REPOSITORY.ENU

Development of Deep Learning Models for Traffic Sign Recognition in Autonomous Vehicles

Показать сокращенную информацию

dc.contributor.author Kozhamkulova, Zhadra
dc.contributor.author Bidakhmet, Zhanar
dc.contributor.author Vorogushina, Marina
dc.contributor.author Tashenova, Zhuldyz
dc.contributor.author Tussupova, Bella
dc.contributor.author Nurlybaeva, Elmira
dc.contributor.author Kambarov, Dastan
dc.date.accessioned 2024-11-25T07:04:48Z
dc.date.available 2024-11-25T07:04:48Z
dc.date.issued 2024
dc.identifier.issn 2158-107Х
dc.identifier.uri http://rep.enu.kz/handle/enu/19243
dc.description.abstract This research paper investigates the development of deep learning models for traffic sign recognition in autonomous vehicles. Leveraging convolutional neural networks (CNNs), the study explores various architectural configurations and evaluation methodologies to assess the efficacy of CNNs in accurately identifying and classifying traffic signs. Through a systematic evaluation process utilizing metrics such as accuracy, precision, recall, and F-score, the research demonstrates the robustness and generalization capability of the developed models across diverse environmental conditions. Furthermore, the utilization of visualization techniques, including the Matplotlib library, enhances the interpretability of model training dynamics and optimization progress. The findings highlight the significance of CNN architecture in facilitating hierarchical feature extraction and spatial dependency learning, thereby enabling reliable and efficient traffic sign recognition. The successful recognition of traffic signs under varying lighting conditions underscores the resilience of the developed models to environmental perturbations. Overall, this research contributes to advancing the capabilities of autonomous vehicle systems and lays the groundwork for the implementation of intelligent traffic sign recognition systems aimed at enhancing road safety and navigational efficiency. ru
dc.language.iso en ru
dc.publisher International Journal of Advanced Computer Science and Applications ru
dc.relation.ispartofseries Vol. 15, No. 5;
dc.subject Traffic sign recognition ru
dc.subject machine learning ru
dc.subject deep learning ru
dc.subject computer vision ru
dc.subject image classification ru
dc.title Development of Deep Learning Models for Traffic Sign Recognition in Autonomous Vehicles ru
dc.type Article ru


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись