraction of Sulfur, % 99.98 - (99.90) "
Mass Fraction of Ash, % 0.0068 - (0.008) "
Mass Fraction of Organic Substances, % 0.0059 - (0.0067) ™
Mass Fraction of Acids (as Sulfuric Acid), % 0.0097 - (0.0099) ™
Mass Fraction of Water, % 0.005 - (0.006)
Input and Operating Parameters for TR, RC,
RCBA-1, and RCBA-2:
x]—Raw Material Feed in TR, t/day 23 23 23
x;—temperature in TR, °C 1200 1200 1200
x;—pressure in TR, kg/ cm? 1.1 1.2 1.15
x;—Combustion Air Flow in TR, m> 200 200 200
xt—Raw Material Feed in RC, t/day 225 22.5 22.5
x{—temperature in RC, °C 280 285 282
x3—pressure in RC, kg/cm? 0.85 0.90 0.85
x§—Raw Material Feed in RCBA-1, t/day 22.3 22.3 22.3
x§—temperature in RCBA-1, °C 280 285 282
x]p—pressure in RCBA-1, kg/ cm? 0.80 0.83 0.80
x];—Raw Material Feed in RCBA-2, t/day 22 22 22
x],—temperature in RCBA-2, °C 280 285 282
x];—pressure in RCBA-3, kg/ cm? 0.80 0.83 0.80

Note: The input and operating parameters of the process were taken approximately the same. ()" indicates that
the values were obtained by laboratory methods.

4. Discussion of Results

The proposed method for developing a system of models for interconnected units
under conditions of information scarcity and uncertainty and the developed system of
models for interconnected SPP reactors are based on: A systemic approach Experimental-
statistical methods Expert evaluation methods Fuzzy set theory The developed system of
models for the main interconnected units of the SRUHE enables systematic modeling of
various operating modes of the SRUHE and determines the optimal operating mode, which
allows maximization of sulfur production with the best quality indicators. The hydrogen
released during the sulfur production process is subsequently used for hydrogen energy
production.

The proposed systematic approach to modeling enhances sulfur production and
hydrogen extraction processes in SPUHE by providing holistic optimization, eliminating
uncertainties, and improving reliability and forecasting accuracy. By integrating fuzzy logic
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with deterministic and statistical models, this approach offers an adaptable and scalable
framework for optimizing industrial processes under uncertain conditions. It enables
refineries to minimize energy costs while simultaneously maximizing the efficiency of
sulfur and hydrogen production and improving environmental sustainability.

The proposed method for developing a system of models for interconnected SRUHE
units has synergistic effects and emergent system properties due to the comprehensive
use of various methods, ensuring the development of effective and adequate models for
SRUHE units. The obtained results can be exported and applied to develop modeling
systems for other oil refining, petrochemical, and industrial facilities under conditions of
information scarcity and uncertainty, demonstrating the practical significance of this work.

As a result of the analysis and discussion of the systematic modeling results for the
SRUHE reactor operating modes, based on known deterministic models and the developed
system of models (as presented in Table 1), the following advantages of the proposed
method and the developed system of models for SRUHE can be identified:

(1) The proposed method for developing a system of models for the main technological
system units—using the SRUHE as an example under conditions of information scarcity
and uncertainty—allows for the creation of a system of effective and adequate models for
interconnected units in various technological systems. This advantage is ensured by the
synergistic effect and emergent system properties of the developed model system, based on:
A systemic approach Experimental-statistical methods Expert evaluation methods Fuzzy
set theory The developed method, depending on the available information, allows for the
creation of deterministic, statistical, fuzzy, or linguistic models of the studied objects, which
are then integrated into a unified model system, considering the interconnections of objects
and the processes occurring within them;

