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a b s t r a c t

We consider an extension of standard General Relativity in which the Hilbert–Einstein action is
replaced by an arbitrary function of the Ricci scalar, nonmetricity, torsion, and the trace of the
matter energy–momentum tensor. By construction, the action involves a non-minimal coupling
between matter and geometry. The field equations of the model are obtained, and they lead to
the nonconservation of the matter energy–momentum tensor. A thermodynamic interpretation of
the nonconservation of the energy–momentum tensor is also developed in the framework of the
thermodynamics of the irreversible processes in open systems. The Newtonian limit of the theory
is considered, and the generalized Poisson equation is obtained in the low velocity and weak fields
limits. The nonmetricity, the Weyl vector, and the matter couplings generate an effective gravitational
coupling in the Poisson equation. We investigate the cosmological implications of the theory for two
different choices of the gravitational action, corresponding to an additive and a multiplicative algebraic
structure of the function f , respectively. We obtain the generalized Friedmann equations, and we
compare the theoretical predictions with the observational data. We find that the cosmological models
can give a good descriptions of the observations up to a redshift of z = 2, and, for some cases, up to
a redshift of z = 3.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Since its proposal by Einstein [1] and Hilbert [2] in 1915, the
evelopment of general relativity, a geometric theory of gravi-
ation, and, more generally, of theoretical physics, was closely
ntertwined with the advances in the fields of the mathematical
ciences. General relativity itself is essentially based on Rieman-
ian geometry, first presented in a consistent and systematic way
n 1854 [3]. The theory of tensors, initiated by Ricci and Levi-
ivita [4] proved to be an essential tool in the mathematical
ormulation of general relativity. The geometric as well as phys-
cal properties of the gravitational field are described in general
elativity by the Riemann tensor Rσµνλ, and by its contractions (the
Ricci tensor and scalar, respectively), with the help of which the
Einstein gravitational field equations are constructed.
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After its remarkable success in the field of physics, general
relativity had a deep influence on mathematics, leading to several
important developments. In general relativity the properties of
the space–time are described by the metric tensor gµν , satisfying
the fundamental mathematical property ∇λgµν = 0, where ∇λ

is the covariant derivative constructed with the use of the Levi-
Civita connection Γ̆ λ

µν . in 1918Weyl, inspired by Einstein’s theory,
ntroduced the first generalization of Riemannian geometry [5], in
hich the covariant derivative of the metric tensor is assumed
o be nonzero, ∇λgµν = Qλµν , which allowed to introduce a
new geometric quantity, the nonmetricity Qλµν . Based on this
eometry, Weyl was able to construct the first unified geometric
heory of gravity and electromagnetism. A new geometric con-
ept, the torsion tensor T λµν = Γ λ

µν − Γ λ
νµ, where Γ λ

µν are the
onnection coefficients defining the connection, was introduced
y Cartan [6–9]. Finally, in this brief review of the development of
he physically related mathematical ideas one must also mention
he Weitzenböck spaces [10]. A Weitzenböck space is described
y the geometric properties ∇λgµν = 0, T λµν ̸= 0, and Rσµνλ = 0,
espectively.
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Despite its outstanding accomplishment at the level of So-
ar System, general relativity was extended mathematically in
everal directions. Theories based on torsion were developed in
he form of the Einstein–Cartan theory [11], with the hope that
he inclusion of torsion may solve the singularity problem that
lagues standard general relativity. Einstein was the first to use
eitzenböck type geometries for the unification of electromag-
etism and gravitation within a teleparallel theory [12]. In the
eleparallel formulation of gravity the basic geometric quantity
s considered the torsion tensor, generated by the tetrad fields,
nd with the curvature replaced by the torsion. This theoreti-
al approach to gravity is called the teleparallel equivalent of
eneral Relativity (TEGR), and it was introduced initially in [13–
5]. Presently, this formulation is also known as the f (T ) gravity
heory, with T denoting the torsion scalar. The most important
eature of the f (T ) type theories is that torsion exactly cancels
urvature, and thus the curved space–time of general relativity
ecomes a flat manifold. In f (T ) theory instead of the metric
he tetrad fields are used as the dynamical variable, and the
agrangian is constructed from T only. In f (T ) theory the cor-
ections corresponding to higher energy scales correspond to
igher order terms in torsion. f (T ) theory has many important
pplications in cosmology, in the explanation of inflation [16],
nd of the late-time cosmic acceleration [17]. From the point of
iew of the astrophysical applications, in the f (T ) theory a new
xact charged black hole solution does exist, which contains, in
ddition to the monopole term, a quadrupole term, originating
rom the quadratic form of f (T ), with f (T ) ∝ T 2 [18]. Another
ajor advantage of f (T ) gravity theory is that the gravitational
roperties of the space–time are described by second order differ-
ntial equations. For a detailed description of teleparallel theories
ee [19].
Mainly due to the criticisms by Einstein and Pauli, the Weyl

eometry was mostly ignored by physicists in its first 50 years
f existence. Einstein argued that Weyl’s unified theory implies
he existence of the second clock effect [20], which implies that
n Weyl geometry and in the presence of electromagnetic fields
harp spectral lines cannot exist, due to the dependence of the
tomic clocks on their past history [20]. According to Einstein,
his predicted effect is an immediate consequence of Weyl’s the-
ry, since the length of a vector is not constant during parallel
ransport. Hence, in Weyl geometry, the periods of the atomic
locks, determined by periodical physical process, must be path
ependent [20]. However, the position of Weyl geometry changed
rastically after around 1970, with more and more investiga-
ions of its stimulating physical and mathematical applications
erformed in both elementary particle physics and gravitational
heories. Since all the equations of motion of the fields of the
tandard Model of elementary particle physics (with the excep-
ion of the Higgs fields), can be derived from conformally invari-
nt Lagrangians, the applications of Weyl geometry to quantum
henomena looks promising. Weyl geometry offers the possibility
f including conformal, or scale covariant classical relativity into
he standard model of elementary particles, and to explore the
elation between classical relativity and quantized theories of
ravity (for a review of the applications of Weyl geometry in
hysics see [21].
An important generalization of Weyl gravity was introduced

y Dirac [22,23]. By introducing a real scalar field β of weight
(β) = −1, Dirac proposed for the gravitational Lagrangian the
xpression

= −β2R + kDµβDµβ + cβ4
+

1
4
WµνWµν, (1)

where the electromagnetic type field tensor Wµν is constructed
from the Weyl length curvature and the Weyl connection vector
2

wµ according to the definition Wµν = ∇νwµ−∇µwν , and k = 6 is
constant. The Lagrangian given by Eq. (1) is conformally invari-
nt. The cosmological applications of a modified Dirac Lagrangian
ere considered in [24]. Another Weyl–Dirac type Lagrangian
as proposed in [25], and it is given by

= W λρWλρ − β2R + σβ2wλwλ + 2σβwλβ,λ +

(σ + 6)β,ρβ,λgρλ + 2Λβ4
+ Lm, (2)

where β denotes again the Dirac scalar field, while σ and Λ are
constants. The cosmological evolution of a Universe described by
the above Lagrangian was also considered. In this model ordinary
matter is generated at the beginning of the Universe due to
the presence of Dirac’s gauge function. Interestingly enough, in
the late Universe, filled with pressureless matter, Dirac’s gauge
function generates the dark energy that causes the de Sitter type
cosmic acceleration.

Conformal Weyl gravity, quadratic in the scalar curvature,
and in the Weyl tensor, was investigated, in both metric and
Palatini formulations, in [26–32]. The elementary particle physics
as well as its implications for the very early Universe evolution
were investigated. The quadratic Weyl action has spontaneous
symmetry breaking in a Stueckelberg mechanism, with the result
that the Weyl gauge field becomes massive. Hence, one recovers
the Einstein–Hilbert action of standard general relativity in the
presence of a positive cosmological constant, together with the
Proca action for the massive Weyl gauge field. The action is [32]

L0 =
√

−g
[ 1
4!

1
ξ 2

R̃2
−

1
4
F 2
µν −

1
η2

C̃ 2
µνρσ

]
, (3)

where ξ, η ≤ 1 are coupling constants, Fµν is the field strength of
the Weyl vector wµ, R̃ is the scalar curvature in Weyl geometry,
while C̃µνρσ is the Weyl tensor. By replacing R̃2 with −2φ2

0 R̃ −

φ4
0 [32], where φ0 a scalar field, and after a rescaling of the

variables one obtains the action

L0 =
√

−g
[
−

M2
p

2
R̂ +

3
4
M2

pα
2 γ 2ω̂µω̂

µ
−

3
2
ξ 2M4

p

−
1
4
F̂ 2
µν −

1
η2

C2
µνρσ

]
, (4)

where M2
p = ⟨φ2

0⟩/6 ξ
2, is the Planck mass, and with the Weyl

vector field ω̂µ satisfying the constraint ∇µω̂
µ

= 0. Hence by
the Stueckelberg mechanism ωµ generates a massive Proca field.
Moreover, in this model the number of degrees of freedom is
conserved, and the massless scalar field φ0 becomes massive, and
the massless field ωµ is substituted by a massive field ωµ with a
mass m2

ω = (3/2)α2γ 2M2
p [32].

