ӘОЖ 538.911 АЛМАЗДЫҢ ТЫЙЫМ САЛЫНҒАН АЙМАҒЫНЫҢ ЕНІН ЕСЕПТЕУ

Гаипназарова Гулбадан Касимбай кизи

gulbadan.gaipnazarova@mail.ru

Л.Н. Гумилев атындағы ЕҰУ магистранты, Нұр-Сұлтан, Қазақстан Ғылыми жетекшісі – Сүлеймен Р.Н.

Идеал алмаздың қасиеттері мен құрылысын зерттеу барысында соңғы жылдардағы алынған эксперименттік нәтижелер базасын қолдана отырып, замануи ақпараттық технологиялардың көмегімен оның моделін құрып, теориялық зерттеулер жүргізуге кең мүмкіндік бар.

Қазіргі таңда кристаллдардың электрондық таралу тығыздықтарын, тыйым салынған аймақ енін, әртүрлі электростатикалық потенциалдарын есептеуге арналған көптеген бағдарламалар жасалған, бірақ олардың көпшілігі жазық толқындар базисін қолдануға негізделген. Кристаллдардың физикалық қасиеттерін есептеу тұрғысынан бұл бағыт қолайлы болғанымен, қатты дене химиясының әртүрлі мәселелерін шешуде көпатомды жүйелердің (молекула немесе кристаллдық құрылым) қасиеттерін олардың атомдық өзара байланысу сипатымен байланыстыра отырып қарастыруға мүмкіндік беретін атомдық функциялар базисін пайдаланған дұрысырақ. Атомдық базис негізінде эмпирикалық емес есептеулер жүргізетін бірден-бір бағдарлама CRYSTAL болып табылады [1].

Берілген жұмыста өзімізге қол жетімді CRYSTAL-14 бағдарламалық ортасында алмаздың тыйым салынған аймақ енінің теориялық алынған нәтижесі ұсынылған. Сонымен қатар, әртүрлі кристалдық морфологияларды 3D визуализациялауға мүмкіндік беретін VESTA [2-4] бағдарламасында салынған алмаздың кристалдық құрылымы көрсетілген (1 сурет).

2 сурет - Алмаздың VESTA бағдарламасында алынған кристалдық құрылымы

Алмаздың кристаллдық торының ұяшығы текше төбелерінде, оның қырларының центрінде және текшенің іргелес емес октантанттарының центрінде орналасқан көміртегі атомдарынан тұрады. Алмаздың элементар ұяшығында сегіз көміртегі атомы бар. Әрбір атом төбелері бір-біріне жақын жатқан төрт атомдар болып табылатын тетраэдрдің центрінде орналасқан. sp^3 гибридтелген орбитальдардың қабаттасуы есебінен пайда болған байланыстар жоғарғы энергиямен ерекшеленеді. Нәтижесінде, алмаз диэлектриктерге тән көптеген қасиеттерге, сондай-ақ жоғарғы механикалық беріктікке және жылуөткізгіштікке ие. Тыйым салынған ені 5.47 эВ [5,6].

CRYSTAL-14 арқылы алмаздың тыйым салынған аймағының енін есептеу мақсатында төмендегі енгізу файлы жазылды (Кесте 1).

Diamond Fm-3m ICSD 240598	Атауы (бір жол)		
CRYSTAL	Жүйенің периодтылығы		
0 0 1	Кристаллографиялық ақапарат (стандарт жиынтық)		
227	Кеңістіктік топ номері		
3.5669	Ұяшық параметрі		
1	Электрондық ұяшықтың келтірілмейтін бөлігіндегі атом саны		
6 0.0 0.0 0.0	Элемент; атом координаталары.		
OPTGEOM	Оптимизациялауға арналған блоктың басы		
END	Блоктың аяқталуы		
BASISSET	Негізгі базисті шығару		
POB-TZVP	Базис атауы		
DFT	Функционалдық тығыздық әдісі		
EXCHANGE	Алмастырушы функционалды таңдау		
PWGGA	Пердью-Вэнг (PW91) [7, 8]		
CORRELAT	Коррелляциондық функционал түрі		
PWGGA	Пердью-Вэнг (GGA-PW91)		
HYBRID	Гибридті HF-DFT жалпы алмасу функционалдығы.		
20	Хартри-Фок бойынша айырбастау пайызы.		
CHUNKS	Бумадағы максимал нүктелер саны		
200			
END			
TOLINTEG	Интегралдарды есептеу дәлдігі		
777714			
SHRINK			
8 8			
END			
LEVSHIFT	Электрондық деңгейлер арасындағы ауытқу		
4 10			
END	Берілгендер блогының аяқталуы.		

Кесте	1 –	Kipic	файлының	құрылымы
		1		111

Кесте 2 – Шығыс файлынан алынған нәтиже

TOP OF VALENCE BANDS - BAND	-9.8024933E-02 AU
BOTTOM OF VIRTUAL BANDS - BAND	1.0579707E-01 AU

Хартри энергиясының мәні (AU) 21,27эВ екені ескеріле отырып, тыйым салынған аймақ енінің мәні есептелінді: 5,684169эВ (Кесте 2). Алынған нәтиже әдеби дереккөздердегі E_g мәнімен сәйкес келеді.

Қолданылған әдебиеттер тізімі

1. Акылбеков А.Т. и др. Монография: Квантово-химические методы расчета кристаллов. Астана, 2015. С.161.

2. Momma K., Izumi F. Commission on Crystallographic Computing, IUCr Newsletter, 2006. P.106 3. Izumi F., Momma K. Three-Dimensional Visualization in Powder Diffraction // Solid State Phenom., 2007. V.130. P. 15-20

4. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data // J. Appl. Crystallogr. 2011. V. 44. P. 1272-1276.

5. The Properties of Diamond. Ed. By Field J.E., London, Academic Press, 1990, P. 675.

6. Iijima S. Helical Microtubules of Craphitic Carbon // Nature, 1991. V. 354. P. 56-58.

7. Perdew J. P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy // Phys. Rev. B. 1992. Vol. 45. P. 13244.

8. Perdew J. P. Density functional approximation for the correlation energy of the inhomogeneous electron gas // Phys. Rev. B. 1986. Vol. 33. P 8822.