DSpace Repository

On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space

Show simple item record

dc.contributor.author Akishev, G.
dc.date.accessioned 2024-11-28T06:50:38Z
dc.date.available 2024-11-28T06:50:38Z
dc.date.issued 2019
dc.identifier.citation G. Akishev. On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, vol. 25, no. 2, pp. 9–20 . ru
dc.identifier.other DOI: 10.21538/0134-4889-2019-25-2-9-20
dc.identifier.uri http://rep.enu.kz/handle/enu/19481
dc.description.abstract We consider the generalized Lorentz space Lψ,τ (Tm) defined by some continuous concave function ψ such that ψ(0) = 0. For two spaces Lψ1,τ1 (Tm) and Lψ2,τ2 (Tm) such that αψ1 = limt→0ψ1(2t)/ψ1(t) = βψ2 = limt→0ψ2(2t)/ψ2(t), we prove an order-exact inequality of different metrics for multiple trigonometric polynomials. We also prove an auxiliary statement for functions of one variable with monotonically decreasing Fourier coefficients in a trigonometric system. In this statement we establish a two-sided estimate for the norm of the function f ∈ Lψ,τ (T) in terms of the series composed of the Fourier coefficients of this function. ru
dc.language.iso other ru
dc.publisher Trudy Instituta Matematiki i Mekhaniki UrO RAN ru
dc.subject generalized Lorentz space ru
dc.subject Jackson–Nikol’skii inequality ru
dc.subject trigonometric polynomial ru
dc.title On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space ru
dc.title.alternative О ТОЧНОСТИ НЕРАВЕНСТВА РАЗНЫХ МЕТРИК ДЛЯ ТРИГОНОМЕТРИЧЕСКИХ ПОЛИНОМОВ В ОБОБЩЕННОМ ПРОСТРАНСТВЕ ЛОРЕНЦА ru
dc.type Article ru


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account