dc.contributor.author |
Akishev, G. |
|
dc.date.accessioned |
2024-11-28T06:50:38Z |
|
dc.date.available |
2024-11-28T06:50:38Z |
|
dc.date.issued |
2019 |
|
dc.identifier.citation |
G. Akishev. On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, vol. 25, no. 2, pp. 9–20 . |
ru |
dc.identifier.other |
DOI: 10.21538/0134-4889-2019-25-2-9-20 |
|
dc.identifier.uri |
http://rep.enu.kz/handle/enu/19481 |
|
dc.description.abstract |
We consider the generalized Lorentz space Lψ,τ (Tm) defined by some continuous concave function ψ such
that ψ(0) = 0. For two spaces Lψ1,τ1
(Tm) and Lψ2,τ2
(Tm) such that αψ1 = limt→0ψ1(2t)/ψ1(t) = βψ2 =
limt→0ψ2(2t)/ψ2(t), we prove an order-exact inequality of different metrics for multiple trigonometric polynomials. We also prove an auxiliary statement for functions of one variable with monotonically decreasing Fourier
coefficients in a trigonometric system. In this statement we establish a two-sided estimate for the norm of the
function f ∈ Lψ,τ (T) in terms of the series composed of the Fourier coefficients of this function. |
ru |
dc.language.iso |
other |
ru |
dc.publisher |
Trudy Instituta Matematiki i Mekhaniki UrO RAN |
ru |
dc.subject |
generalized Lorentz space |
ru |
dc.subject |
Jackson–Nikol’skii inequality |
ru |
dc.subject |
trigonometric polynomial |
ru |
dc.title |
On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space |
ru |
dc.title.alternative |
О ТОЧНОСТИ НЕРАВЕНСТВА РАЗНЫХ МЕТРИК ДЛЯ ТРИГОНОМЕТРИЧЕСКИХ ПОЛИНОМОВ В ОБОБЩЕННОМ ПРОСТРАНСТВЕ ЛОРЕНЦА |
ru |
dc.type |
Article |
ru |