Показать сокращенную информацию
dc.contributor.author | Akishev, G. | |
dc.date.accessioned | 2024-11-28T06:50:38Z | |
dc.date.available | 2024-11-28T06:50:38Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | G. Akishev. On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, vol. 25, no. 2, pp. 9–20 . | ru |
dc.identifier.other | DOI: 10.21538/0134-4889-2019-25-2-9-20 | |
dc.identifier.uri | http://rep.enu.kz/handle/enu/19481 | |
dc.description.abstract | We consider the generalized Lorentz space Lψ,τ (Tm) defined by some continuous concave function ψ such that ψ(0) = 0. For two spaces Lψ1,τ1 (Tm) and Lψ2,τ2 (Tm) such that αψ1 = limt→0ψ1(2t)/ψ1(t) = βψ2 = limt→0ψ2(2t)/ψ2(t), we prove an order-exact inequality of different metrics for multiple trigonometric polynomials. We also prove an auxiliary statement for functions of one variable with monotonically decreasing Fourier coefficients in a trigonometric system. In this statement we establish a two-sided estimate for the norm of the function f ∈ Lψ,τ (T) in terms of the series composed of the Fourier coefficients of this function. | ru |
dc.language.iso | other | ru |
dc.publisher | Trudy Instituta Matematiki i Mekhaniki UrO RAN | ru |
dc.subject | generalized Lorentz space | ru |
dc.subject | Jackson–Nikol’skii inequality | ru |
dc.subject | trigonometric polynomial | ru |
dc.title | On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space | ru |
dc.title.alternative | О ТОЧНОСТИ НЕРАВЕНСТВА РАЗНЫХ МЕТРИК ДЛЯ ТРИГОНОМЕТРИЧЕСКИХ ПОЛИНОМОВ В ОБОБЩЕННОМ ПРОСТРАНСТВЕ ЛОРЕНЦА | ru |
dc.type | Article | ru |