(2) The system of models for the thermoreactor, Claus reactors, and CBA at the
Atyrau Refinery (Atyrau, Kazakhstan) SRUHE, developed using the proposed modeling
method, enables: Systematic computer-based modeling of various SRUHE operating modes
Determination of the optimal operating mode The optimal SRUHE operating mode is
defined as the mode that ensures maximum production volume and the best sulfur quality
indicators. Statistical models of SRUHE reactors (4)—(6), which determine the output
volume of intermediate and final products, were developed using statistical methods
based on experimental-statistical data. Fuzzy models (7) were synthesized based on fuzzy
information from DMs and experts to evaluate fuzzy-defined quality indicators of sulfur
from reactors and the CBA unit. The identification of unknown parameters in polynomial-
type statistical models (4)-(6) was conducted using the least squares method, implemented
in the REGRESS software package. The identification of fuzzy parameters in models
evaluating fuzzy-defined sulfur quality indicators (7) was performed using the x-level
set method and a modified least squares method. After parameter identification of the
obtained crisp models at x-levels and aggregation of the identified unknown parameter
values using expression (11), the final models (13)-(17) were obtained, which are suitable
for computer-based modeling and sulfur quality assessment;

(8) Comparison of Simulation Results and Determination of the Optimal Operating
Mode of the SRUHE at Atyrau Refinery (Atyrau, Kazakhstan) Based on the developed
models, known deterministic models, and real experimental data obtained at the studied
SRUHE (Table 1), the following conclusions can be made:

—  The final product output—sulfur from the CBA reactor outlet—shows higher agree-
ment with real data compared to known models. This means that: The developed
models demonstrate higher adequacy. Sulfur yield is increased by 2.45 t/day or
12.24%, ensuring higher efficiency of the SRUHE operation;
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—  The developed fuzzy models allow for the evaluation of qualitatively described sulfur
characteristics, which are not determined by the known comparison models, including:
Mass fraction of sulfur; Ash content; Organic substances; Acid content (converted to
sulfuric acid); Water content in the produced sulfur;

—  Table 1 shows that the best simulation and optimization results, based on the de-
veloped models, are achieved at lower temperature and pressure values in SRUHE
reactors, compared to deterministic model results. This means that the proposed
method of modeling and optimizing SRUHE operating modes is more energy-efficient
compared to known methods, as it allows for better results while requiring lower
energy consumption for temperature and pressure generation.

The interconnected reactor model system enhances the efficiency of sulfur production
and hydrogen extraction processes in the Sulfur Production Unit with Hydrogen Extraction
(SPUHE) by integrating deterministic, statistical, and fuzzy modeling approaches. Known
deterministic and statistical models often face uncertainty issues due to a lack of reliable
statistical data, the impracticality or economic infeasibility of obtaining such data, and the
inherent fuzziness of available input information. These challenges complicate the effective
modeling and optimization of sulfur production processes.

Our proposed systematic approach, based on expert evaluation methods and fuzzy
set theory, systematically incorporates expert knowledge, experience, and intuition into the
model, representing them as fuzzy information. This fuzzy logic-based approach enhances
system adaptability by processing imprecise qualitative data, such as sulfur quality or
process stability, which cannot be directly measured but are critical for decision-making.
By utilizing fuzzy regression methods, the model provides more accurate predictions of
sulfur yield and hydrogen extraction under various SPUHE operating conditions.

Moreover, the developed interconnected reactor model system ensures that depen-
dencies between different technological units (thermal reactor, Claus reactor, and cold-bed
absorption reactors) are taken into account, leading to a more comprehensive optimization
strategy. Ultimately, the proposed systematic approach, which effectively integrates and
utilizes available fuzzy information, enables real-time process adjustments, enhances oper-
ational efficiency, minimizes energy consumption, and improves product quality, making
the SPUHE system more reliable and resilient under real refinery conditions.

The proposed systematic modeling approach brings significant benefits to the oil
refining, hydrogen energy, and related industries by improving process optimization,
increasing efficiency in sulfur and hydrogen production, and ensuring better compliance
with environmental regulations. The integration of fuzzy logic with other methods enables
more adaptive decision-making, leading to increased production volumes with superior
quality, enhanced efficiency and reliability of developed models, and reduced operational
costs in uncertain conditions. In oil refining, the proposed approach increases the yield
of high-quality sulfur while minimizing energy consumption. Additionally, it improves
hydrogen extraction efficiency, supporting sustainable hydrogen production for hydrogen
energy applications. Industries that rely on high-purity sulfur and hydrogen, such as
pharmaceuticals and fertilizers, also benefit from improved product quality and compliance
with environmental standards.