An interesting application of Weyl geometry is the so-called
f (Q ) gravity theory, also known as symmetric teleparallel gravity.
This theory was proposed in [33], and it represents a geometric
approach to gravitation in which the nonmetricity Q of a Weyl
geometry becomes the basic variable describing all the physical
properties of the gravitational interaction. This pathway to gravity
was later developed into the f (Q ) gravity theory, also known
as nonmetric gravity [34]. Different geometrical, physical and
cosmological aspects of the f (Q ) theory have been investigated
in [35–51].

Weyl’s geometry can be extended naturally to include torsion.
The corresponding geometry is called the Weyl-Cartan geometry,
and it was extensively studied from both physical and mathemat-
ical points of view [52–60]. For a review of the geometric proper-
ties and of the physical applications and of the Riemann–Cartan
and Weyl–Cartan space–times see [61].

The surprising discovery of the late acceleration of the Uni-
verse [62–66], implying a transition from deceleration to ac-

celeration at small redshifts z of the order of z ≈ 0.6 raised
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erious questions about the theoretical foundations of the most
uccessful gravitational theory presently known, Einstein’s gen-
ral relativity. The simplest possibility of giving a reason to the
ate de Sitter type phase is to reintroduce again in the field
quations the cosmological constant Λ, postulated by Einstein
n 1917 in order to build the first, static general relativistic
osmological model [67]. The Λ extension of the field equations
s the theoretical basis of the standard cosmological paradigm,
he ΛCDM model. The ΛCDM model also requires the presence
of another mysterious (and still undetected) component of the
Universe, the dark matter [68]. The ΛCDM model fits very well
he cosmological observations [69–72]. However, it faces a major
heoretical problem: no basic physical theory can explain it. The
ain complication originates from the troubles met when trying

o explain the origin and nature ofΛ [73–75]. A possible interpre-
tation of Λ as the Planck-scale vacuum energy density ρvac leads
to the ‘‘worst prediction in physics" [76], since

ρvac ≈
h̄
c

∫ kPl

kdS

√
k2 +

(
mc
h̄

)2

d3k

≈ ρPl =
c5

h̄G2 = 1093 g
cm3 , (5)

a result that disagree by a factor of around 10−120 from the
observed value of the energy density associated to Λ, ρΛ =

Λc2/8πG ≈ 10−30 g/cm3 [71].
The ΛCDM model faces, even at the observational level, some

(yet unsolved) problems. The most important is the ‘‘Hubble
tension", which originates from the serious differences between
the values of the Hubble constant, H0, as obtained from the CMB
measurement [72], and the values obtained directly from obser-
vations in the local Universe [77–79]. The SH0ES determination of
H0 gives the value H0 = 74.03±1.42 km/s/Mpc [77]. On the other
hand, from the early Universe surveys performed by the Planck
satellite one obtains H0 = 67.4± 0.5 km/s/Mpc [71], a value that
differs by ∼ 5σ from the SH0ES result.

Moreover, many essential theoretical questions cannot be ex-
plained within the ΛCDM paradigm, like, for example, the small-
ness of Λ, its fine tuning, and why the transition from deceler-
ation to acceleration took place only recently. And, the funda-
mental question is if a cosmological constant is really necessary
for both observational and theoretical cosmology? Hence, the
investigation of alternative avenues for the description of the
gravitational interaction may give us the possibility of solving the
cosmological problems without resorting to a cosmological con-
stant. Actually, there are (at least) three theoretical possibilities
that could replace the ΛCDM paradigm.

The first possibility is called the dark components model, and it
generalizes the Einstein field equations by adding two new terms
in the total energy momentum tensor of the Universe. These two
new ‘‘matter’’ terms correspond to dark energy and dark matter,
respectively. Hence, the gravitational phenomena are described
in this approach by the field equation [80]

Gµν = κ2T bar
µν + κ2TDM

µν (φ,ψµ, . . .) + κ2TDE
µν (φ,ψµ, . . .), (6)

where Gµν is the Einstein tensor, while T bar
µν , TDM

µν (φ,ψµ, . . .),
and TDE

µν (φ,ψµ, . . .) represent the energy–momentum tensors of
the baryonic matter, dark matter and dark energy, respectively.
The energy–momentum tensors of dark matter and dark energy
are constructed from some scalar φ or vector fields ψµ. The
simplest dark components model assumes that dark energy can
be described by a scalar field φ, having a self-interaction potential
V (φ). Thus, the gravitational action takes the form

S =

∫ [
M2

p

2
R − (∂φ)2 − V (φ)

]
√

−gd4x. (7)
3

The corresponding dark energy models are called quintessence
models [81–86]. Many other dark component models have been
proposed, like, for example, k-essence models [87–89], tachyon
[90,91], phantom [92–94], quintom [95–97] and chameleon [98–
102] field models, as well as Chaplygin gas [103,104], and vector
field [105–107] dark energy models, respectively. For reviews of
the dark energy models see [108–111]. Despite their remarkable
success, the dark component models still face their own intrinsic
problems. For example, in [86] it was found that quintessence
always lowers H0 with respect to the ΛCDM model, with the
ubble tension becoming worse.
The second possible generalized approach to the gravitational

nteraction is the dark gravity formalism, which, similarly to Ein-
steinian relativity, is based on an entirely geometrical description
of gravity. In this approach the dynamics and evolution of the
Universe is explained by the modification of geometry of the
space–time. In the dark gravity model, the Einstein equations are
written down as

Gµν = κ2T (mat)
µν + κ2T (geom)

µν

(
gµν, R,Q , T ,□R, . . .

)
, (8)

where T (mat)
µν is the matter energy–momentum tensor, defined

in the usual way, while T (geom)
µν

(
gµν, R,Q , T ,□R, . . .

)
, which in-

duces an effective energy–momentum tensor, which can mimic
dark energy and dark matter, respectively, is a purely geometric
quantity, built up from the metric, Ricci scalar, nonmetricity and
torsion, respectively. T (geom)

µν

(
gµν, R,Q , T ,□R, . . .

)
can describe

the gravitational dynamics. Dark gravity approaches were first
introduced via the f (R) theory, proposed initially in [112], and
later studied in [113–116]. In f (R) theory the Hilbert–Einstein
action S =

∫ (
R/κ2

+ Lm
)√

−gd4x of general relativity is changed
by the action S =

∫ [
f (R)/κ2

+ Lm
]√

−gd4x, where f (R) is an
nalytical function of the Ricci scalar R. The cosmological and
strophysical implications of the f (R) model have been studied
ntensively [117–131]. In [126] the first internally consistent f (R)
odel was developed, with the model describing both early in-

lation, as well as late dark energy. The Hybrid Metric-Palatini
ravity theory [132–135] represents another purely geometric
heory that generalizes and unifies two different geometric ap-
roaches, the metric and the Palatini ones, respectively. Geomet-
ic structures extend the Riemannian one, like, for example, Weyl
eometry, have also been studied [136–146]. For recent reviews
f dark gravity theories, and their applications, see [147–151].
Another avenue for understanding gravitational phenomena is

epresented by the dark coupling approach. Here the basic idea is
he replacement of the Hilbert–Einstein gravitational Lagrangian,
hich has a simple additive structure in the curvature and matter
erms, with a more general function. Hence, one can consider a
aximal extension of the Hilbert–Einstein Lagrangian by assuming
hat the gravitational action can be represented by an arbitrary
nalytical function of the curvature scalar R, of the nonmetricity
, torsion T , of the matter Lagrangian Lm, of the trace Tm of the
nergy–momentum tensor, and, perhaps of other thermodynamic
uantities. The dark coupling approach naturally determines the
resence of a nonminimal coupling between geometry and matter.
In the dark coupling approach, the Einstein gravitational field

quations are given by

µν = κ2T (mat)
µν

+ κ2T (geom)
µν

(
gµν, R,Q , T , Lm, Tm,□R,□T , . . .

)
. (9)

The effective energy–momentum tensor of the dark coupling
heories T (geom)

µν

(
gµν, R,Q , T , Lm, Tm,□R,□T , . . .

)
is obtained from

non-additive geometry–matter algebraic structure, which involves
he couplings between all forms of matter, and all forms of scalar
eometric quantities.



T. Harko, N. Myrzakulov, R. Myrzakulov et al. Physics of the Dark Universe 34 (2021) 100886

i

S

w
t
b

T
T
w
f
h

S

w
n
U
c
w
o

T
m
o
f
c
e
i

i
m
L
m
c
(
m
v
f
t
v
x
n

L
m
f
g
t
v
t
i
t
d
c
a
e
c
c

t
a
r
a
t
a
o
p
c
s
e
o
o
i

2

C
1

S

w
t

K

m

T

The simplest form of dark coupling type theories was proposed
nitially in [152], where the gravitational action

=

∫
[f1(R) + (1 + λf2(R)) Lm]

√
−gd4x, (10)

as studied. This action was generalized in [153], and in [154],
hus leading to the f (R, Lm) gravity theory, with the action given
y S =

∫
f (R, Lm)

√
−gd4x. Various astrophysical and cosmologi-

cal applications of the f (R, Lm) theory, as well as its fundamental
aspects were investigated in [155–165].

