DSpace Repository

Maximum power tracking for wind energy conversion systems via a high-order optimal disturbance observer-based LQR without a wind speed sensor

Show simple item record

dc.contributor.author Kashaganova, Altynay
dc.contributor.author Suleimenov, Kanat
dc.contributor.author Sagnaeva, Saule
dc.contributor.author Do, Ton Duc
dc.date.accessioned 2024-09-12T10:32:16Z
dc.date.available 2024-09-12T10:32:16Z
dc.date.issued 2023
dc.identifier.issn 2642-4088
dc.identifier.other doi.org/10.1016/j.jestch.2023.101472
dc.identifier.uri http://rep.enu.kz/handle/enu/16259
dc.description.abstract A high-order optimal disturbance observer (HOODO) is introduced to precisely estimate the aerodynamic torque and the variable wind speed; and consequently calculate the optimal speed of the generator without measuring the wind speed. As the immeasurable wind speed is varying fast, the aerodynamic torque, which is considered as a disturbance, is also changed fast, then the conventional assumption that the disturbance is slowly-varying (i.e., its first-time derivative is zero), is not applicable. The proposed HOODO design considers the fast and stochastic characteristics of the wind speed by relaxing aforementioned conventional assumption. Moreover, via the linear optimal control theory, the parameters of the HOODO are tuned systematically by proper selection of the elements of the diagonal weighting matrices. In this study, a compromise between the observer’s convergence rate and the ability to Gaussian noise suppression is also considered. This helps to solve the difficulties of many existing observers regarding the gain selection algorithms. Also in the article, for the first time, a control scheme is considered in combination with the proposed HOODO and the LQ controller. To maximize a power captured from the wind, a linear-quadratic regulator (LQR) is utilized to maintain the angular speed of the generator at the optimal speed reference. A stability analysis of the designed control scheme is also discussed. Comparative results of the HOODO under different orders as well as other observers are given to prove the effectiveness of the introduced estimation method. The obtained simulation results reveal that the HOODO has a superior estimation of disturbance. All the simulations are carried out in the MATLAB/Simulink software. 2023 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) ru
dc.language.iso en ru
dc.publisher Engineering Science and Technology, an International Journal ru
dc.relation.ispartofseries Volume 45;
dc.subject High-order optimal disturbance observer ru
dc.subject (HOODO) ru
dc.subject Linear-quadratic regulator (LQR) ru
dc.subject Optimal control ru
dc.subject Permanent magnet synchronous generator (PMSG) ru
dc.subject Wind energy conversion systems (WECS) ru
dc.title Maximum power tracking for wind energy conversion systems via a high-order optimal disturbance observer-based LQR without a wind speed sensor ru
dc.type Article ru


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account