5. Conclusions

This study presents a fuzzy-logic-based system of interconnected reactor models
for SPUHE, enhancing process optimization under uncertain conditions. The developed
approach improves predictive accuracy, reduces energy consumption, and increases sulfur
recovery efficiency by 11.94% compared to deterministic models. By integrating expert-
driven fuzzy assessments, the proposed model provides a robust decision-support tool for
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real-world refinery operations. These findings demonstrate the practical applicability of

the developed method in industrial settings, contributing to improved hydrogen extraction,

sulfur production, and environmental compliance. Future research will focus on further

refining the models to enhance their adaptability to varying refinery conditions.

The main results obtained in this research include:

A method for synthesizing a system of models for interconnected units of the techno-
logical system, such as SRUHE at Atyrau Refinery (Atyrau, Kazakhstan), has been
developed and described, taking into account the data scarcity and uncertainty in
initial information for research and model development;

Based on the proposed method for synthesizing models of interconnected units, a
system of mathematical models has been developed for the thermoreactor (TF), Claus
reactors (RC), and Cold Bed Absorption (CBA) reactors of SRUHE at Atyrau Refinery
(Atyrau, Kazakhstan). The created model system for the thermoreactor and SRUHE
reactors integrates: Statistical models, which describe the product output volumes
from the thermoreactor and reactors. Fuzzy models, which evaluate the quality of the
produced sulfur in CBA reactors;

The results of computer simulations of the sulfur production process, based on the
developed model system for the thermoreactor and reactors of the SRUHE at Atyrau
Refinery (Atyrau, Kazakhstan), have been presented. By comparing the simulation
results obtained from the developed models and known deterministic models with
real experimental data, the advantages of the proposed modeling approach—which
considers additional fuzzy information—have been demonstrated. The fuzzy infor-
mation was obtained from DMs and domain experts, representing their knowledge,
experience, and intuition, which was collected using expert evaluation methods and
processed using fuzzy set theory methods.

The limitations of the proposed approach include: Significant time investment required

to identify, evaluate, and select experienced and competent DMs and domain experts, as

well as the subjectivity of their assessments. Difficulties encountered by DMs and experts

in evaluating fuzzy-defined parameters and indicators of the object. To minimize and

eliminate these limitations in the study and development of modeling systems for industrial

objects with fuzzy descriptions, the authors plan to:

Develop an automated system for identifying, evaluating, and selecting DMs and
experts. This system will implement an expert evaluation methodology, including
the calculation of competence coefficients, to streamline and facilitate the process of
selecting experienced and competent experts;

Improve the Delphi method to reduce expert subjectivity. This will be achieved
by creating a computerized network that automatically organizes Delphi rounds,
processes expert opinions, and calculates the concordance coefficient (consistency
of expert opinions). During each round, experts can review the opinions of others
and adjust their own assessments. After several rounds, the concordance coefficient
typically approaches 1, indicating that expert opinions converge toward a unified
consensus, thereby minimizing subjective biases in their assessments;

Develop a support system for DMs and experts. This system will facilitate and
streamline the process of evaluating fuzzy-defined parameters, allowing experts to
iteratively improve their assessments in natural language while analyzing the results
of previous evaluations.

The distinction, novelty of the obtained results, and advantages over known results

in similar research areas lie in the fact that the proposed method is based on a systemic

approach, which involves the systematic application of statistical methods, expert evalua-
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tion methods, and fuzzy set theory. This systemic approach, due to the synergistic effect
of the combined methods, enables the development of effective and adequate models for
complex interconnected objects under conditions of information scarcity and uncertainty,
which is essential for model development.
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