A different possibility of coupling between geometry and mat-
ter is considered in the f (R, Tm) gravity theory [166], in which
geometry, represented by the Ricci scalar R, is nonminimally
coupled to the trace of the matter energy–momentum tensor Tm.
he action of the theory is given by S =

∫
[f (R, T )+ Lm]

√
−gd4x.

he astrophysical and cosmological applications of f (R, T ) theory
ere studied extensively in [167–192]. A generalization of the
(R, T ) gravity theory was proposed in [193], by introducing
igher derivatives matter fields, with the action given by

=
1

16π

∫
f (R, Tm,□Tm)

√
−gd4x + ϵ

∫
Lm

√
−gd4x, (11)

here ϵ = ±1. Accelerated expansion of the de Sitter type
aturally emerges in this scenario in the pressureless matter filled
niverse, without the need of any additional matter or geometric
omponents. The model can also describe inflationary evolution,
ith results in good agreement with observations. An extension
f f (T ) gravity, allowing for a general coupling of the torsion

scalar T with the trace of the matter energy–momentum tensor
m was introduced in [194]. The resulting f (T , Tm) theory is a new
odified gravity, since it is different from all the existing torsion
r curvature based constructions. As applied to a cosmological
ramework, it leads to interesting phenomenology, and can be
onsidered as a promising candidate to explain the accelerated
xpansion of the Universe. The coupling of geometry and matter
n f (Q ) gravity was considered in [195–197].

It is the main goal of the present paper to consider the max-
mal extension of the Hilbert–Einstein variational principle on a
etric-affine manifold, endowed with a connection containing the
evi-Civita connection, as well as the contorsion and the disfor-
ation tensors. In the presence of matter on this manifold we
onsider four scalar quantities (R,Q , T , Tm), from which three
R,Q , T ) have a purely geometric origin, while Tm describes the
atter properties. The maximal extension of the Hilbert–Einstein
ariational principle is then represented by an arbitrary analytical
unction of the four scalars, Lg = f (R,Q , T , Tm). We assume
hat f , as an analytic function can be locally given by a con-
ergent power series. Moreover, the Taylor series of f about
0 =

(
R0,Q0, T0, T

(0)
m

)
converges to the function f in some

eighborhood for every x0 in its domain.
By definition, the action constructed from the gravitational

agrangian density f involves a non-minimal coupling between
atter and geometry. As a first step in our study we derive the

ield equations of the model. By considering the covariant diver-
ence of the field equations we obtain the covariant divergence of
he matter energy–momentum tensor, which generally does not
anish. Hence the present theory leads to the nonconservation of
he matter energy–momentum tensor. A possible thermodynamic
nterpretation of the nonconservation of the energy–momentum
ensor is also briefly discussed in the framework of the thermo-
ynamics of the irreversible processes in open systems. We also
onsider the Newtonian limit of the theory in the low velocity
nd weak gravitational field limits, and the generalized Poisson
quation is obtained, involving a varying effective gravitational
onstant. The cosmological implications of the theory for different
hoices of the gravitational action are also investigated in detail.
4

More exactly, we consider additive and multiplicative algebraic
structures for the gravitational Lagrangian. For each case we
obtain the generalized Friedmann equations, and we compare the
theoretical predictions with the observational data. We find that
the models can give a good descriptions of the observations at
least up to a redshift of z = 2, for some models, even up to a
redshift of z ≈ 3.

The present paper is organized as follows. The action S of
he theory is written down in Section 2, and the field equations
re derived by varying S with respect to the metric tensor. The
epresentations of the nonmetricity and of the torsion tensor are
lso introduced. The divergence of the matter energy–momentum
ensor, the Newtonian limit of the theory, leading to the gener-
lized Poisson equation, and the thermodynamic interpretation
f the model are considered in Section 3. The cosmological im-
lications of the theory are considered in Section 4, where two
lasses of models, corresponding to an additive and multiplicative
tructure of the gravitational Lagrangian are considered. The gen-
ralized Friedmann equations are obtained, and the predictions
f the theory are compared with the ΛCDM model, and with the
bservational data. Finally, we discuss and conclude our results
n Section 5.

. Action and gravitational field equations

We consider that the gravitational action, defined in a Weyl–
artan geometry, can be constructed in the following way [77,
98–200],

(g,Γ , φ) = Sg + Sm =

∫
√

−gd4x [f (R, T ,Q , Tm)+ Lm] , (12)

where f is an arbitrary analytical function (it can be repre-
sented locally by convergent power series expansion), R stands
for the Ricci scalar (curvature scalar), T is the torsion scalar, Q
is the nonmetricity scalar and, Tm is the trace of the energy–
momentum tensor of the matter Tµν , obtained from the La-
grangian Lm. The theory derived from the above Lagrangian can
be considered as the unification of the f (R) [112], f (T ) [19],
f (Q ) [34], f (R, Tm) [166], f (T , Tm) [194], and f (Q , Tm) [195,196]
type theories, respectively. Theoretical gravitational models with
action of the form by f (R, T ,Q , Tm,D) where D is the divergence
of the dilation current have also been investigated [198].

Since our model, given by the action Eq. (12), lives in a metric-
affine manifold

(
M, gµν,Γ ρ

µν

)
, let us briefly present some ba-

sic differential geometric properties of this manifold. The corre-
sponding connection Γ ρ

µν decomposes as

Γ ρ
µν = Γ̆ ρ

µν + Kρµν + Lρµν , (13)

here Γ̆ ρ
µν is the Levi-Civita connection, Kρµν is the contorsion

ensor and Lρµν is the disformation tensor.
These tensors have the following forms

Γ̆ α
βγ =

1
2
gαρ

(
∂γ gβρ + ∂βgγ ρ − ∂ρgβγ

)
, (14)

µνα =
1
2

(
Tµνα + Tναµ − Tαµν

)
, (15)

S µν
α =

1
2

(
Kµνα + δµαTβνβ − δναT

βµ

β

)
, (16)

Lαµν =
1
2

(
Qαµν − Qµνα − Qνµα

)
. (17)

Here we have also introduced the torsion and the non-
etricity tensors, defined according to
α

= 2Γ α , Q = ∇ g . (18)
µν [µν] ρµν ρ µν
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In this metric-affine spacetime, let us introduce three scalars
s

R =gµνRµν, (19)

T =Sρµν T ρµν, (20)

=LαβαL
βµ
µ − LαβµL

βµ
α, (21)

here R is the curvature scalar of the Weyl–Cartan geometry, T
is the torsion scalar, and Q is the nonmetricity scalar, respec-
tively. The Ricci tensor is constructed from the affine connection
according to its standard definition

Rνβ = ∂µΓ
µ

νβ − ∂νΓ
µ

µβ + Γ µ
µαΓ

α
νβ − Γ µ

ναΓ
α
µβ . (22)

Varying the action Eq. (12) with respect to the metric and the
connection, we obtain the following two field equations [198]

fR
[
g β

µ[νQα ]β + Tµαν + Qαµν − gαµQ
β

βν

]
+ fQ

[
2g
µ(νLβα )β

+ gαν(L
β

µβ − Lβµβ ) − 2Lµαν
]

+ fT
[
Tαµν + Tµαν − Tναµ + g

α[νTβ µ]β

]
+ 2gµ[α∇ν ]fR −

1
2
Hαµν = 0, (23)

and

fRRµν −
1
2
f gµν + fTm (gµνLm − Tµν) −

1
2
Tµν

−
1
2
∇α

(
Aα(µν) − A α

(µ ν) + A α
(µν)

)
+

1
4
fT
[
2TανβTα β

µ + 2Tα β
µ T α

βν − 4TαµαT
β

νβ − T αβ
µ Tναβ

]
+

1
4
fQ
[
3Q β

α βQ
α
µν − gµνQ

β

αβ Q αγ
γ − 2QανβQ α β

µ

+ 2Q α β
µ Qβνα − 2Q α

µαQ
β

νβ

+ Q α

β(µ βQν )α
− 2Q β

α βQ
α

(µν) + Q αβ
µ Qναβ

]
= 0, (24)

respectively, where the energy–momentum tensor and the hyper-
momentum tensor are given by

Tµν = −
2

√
−g

δSm
δgµν

, H µν

λ = −
2

√
−g

δSm
δΓ λ

µν

. (25)

lso, we have defined

µαν = fQ
(
gµνL

β

αβ + gανL
β

µβ − Lµαν − Lναµ
)
. (26)

t should be noted that all the curvature terms and derivatives are
onstructed from the affine connection Γ α

µν .

.1. Introducing the Weyl vector

In this Subsection, we will assume a simple form for the
on-metricity tensor, and define it according to

µνα = wµgνα, (27)

here wµ is the Weyl vector. In this case the gravitational field
quations of the f (R, T ,Q , Tm) theory simplify to

T

[
Tαµν − g

α[µTβ ν ]β
+ Tµαν − Tναµ

]
+ fQ

[
2gανwµ − 2gµ(αwν )

]
+ fR

[
Tµαν − 2gµ[αwν ]

]
+ 2gµ[ν∇α ]fR −

1
2
Hαµν = 0, (28)

and

f R −
1
f g + f (g L − T ) −

1
T − g wα∇ f + w f
R µν 2 µν Tm µν m µν 2 µν µν α Q (ν∇µ) Q

5

+
1
2
fQ
[
∇(µwν ) − 5gµνwαwα − wµwν − gµν∇αwα − gα(µ∇ν )w

α
]

+
1
4
fT
[
2 TανβTα β

µ + 2 Tα β
µ T α

βν − 4Tα µαT
β

νβ − T αβ
µ Tναβ

]
= 0,

(29)

espectively. We note at this moment that in the above equations,
ll the curvature terms and their derivatives are constructed from the
ffine connection Γ α

µν .

.2. Decomposition of the torsion tensor

The torsion tensor Tµνα can be irreducibly decomposed as

µνρ =
2
3
(tµνρ − tµρν) + (Aνgµρ − Aρgµν) + ϵµνρσBσ , (30)

here tµνα is a tensor, with the following properties,

µνρ + tνρµ + tρµν = 0, tµµν = 0 = tµνµ, (31)

nd 3Aµ = Tαµα and Bµ are two arbitrary vectors. In the present
ork, we will assume that only the Aµ vector is non-zero. As a
esult, the torsion tensor can be written as

µνα = Aνgµα − Aαgµν . (32)

The field equations simplify in this case as

fTgα[µAν ] + 2fQ
[
gανwµ − gµ(νwα )

]
+ 2fR

[
gµ[νAα ] − gµ[αwν ]

]
+ 2gµ[α∇ν ]fR = 0, (33)

nd

RR̆µν −
1
2
f gµν + fTm (gµνLm − Tµν) −

1
2
Tµν

− gµνwα∇̆α fQ + w(ν∇̆µ)fQ − fT AµAν

+
1
2
fQ
[
3Aαwαgµν − 2gµνwαwα − 3A(µwν )

+ 2wµwν − 2gµν∇̆αw
α

+ 2∇̆(µwν )

]
+

1
2
fR
[
2(AαAαgµν − AµAν) + Aαwαgµν + 2

+ A(µwν ) + wµwν − wαwαgµν

− gµν∇̆α(2Aα − wα) + ∇̆(µAν ) + ∇̆(µwν )

]
= 0, (34)

respectively. In the above equations, all the curvature terms and
the derivatives are constructed from the Levi-Civita connection Γ̆ α

µν .
n the other hand we have assumed that the energy–momentum
ensor of the matter field is constructed only from the metric tensor,
nd it is independent from the affine connection.
For later convenience, let us recall that the torsion, non-

etricity and curvature scalars can be written as

= −6A2, Q = −
3
2
w2,

R = R̆ + 3A2
+ 3Aαwα −

3
2
w2

− 3∇̆µAµ + 3∇̆µw
µ, (35)

ith A2
≡ AαAα and w2

≡ wαw
α .

Let us note about a special case where the torsion vector can
be obtained from the Weyl vector as

Aµ = αwµ. (36)

In this case, from the connection equation (33), one obtains
fT = 1/2αfQ , which implies that the torsion tensor is not inde-
pendent. Also, we obtain,[
f + (1 − α)f

]
w + ∇ f = 0. (37)
Q R α α R
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sing the above relations, one can find the metric field equation
s

RR̆µν −
1
2
f gµν + fTm (gµνLm − Tµν)

+ gµν□fR − ∇µ∇ν fR +

(
α −

1
2

+
3
α

)
∇(

µ

(
wν

)
fR
)

+ fR

[
1
2
(1 + α)w2gµν −

(
2 +

α

2
−

3
α

)
wµwν

+ 3
(
1
2

−
1
α

)
∇(µwν )

]
= −

1
2
Tµν . (38)

et us talk about the dynamical degrees of freedom of the theory.
he original theory has two independent fields, i.e. the metric ten-
or which is symmetric and the non-symmetric affine connection,
hich has 74 independent components. In field Eqs. (33) and (34),
e have defined the Weyl vector and the torsion vector which
educes the dof of the theory to 18. However, Eq. (33) gives an
lgebraic equation determining the Weyl and torsion tensors in
erms of the metric. At last, the theory is left with the usual metric
of as in f(R) gravity.

. Divergence of the matter energy–momentum tensor, the
ewtonian limit, and thermodynamic interpretation

Taking the covariant derivative of the metric field equation
nd using the connection equation (33), one obtains the conser-
ation equation of the energy–momentum tensor as

αTαν =
1

2(1 + 2fTm )

[
∇α

(
(6wαwν − 3Aαwν − 17Aνwα)fQ

)
+ 2∇ν

(
(4Aαwα − 3w2)fQ

)
+ 2fQ

(
3wν∇αAα − 4wν∇αw

α
− 2wα∇αAν

+ 5wα∇νAα + ∇νw
2
)

+2∇α

(
(3Aαwν − AαAν)fR

)
+ 2∇ν(A2fR) + fR

(
4AαRνα − 4w2Aν − 6A2wν

+ 2Aαwα(3Aν + 2wν) − 6Aν∇αAα + 4(Aα − wα)∇αAν
− 2(wα + 5Aα)∇νAα + 2(Aα − 2wα)∇νwα

+ 4□Aν + 2∇ν∇αAα + 2Aν∇αw
α

+ 2(2wα − 3Aα)∇αwν

)
− 4Tνα∇α fTm + 4Lm∇ν(LmfTm ) − 2fTm∇νTm

]
:= fν . (39)

.1. The Newtonian limit

In this subsection, we will consider the Newtonian limit of the
heory. Assume that the metric can be expanded over the flat
inkowski space as

s2 = −(1 + 2φ)dt2 + (1 − 2ψ)(dx2 + dy2 + dz2), (40)

here φ and ψ are the Newtonian potentials. In the weak field
imit, the only non-vanishing component of the energy–
omentum tensor is T00 = ρ. For simplicity, in this Section we
ill assume that the Weyl and torsion vectors can be expressed
s derivatives of scalar fields as

µ = ∇µw, Aµ = ∇µA. (41)

he above assumption does not restrict the theory in its Newto-
ian limit, since the Weyl and torsion vectors in this limit have
 w

6

only one dominant component, which could be rewritten as (41)
by suitable coordinate transformation.

In the weak field limit, the connection equation (33) is simpli-
fied to

f 0R A − (f 0Q + f 0R )w + f 0RTmρ + 2f 0RR(□φ − 2□ψ) = 0, (42)

and

f 0Qw − 2f 0T A = 0, (43)

respectively. The (00), (ii) and (0i) components of the metric
equation can be written as

(f 0R − 2f 0Q )□w − 2f 0R∆A − 4f 0R∆ψ + (1 + f 0RTm )ρ = 0, (44)

4f 0Q∆w + f 0R (4□A − 5□w − 4∆ψ + 4∆ψ) + 3f 0Tmρ = 0, (45)

and

f 0R A + (f 0Q + f 0R )w + f 0R (ψ − φ) = 0. (46)

Now, from (43) one obtains

A =
f 0Q
2f 0T

w, (47)

which, with the help of Eq. (46), gives

ψ = φ −

(
1 +

f 0Q
f 0R

+
f 0Q
2f 0T

)
w. (48)

sing Eqs. (44) and (45) one obtains the generalized Poisson
quation in this model as

φ = Geff ρ, (49)

here we have defined the generalized Newton constant (gravi-
ational coupling) as

eff =
1

16π f 0R

[
1 +

1
3
f 0Tm

(
8 +

(
2
f 0R

+
1
f 0T

)
f 0Q

)]
. (50)

It is interesting to note that in a special case where we have
no non-minimal matter couplings, i.e. f 0Tm = 0, one obtains the
usual Newton constant as in GR, and we also recover the standard
Poisson equation of classical gravitation.

3.2. Thermodynamic interpretation

An important and interesting consequence of the f (R, T ,Q , Tm)
theory, involving geometry–matter coupling, is the non-
conservation of the matter energy–momentum tensor, which is
a specific property of this class of models. This property has
fundamental physical implications, and may represent the bridge
between the interpretation of the f (R, T ,Q , Tm) theory as an
effective classical description of the quantum theory of gravity.

In f (R, T ,Q , Tm) gravity, the divergence of the matter energy–
momentum tensor is given by Eq. (39) in the general form
∇αTαν = fν , where fν is the nonconservation vector of the theory. In
he following for the matter energy–momentum tensor we adopt
he perfect fluid form,

µν = (ρ + p)uµuν + pgµν, (51)

here ρ and p are the energy density and pressure of the fluid,
hile the four-velocity uµ satisfies the normalization condition
µuµ = −1. By multiplying Eq. (39) by uν , we obtain the energy
alance equation of the f (R, T ,Q , Tm) theory as

˙ + 3(ρ + p)H = uν fν, (52)(
µ
)

µ
here we have denoted H = ∇µu /3, and ˙= d/ds = u ∇µ.



T. Harko, N. Myrzakulov, R. Myrzakulov et al. Physics of the Dark Universe 34 (2021) 100886

f

h

w

u

a

h

r

u

s
Q
e
c
e
t
c
t
g
c
q

3

t
t
p
p
c
N
m

∇

w
e
S
w
t

∇

F

∇

p
t
s
c
t
m
b
e

T

w
t

∆

w
e
m

∆

s
t
l

ρ

g

n

m
b
s

3

f
t

T

a

ρ

∇

We multiply now Eq. (39) by the projection operator hνλ, de-
ined as
ν
λ ≡ δνλ + uνuλ, (53)

ith the properties

νhνλ = 0, hνλ∇µuν = ∇µuλ, (54)

nd
νλ

∇ν =
(
gνλ + uνuλ

)
∇ν = ∇

λ
+ uλuν∇ν, (55)

espectively, we obtain the non-geodesic equation of motion of
massive test particles in f (R, T ,Q , Tm) theory as

ν
∇νuλ =

d2xλ

ds2
+ Γ λ

µνu
µuν =

−hνλ∇νp + hνλfν
ρ + p

. (56)

The non-conservation of the matter energy–momentum ten-
or, as well as the energy balance equation Eq. (52) in f (R, T ,
, Tm) leads to the inescapable conclusion that, due to the pres-
nce of matter–geometry coupling, matter generation processes
ould take place during the cosmological evolution. These kind of
ffects also do appear in quantum field theories in curved space–
imes (for a detailed discussion of matter creation processes in
osmology see [201], and references therein). In quantum field
heory particle creation is a direct consequence of time varying
ravitational field. Hence, f (R, T ,Q , Tm) theory, involving parti-
le production, could also lead to a semiclassical description of
uantum processes taking place in gravitational fields.

.2.1. Thermodynamic quantities in presence of matter creation
The fact that the divergence of the matter energy–momentum

ensor is different from zero can be interpreted as indicating
he presence of particles creation. In the presence of matter
roduction all the basic equilibrium quantities, including the
article and entropy fluxes, must be modified to include particle
reation [202–204]. The balance equation for the particle flux
µ

≡ nuµ, where n is the particle number density, must be
odified in the presence of particle creation as

µNµ = ṅ + 3Hn = nΓ , (57)

here Γ is the particle creation rate. If Γ ≪ H , particle creation
ffects can be neglected. The entropy flux vector is given by
µ

≡ s̃uµ = nσuµ, where s̃ is the entropy density, while by σ
e have denoted the entropy per particle. For the divergence of
he entropy flux we find the expression

µSµ = nσ̇ + nσΓ ≥ 0. (58)

or σ = constant, we obtain

µSµ = nσΓ = s̃Γ ≥ 0. (59)

Hence, the variation of the entropy is fully determined by the
article creation processes from the gravitational field. Moreover,
he condition s̃ > 0 implies that the particle creation rate Γ must
atisfy the condition Γ ≥ 0, implying that the gravitational fields
ould create particles, with the opposite process forbidden. In
he presence of matter production the energy–momentum tensor
ust to include the second law of thermodynamics, which can
e implemented by considering a correction to the equilibrium
xpression of the energy–momentum tensor Tµνeq , so that [205]

µν
= Tµνeq +∆Tµν, (60)

here ∆Tµν is a new term due to particle production, satisfying
he conditions

0 j j
T 0 = 0, ∆T i = −Pcδ i, (61)

7

here Pc is called the creation pressure, and it describes the
ffects of particle production from the gravitational field in a
acroscopic system. Hence,

Tµν = −Pchµν = −Pc (gµν + uµuν) , (62)

o that uµ∇ν∆Tµν = 3HPc . Thus the total energy balance equa-
ion uµ∇νTµν = 0, which follows from Eq. (60), can be reformu-
ated as

˙ + 3H (ρ + p + Pc) = 0. (63)

Another important thermodynamic relation, the Gibbs law,
iven by formulated as [203]

T d
( s
n

)
= nT dσ = dρ −

ρ + p
n

dn, (64)

ust also be satisfied by the thermodynamic quantities, where
y T we have denoted the thermodynamic temperature of the
ystem.

.2.2. Particle creation in f (R, T ,Q , Tm) theory
By using some simple algebraic transformations the energy

balance equation in f (R, T ,Q , Tm) theory, Eq.( (52)), can be re-
formulated as

ρ̇ + 3H (ρ + p + Pc) = 0, (65)

where the creation pressure Pc is given by

Pc = −
uν f ν

3H
. (66)

Hence, the energy balance equation Eq. (52) can be obtained
rom the covariant divergence of the effective energy momentum
ensor Tµν , defined according to
µν

= (ρ + p + Pc) uµuν + (p + Pc) gµν . (67)

From the Gibbs law, by assuming that particle creation is an
diabatic process, with σ̇ = 0, we obtain

˙ = (ρ + p)
ṅ
n

= (ρ + p) (Γ − 3H) . (68)

With the use of the energy balance equation we obtain the
relation between the matter production rate Γ and the creation
pressure Pc as

Γ =
−3HPc
ρ + p

. (69)

The divergence of the entropy flux vector is given by

µSµ =
−3nσHPc
ρ + p

. (70)

Due to their complexity, we will not present the explicit
expressions of the thermodynamic parameters describing matter
creation in f (R, T ,Q , Tm) theory. The matter creation rate, as well
as the creation pressure is a complicated expression involving
both the Weyl and the torsion tensors, as well as their covari-
ant derivatives. In order to gain a deeper understanding into
this problem some particular cases of the theory must be first
considered in full detail.

4. Cosmological implications

In the present Section we consider some cosmological im-
plications of the f (R, T ,Q , Tm) theory. For the metric of the
Universe we adopt the Friedmann–Lemaitre–Robertson–Walker
(FLRW) form, which in conformal coordinates takes the form

ds2 = a2(t)
(
−dt2 + dx⃗2

)
, (71)
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here a = a(t) is the conformal scale factor. We also introduce
he Hubble parameter, defined according to H = ȧ/a. We assume
hat the matter sector of the Universe can be described by a
erfect fluid, whose equations of motion can be obtained from
he Lagrangian Lm = −ρ, and which has the energy–momentum
ensor,
µ
ν = diag(−ρ, p, p, p), (72)

here ρ and p are the energy density and the thermodynamic
pressure, respectively.

4.1. The generalized Friedmann and Raychaudhury equations

Since the space–time is homogeneous and isotropic, the Weyl
nd torsion vectors can be written as

µ = (aA0, 0⃗),

µ = (aw0, 0⃗), (73)

here A0 = A0(t) and w0 = w0(t) are two arbitrary functions of
time. In this case, the equation of motion of the affine connection
Eq. (33) has two independent components, corresponding to the
Weyl, and torsion vectors, which can be simplified as

fR(A0 − w0) − fQw0 =
1
a
ḟR,

2fTA0 − fQw0 = 0. (74)

Then the generalized Friedman and Raychaudhuri equations
can be obtained as [198]

1
2
a2
[
f − 12A2

0fT + 3A0w0fR
]

3
2
a
[
ẇ0 + Hw0 − 2H(w0fQ + A0fR)

]
− 3ḢfR =

1
2
a2ρ, (75)

nd
2f − 2(Ḣ + 2H2)fR + 2a2(ρ + p)fTm + 2aw0 ḟQ

a
[
2ẇ0 + w0(4H + 2aw0 − 3aA0)

]
fQ

a
[
ẇ0 − 2Ȧ0 + a(2A0 − w0)(A0 + w0)

(4A0 − 5w0)H
]
fR = −a2p, (76)

espectively.

.2. The linear case: f = κ2(R − 2Λ) + βT + γQ + σTm

In this Subsection, we will study the cosmological implications
f the linear model with Lagrange density given by [198]

= κ2(R − 2Λ) + βT + γQ + σTm.

In this case the equations of motion of the affine connection,
q. (74), simplify to
2A0 − (γ + κ2)w0 = 0,

βA0 − γw0 = 0, (77)

hich implies that both Weyl and torsion vectors vanishes w0 =

= A0. As a result, the linear model does not contain torsion
nd non-metricity. Using the above results, one can rewrite the
etric Eqs. (75) and (76) as

6κ2H2
= a2

[
(1 + σ )ρ − 3σp + 2κ2Λ

]
,

κ2(2Ḣ + H2) = −a2
[
σρ + (5σ + 1)p − 2κ2Λ

]
. (78)
r

8

Let us introduce now the set of the dimensionless variables
τ , h, ρ̄,ΩΛ), given by

= H0t,H = H0h, ρ̄ =
ρ

6κ2H2
0
,ΩΛ =

Λ

3H2
0
. (79)

Here H0 is the present day value of the Hubble parameter.
n the following we will also assume that the Universe is filled
ith pressureless dust, consisting of non-interacting particles
ith matter density ρ̄m. This choice of the matter content does
ot affect in fact the late time cosmological behavior of the
odel, since the energy density of the electromagnetic radiation
omponent has very small values today. In order to compare the
esult with the observations it is convenient to transform the field
quations by introducing the redshift independent variable. The
edshift z is defined according to

+ z =
1
a
. (80)

Then the generalized Friedmann equation of the model can be
written as

(1 + z)2h2
= (1 + σ )ρ̄m +ΩΛ. (81)

From the definition of the dimensionless Hubble parameter
h(z = 0) = 1, one obtains density parameter corresponding to
the cosmological constant as

ΩΛ = 1 − (1 + σ )Ωm0. (82)

Also, from the Raychaudhuri equation we obtain the differ-
ential equation satisfied by the dimensionless matter density as

(1 + σ )(1 + z)ρ̄ ′

m − 3(1 + 2σ )ρ̄m = 0, (83)

with the general solution given by

ρ̄m = Ωm0(1 + z)
3(1+2σ )
1+σ , (84)

here Ωm0 is the current value of the dust density abundance.

.2.1. Fitting the model with the cosmological observations
In the following, we will estimate the best fit values of the

odel parameters H0, Ωm0 and σ by using the observational data
n the Hubble parameter in the redshift range 0 < z < 2,

as presented in [206]. To perform this comparison, we use the
likelihood analysis of the model based on the data on H0. In the
case of independent data points, the likelihood function is defined
according to

L = L0e−χ2/2, (85)

where L0 is the normalization constant, and the quantity χ2 is
given by

χ2
=

∑
i

(
Oi − Ti
σi

)2

. (86)

ere i indicates the number of the data points, Oi represent the
bservational values, Ti are the values obtained from the theoret-
cal model, and σi are the observational errors associated with the
th data point. For the linear theory, the likelihood function can
e defined as

= L0 exp

[
−

1
2

∑
i

(
Oi − σ 0

8 Ti
σi

)2
]
, (87)

By maximizing the likelihood function one can find the best
it values of the parameters. In Table 1, we have summarized the
esult of the maximum likelihood estimation on the parameters
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Fig. 1. The evolution of the Hubble function (1 + z)h (left panel), and of the deceleration parameter q (right panel) as a function of redshift for different values of
: σ = −0.06 (best fit, dashed), 0.02 (dotted), and −0.1 (dot-dashed), respectively. To obtain the plots we have used the best fit values for the Hubble parameter.
he solid red line corresponds to the ΛCDM model. The error bars indicate the observational values [206].
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able 1
est fit values of the linear model parameters H0 , Ωm0 and σ together with
heir 1σ and 2σ confidence intervals.
Parameter Best fit value 1σ interval 2σ interval

H0 66.22 66.22 ± 3.38 66.22 ± 6.62
Ωm0 0.45 0.45 ± 0.202 0.45 ± 0.39
σ −0.60 −0.60 ± 0.09 −0.60 ± 0.17

H0,Ωm0 and σ together with their 1σ and 2σ confidence interval.

The evolution of the Hubble function, of the deceleration pa-
rameter, and of the matter density are given, as a function of the
redshift, by

q = (1 + z)
h′

h
, Ωm =

ρ̄m

h2(1 + z)2
, (88)

nd they presented in Fig. 1.
As one can see from Fig. 1, the simple linear model of the
(R,Q , T , Tm) theory can give an acceptable description of the

cosmological observations of the Hubble function up to a redshift
of z = 2, and, for some model parameters, even up to a redshift
of z = 3. There is also a good concordance with the predictions
of the ΛCDM model. On the other hand, important differences
do appear in the behavior of the deceleration parameter between
the present and the ΛCDM models, at both low and high red-
shifts. However, both models predict a very similar value for the
transition from deceleration to acceleration. The differences in
the present day value of q may allow to test the validity of each
model.

The evolution of the matter energy density is represented in
Fig. 2.

There are important quantitative differences between the pre-
dictions of the two models, with the linear f (R,Q , T , Tm) model
giving higher matter density values at the present time, as com-
pared to the ΛCDM model. Hence, exact astronomical and as-
trophysical determinations of the matter density evolution could
provide an alternative test of the ΛCDM model, and of modified
gravity theories.

4.3. The multiplicative case: f = κ2(R − 2Λ) −
1
3β

2TQ + σTm

In this subsection we will consider the case where the torsion
nd non-metricity scalars couple non-minimally in the action.
ence, we assume that the Lagrangian density of the gravitational
 r

9

Fig. 2. The evolution of the matter energy density as a function of the redshift
for different values of σ : σ = −0.06 (best fit, dashed), 0.02 (dotted), and −0.1
(dot-dashed), respectively. In the plots we have used the observational value of
the present day matter energy density. The solid red line corresponds to the
predictions of the ΛCDM model.

field can be obtained as

f = κ2(R − 2Λ) −
1
3
β2TQ + σTm.

The equations of motion of the affine connection can be sim-
lified in this case as
2(A0 − w0) + 2β2A2

0w0 = 0,

β2A0w0(2A0 − w0) = 0, (89)

ith the solution

0 =
κ

2β
, w0 =

κ

β
. (90)

Using the above expressions for w0 and A0, the generalized
riedmann and Raychaudhuri equations become

κ2H2
−

3κ2

2β2 a(κa + βH) = a2(1 + σ )ρ + 2κ2Λa2

− 3σa2p, (91)

nd

κ2(H2
+ 2Ḣ) = −(1 + 5σ )a2p − σa2ρ

+
κ3

4β2 a(5κa − 2βH) + 2κ2Λa2, (92)

espectively.
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Fig. 3. Evolutions of the Hubble function (1 + z)h (left panel) and of the deceleration parameter q (right panel) as a function of the redshift for different values of
σ , γ ): (σ , γ ) = (0.0012, 21.88) (best fit, dashed), (0.04, 70) (dotted), and (−0.03,−10) (dot-dashed), respectively. We have used the best fit values for the Hubble
arameter and the current matter density abundance. The solid red line corresponds to the ΛCDM theory. The error bars indicate the observational values [206].
able 2
est fit values of the multiplicative model parameters H0 , Ωm0 , γ and σ together
ith their 1σ and 2σ confidence intervals.
Parameter Best fit value 1σ interval 2σ interval

H0 67.42 67.42 ± 1.41 67.42 ± 2.76
Ωm0 0.33 0.33 ± 0.024 0.33 ± 0.047
σ 0.0012 0.0012 ± 0.023 0.0012 ± 0.046
γ 21.88 21.88 ± 28.73 21.88 ± 56.31

4.3.1. Fitting with the observational results
Defining a dimensionless constant γ = 4H0β/κ , and trans-

orming to the redshift variables, one can obtain the dimension-
ess Hubble function as

γ (1 + z)h = 1 +

√
4γ 2

[
ΩΛ + (1 + σ )ρ̄m

]
− 15. (93)

From the definition of the dimensionless Hubble function we
obtain the density parameter associated to the cosmological con-
stant as

ΩΛ = 1 − (1 + σ )Ωm0 +
4 − γ

γ 2 . (94)

The evolution equation of the dimensionless matter density ρ̄m
can be obtained as

2γ (1 + z)h
[
(1 + σ )(1 + z)ρ̄ ′

m − 3(1 + 2σ )ρ̄m +
7
γ 2

]
(1 − 2σ )ρ̄m − 4ΩΛ +

8
γ 2 = 0. (95)

Similarly to the previous case, we will find the best fit values of
he parameters H0, σ , γ andΩm0, respectively, using the observa-
tional data on the Hubble parameter. The results are summarized
in Table 2.

In Fig. 3, we have plotted the evolution of the Hubble function
(1+z)h and of the deceleration parameter as a function of redshift
z.

The model gives a good description of the observational data
for the Hubble function. There are some differences in the be-
havior of the deceleration parameter, as compared to the ΛCDM
model. Even that the present day value of q can be reobtained
for a specific value of the model parameters, the transition from
deceleration to acceleration happen at different values of z in the
two models.

The evolution of the density parameter of the ordinary matter
is presented in Fig. 4.
10
Fig. 4. The evolution of the matter energy density as a function of redshift for
different values of (σ , γ ) = (0.0012, 21.88) (best fit, dashed), (0.04, 70) (dotted),
and (−0.03,−10) (dot-dashed), respectively. The solid red line corresponds to
the ΛCDM model.

There is a much better concordance between the predictions
of the present model, and ΛCDM. However, it is worth men-
tioning that the multiplicative model, compared to the linear
model, predicts smaller values of the present day dust energy
density. However, both models predicts a current Hubble param-
eter of around 67, which indicates that the present theory cannot
improve the Hubble tension.

5. Discussions and final remarks

In the present paper we have investigated a maximal exten-
sion of the Hilbert–Einstein Lagrangian in the presence of matter,
by considering a physical model, defined on a metric-affine man-
ifold, in which the action can be expressed in terms of three
geometric quantities (R, T ,Q )-the curvature scalar, the torsion,
and the nonmetricity, respectively, and one matter determined
function-the trace of the matter energy–momentum tensor Tm,
respectively. From a geometric point of view, the theory is de-
fined in a Weyl–Cartan space–time. I our approach we have taken
explicitly into account the roles played by the Weyl vector and of
the torsion in the description of the gravitational phenomena. As
for the matter coupling term, we have not restricted it in any way,
thus allowing the possibility of couplings between curvature,
torsion, and nonmetricity, respectively. The developed theory also
generalizes a number of previously investigated theories, like, for
example, the f (R, Tm) theory [166], or the f (Q , Tm) theory [195,
196].
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Table 3
Metric-affine geometric extensions of the Hilbert–Einstein action
in Weyl–Cartan geometries [77]. In the Table Tm denotes the trace
of the energy–momentum tensor, while T denotes the torsion
scalar.
MGI MGII

f (R, Tm) + 2κ2Lm f (R,Q ) + 2κ2Lm
MGIII MGIV
f (Tm,Q ) + 2κ2Lm f (R, T , Tm) + 2κ2Lm
MGV MGVI
f (R, T ,Q ) + 2κ2Lm f (R,Q , Tm) + 2κ2Lm
MGVII MGVIII
f (T ,Q , Tm) + 2κ2Lm f (R, T ,Q , Tm) + 2κ2Lm

A complete classification of all algebraic gravitational exten-
ions of the Hilbert–Einstein action, with the matter described by
he trace of the energy–momentum tensor was obtained in [77],
nd it is presented in Table 3.
The theoretical models of Table 3 increase in complexity, with

GVIII involving all the three possible geometrical parameters,
s well as one single matter parameter, the trace of the energy–
omentum tensor. However, couplings generated by general
atter terms involving the matter Lagrangian Lm, are also pos-
ible, and a first step in this direction is represented by the
(R, Tm, Lm) gravity theory [207], which introduces a new matter
egree of freedom. Some of these models have been extensively
nvestigated in the literature [78,79,208].

In the present study we have considered theoretical models
n which both the nonmetricity and the torsion can be represented
n terms of two vectors

(
wµ, Aµ

)
, the Weyl vector, and the torsion

ector, respectively. These choices simplify significantly the field
quations, as well as the physical model, without any loss in gen-
rality. Moreover, they open the possibility of establishing some
nteresting connection between the two fundamental geomet-
ic quantities, nonmetricity and torsion, which allow to extend
he standard Riemann geometry of general relativity. We have
nvestigated the Newtonian limit of the theory by considering
he integrable cases of the metric-affine geometries, in which
oth nonmetricity and torsion vectors can be represented as the
ovariant derivatives of a scalar potential. The weak field and low
elocity limit of the theory leads to an effective Poisson equation,
n which the gravitational coupling constant becomes a function
f the background values of the derivatives of the gravitational
agrangian with respect to the model variables. The Poisson equa-
ion may lead to the possibilities of testing the f (R, T ,Q , Tm)
heory at the Solar System or even galactic scales.

We have also briefly pointed out, without fully developing it,
possible thermodynamic interpretation of the modified grav-

ty theories with geometry–matter coupling, developed in the
ramework of the thermodynamic of open systems. The non-
onservation of the energy–momentum tensor, as well as the
nergy balance equation that can be derived from it suggests
hat a matter/energy transfer may occur irreversibly from the
ravitational field (geometry) to matter, and that this kind of
heories may describe matter creation processes.

Particle production is also a specific characteristic of quantum
ield theory in curved spacetimes. The classic example for this
ffect is the behavior of a real minimally coupled scalar field
in a cosmological geometry, with gravitational action S =

1/2)
∫ (

gµν∇µφ∇νφ − m2φ2
)√

−gd4x. By introducing the con-
formal time η, the metric becomes conformally Minkowskian,
given by ds2 = a2(η)gµνdxµdxν , and the equation of motion of
he field takes the form [209]

′′
− ∇

2χ +

(
m2

−
a′′
)
χ = 0, (96)
a l

11
where χ = a(η)φ(x, η), and the prime denotes the derivatives
with respect to η. The new field χ satisfies the equation of motion
of a massive scalar field in the ordinary Minkowski spacetime,
but with an effective mass m2

eff (η) = m2a2 − a′′/a, which is
time dependent. The time dependency of the mass leads to the
interaction between the gravitational and scalar fields. Since the
action for the field χ is time dependent, the total energy of
the field is not conserved. Hence, in quantum field theory the
quantization of the scalar field results in matter generation due
to the presence of the classical gravitational background.

An alternative approach to particle creation can be obtained
in the framework of semiclassical gravity, where one assumes
that the matter fields are quantized, and they exist in a classical
spacetime characterized by a metric gµν , and with the gravita-
tional fields described classically, by using the Hilbert–Einstein
action, S =

∫ (
−R/2κ2

)√
−gd4x. In the semiclassical approach

o preferred vacuum state for the fields does exist, and therefore
atter generation effects occur naturally. Hence, in the presence
f the gravitational fields quantum matter satisfies the semi-
lassical Einstein equations (see [210] and references therein),

µν −
1
2
gµνR =

8πG
c4

⟨
Ψ

⏐⏐⏐T̂µν⏐⏐⏐Ψ ⟩ . (97)

The semiclassical Einstein equations are obtained phenomeno-
logically by substituting in the gravitational field equations the
classical matter energy–momentum tensor Tµν , by its expectation
value ⟨Ψ | T̂µν |Ψ ⟩ = Tµν , where Ψ describes an arbitrary quantum
state. In the classical limit the matter energy–momentum tensor
Tµν is given by ⟨Ψ | T̂µν |Ψ ⟩ = Tµν .

The semiclassical Einstein equations (97) can also be obtained
from the variational principle δ

(
Sg + Sψ

)
= 0 [211], where Sg is

the general relativistic classical action of the gravitational field,
while Sψ , describing the quantum effects, is given by

SΨ =

∫ [
Im
⟨
Ψ̇ |Ψ

⟩
−

⟨
Ψ |Ĥ|Ψ

⟩
+ α (⟨Ψ |Ψ ⟩ − 1)

]
dt, (98)

where Ĥ is the Hamilton operator of the matter, and α is a
Lagrange multiplier.

The action (98) can be generalized by introducing a non-
minimal coupling between the quantized matter fields and the
classical Ricci scalar R [211]. More exactly, in the simplest ap-
proach one can assume that the quantum matter-geometry cou-
pling has the simple form

∫
RF (⟨f (φ)⟩)Ψ

√
−gd4x, where by F

nd f we have denoted two arbitrary functions. By (⟨f (φ)⟩)Ψ =

Ψ (t)| f [φ(x)] |Ψ (t)⟩ we have denoted the average value of an
rbitrary function over the quantum fields Ψ (t). With this form
f the coupling, the effective semiclassical Einstein equations can
e obtained as [211]

(1 − 16πGF)Gµν + 16πG
(
∇µ∇ν − □

)
F = 16πG

⟨
T̂µν
⟩
Ψ
, (99)

here Gµν is the Einstein tensor, and G is the gravitational con-
tant.
Even obtained via a quantum approach, Eq. (99) has intrigu-

ng similarities with gravitational field equations obtained in
odified gravity theories. It also has an important physical con-
equence, which follows from the fact that the covariant diver-
ence of the mean value of the matter energy–momentum tensor
T̂µν

⟩
Ψ

does not vanish identically, and generally ∇µ

⟨
T̂µν

⟩
Ψ

̸= 0.
ence, the semiclassical quantum theoretical model described
y Eq. (99) can be interpreted physically as describing particle
roduction creation from the gravitational field. Eq. (99) may also
ndicate the existence of a deep (and yet unexplored) relation be-
ween modified and quantum gravity, at least at the semiclassical
evel. Of course, other forms of the quantum matter-geometry
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ouplings are possible, leading to other classes of modified gravity
heories with quantum origins.

In the present paper we have investigated the theoretical basis
f the particle creation processes from geometry from a classical
erspective, and we have presented the general expressions for
he particle creation rates, the creation pressure, and for entropy
roduction. However, we have not presented the explicit expres-
ions of these quantities in f (R, T ,Q , Tm). A detailed investigation
f these effects will be performed in a new study. Moreover, it
ould be interesting to investigate the possibility of obtaining the
(R, T ,Q , Tm) action in the semiclassical approach to quantum
ravity along the same lines that led to the modified gravity field
quation (99).
The cosmological application of the theory have been investi-

ated for two particular choices of the gravitational Lagrangian,
orresponding to an additive and multiplicative algebraic struc-
ure of f (R, T ,Q , Tm). In both cases the generalized Friedmann
quations have been derived, their solutions obtained numer-
cally, and the results were compared with the cosmological
bservations. A comparison with the ΛCDM model was also
erformed. The model parameters were determined by fitting the
bservational data for the Hubble function. At least for a redshift
f z = 1 the model predictions are basically indistinguishable
rom the ΛCDM model, and fit very well the observational data.
Some differences do occur at higher redshifts z ≈ 2−3, and these
differences are more significant in the case of the simple linear
additive model. These, still preliminary results, may suggest that
additive/multiplicative algebraic structures of the gravitational
Lagrangian, involving the products of the parameters (R, T ,Q , Tm)
may provide a better description of cosmological phenomena
than the simple additive approach.

In the present work we have considered one of the most
general metric-affine gravity theory possibly to be constructed in
a Weyl–Cartan geometry, which also includes geometry–matter
coupling. The field equations have been derived, and some of their
basic properties investigated. The cosmological results indicate
that this type of theories may have the potential of explaining the
present day observational data, and for opening a new window
for a deeper understanding of the Universe.
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[178] H. Velten, T.R.P. Carameŝ, Phys. Rev. D 95 (2017) 123536.

http://refhub.elsevier.com/S2212-6864(21)00116-3/sb64
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb65
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb66
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb66
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb66
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb67
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb67
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb67
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb68
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb69
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb69
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb69
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb70
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb71
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb72
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb72
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb72
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb73
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb74
http://arxiv.org/abs/astro-ph/0005265v1
http://arxiv.org/abs/2005.12724
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb77
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb77
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb77
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb78
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb78
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb78
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb78
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb78
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb79
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb80
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb81
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb82
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb83
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb84
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb85
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb86
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb86
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb86
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb87
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb87
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb87
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb88
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb89
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb89
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb89
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb90
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb91
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb91
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb91
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb92
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb93
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb93
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb93
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb94
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb95
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb96
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb97
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb97
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb97
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb98
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb99
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb99
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb99
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb100
http://arxiv.org/abs/1911.06990
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb102
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb102
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb102
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb103
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb103
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb103
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb104
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb105
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb106
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb106
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb106
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb107
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb108
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb109
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb109
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb109
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb110
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb111
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb112
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb113
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb114
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb114
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb114
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb115
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb116
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb117
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb117
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb117
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb118
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb119
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb120
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb121
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb122
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb123
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb124
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb125
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb125
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb125
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb126
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb126
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb126
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb127
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb127
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb127
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb128
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb128
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb128
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb129
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb129
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb129
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb130
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb131
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb132
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb132
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb132
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb133
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb133
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb133
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb134
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb134
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb134
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb135
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb135
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb135
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb136
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb136
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb136
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb137
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb137
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb137
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb138
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb139
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb139
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb139
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb140
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb141
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb142
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb143
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb144
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb145
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb145
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb145
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb146
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb146
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb146
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb147
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb148
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb149
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb149
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb149
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb150
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb151
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb152
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb152
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb152
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb153
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb154
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb155
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb156
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb157
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb158
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb159
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb160
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb161
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb162
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb163
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb164
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb164
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb164
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb165
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb166
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb166
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb166
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb167
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb167
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb167
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb168
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb169
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb169
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb169
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb170
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb170
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb170
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb171
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb171
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb171
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb172
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb173
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb174
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb175
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb176
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb176
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb176
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb177
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb178


T. Harko, N. Myrzakulov, R. Myrzakulov et al. Physics of the Dark Universe 34 (2021) 100886
[179] P.K. Sahoo, P.H.R.S Moraes, P. Sahoo, Eur. Phys. J. C 78 (2018) 46.
[180] J.K. Singh, K. Bamba, R. Nagpal, S.K.J. Pacif, Phys. Rev. D 97 (2018) 123536.
[181] J. Wu, G. Li, T. Harko, S.-D. Liang, Eur. Phys. J. C 78 (2018) 430.
[182] R. Nagpal, S.K.J. Pacif, J.K. Singh, K. Bamba, A. Beesham, Eur. Phys. J. C 78

(2018) 946.
[183] P.H.R.S Moraes, R.A.C. Correa, G. Ribeiro, Eur. Phys. J. C 78 (2018) 192.
[184] D. Deb, S.V. Ketov, M. Khlopov, S. Ray, J. Cosmol. Astropart. Phys. 10

(2019) 070.
[185] P.H.R.S Moraes, Eur. Phys. J. C 79 (2019) 674.
[186] S.K. Maurya, A. Errehymy, D. Deb, F. Tello-Ortiz, M. Daoud, Phys. Rev. D

100 (2019) 044014.
[187] S.K. Maurya, A. Errehymy, K. Newton Singh, F. Tello-Ortiz, M. Daoud, Phys.

Dark Univ. 30 (2020) 100640.
[188] R. Lobato, O. Lourenco, P.H.R.S Moraes, C.H. Lenzi, M. de Avellar, W.

de Paula, M. Dutra, M. Malheiro, J. Cosmol. Astropart. Phys. 12 (2020)
039.

[189] T. Harko, P.H.R.S Moraes, Phys. Rev. D 101 (2020) 108501.
[190] G.A. Carvalho, F. Rocha, H.O. Oliveira, R.V. Lobato, Eur. Phys. J. C 81 (2021)

134.
[191] M. Gamonal, Phys. Dark Univ. 31 (2021) 100768.
[192] J.M.Z. Pretel, S.E. Jorás, R.R.R. Reis, J.D.V. Arbañil, J. Cosmol. Astropart.

Phys. 04 (2021) 064.
[193] P.V. Tretyakov, Eur. Phys. J. C 78 (2018) 896.
14
[194] T. Harko, F.S.N. Lobo, G. Otalora, E.N. Saridakis, J. Cosmol. Astropart. Phys.
12 (2014) 021.

[195] Y. Xu, G. Li, T. Harko, S.-D. Liang, Eur. Phys. J. C 79 (2019) 708.
[196] Y. Xu, T. Harko, S. Shahidi, S.-D. Liang, Eur. Phys. J. C 80 (2020) 449.
[197] J.-Z. Yang, S. Shahidi, T. Harko, S.-D. Liang, Eur. Phys. J. C 81 (2021) 111.
[198] D. Iosifidis, N. Myrzakulov, R. Myrzakulov, Universe 7 (2021) 262.
[199] N. Myrzakulov, R. Myrzakulov, L. Ravera, 2021, eprint arXiv:2108.00957.
[200] K. Yesmakhanova, N. Myrzakulov, S. Myrzakul, G. Yergaliyeva, K.

Myrzakulov, K. Yerzhanov, R. Myrzakulov, 2021, arXiv:2101.05318.
[201] T. Harko, F.S.N. Lobo, Extensions of F(R) Gravity: Curvature-Matter Cou-

plings and Hybrid Metric-Palatini Theory, Cambridge University Press,
Cambridge, UK, 2018.

[202] I. Prigogine, J. Geheniau, E. Gunzig, P. Nardone, Proc. Natl. Acad. Sci. 85
(1988) 7428.

[203] M.O. Calvao, J.A.S. Lima, I. Waga, Phys. Lett. A 162 (1992) 223.
[204] J. Su, T. Harko, S.-D. Liang, Adv. High Energy Phys. 2017 (2017) 7650238.
[205] J.A.S. Lima, I.P. Baranov, Phys. Rev. D 90 (2014) 043515.
[206] H. Boumaza, K. Nouicer, Phys. Rev. D 100 (2019) 124047.
[207] Z. Haghani, T. Harko, Eur. Phys. J. C 81 (2021) 615.
[208] G. Bauyrzhan, N. Myrzakulov, N. Serikbayev, K. Yerzhanov, Cosmology

in myrzakulov gravity-v, in: Cosmology in Myrzakulov Gravity-V, 2021,
https://www.researchgate.net/publication/351022054.

[209] L. Parker, D. Toms, Quantum Field Theory in Curved Spacetime: Quantized
Fields and Gravity, Cambridge University Press, Cambridge, 2011.

[210] Z. Haghani, T. Harko, Physics 3 (2021) 689.
[211] T.W.B. Kibble, S. Randjbar-Daemi, J. Phys. A: Math. Gen. 13 (1980) 141.

http://refhub.elsevier.com/S2212-6864(21)00116-3/sb179
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb180
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb181
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb182
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb182
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb182
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb183
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb184
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb184
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb184
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb185
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb186
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb186
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb186
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb187
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb187
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb187
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb188
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb188
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb188
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb188
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb188
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb189
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb190
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb190
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb190
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb191
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb192
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb192
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb192
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb193
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb194
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb194
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb194
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb195
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb196
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb197
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb198
http://arxiv.org/abs/2108.00957
http://arxiv.org/abs/2101.05318
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb201
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb201
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb201
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb201
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb201
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb202
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb202
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb202
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb203
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb204
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb205
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb206
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb207
https://www.researchgate.net/publication/351022054
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb209
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb209
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb209
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb210
http://refhub.elsevier.com/S2212-6864(21)00116-3/sb211

	Non-minimal geometry–matter couplings in Weyl–Cartan space–times: f(R,T,Q,Tm) gravity
	Introduction
	Action and gravitational field equations
	Introducing the Weyl vector
	Decomposition of the torsion tensor

	Divergence of the matter energy–momentum tensor, the Newtonian limit, and thermodynamic interpretation
	The Newtonian limit
	Thermodynamic interpretation
	Thermodynamic quantities in presence of matter creation
	Particle creation in f(R,T,Q,Tm) theory


	Cosmological implications
	The generalized Friedmann and Raychaudhury equations
	The linear case: f=2(R-2)+T+Q+Tm
	Fitting the model with the cosmological observations

	The multiplicative case: f=2(R-2)-132T Q+Tm
	Fitting with the observational results


	Discussions and final remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


