Показать сокращенную информацию
dc.contributor.author | Bokayev, N.А. | |
dc.contributor.author | Gogatishvili, A. | |
dc.contributor.author | Abek, А.N. | |
dc.date.accessioned | 2024-12-17T06:14:02Z | |
dc.date.available | 2024-12-17T06:14:02Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 25187929 | |
dc.identifier.other | DOI 10.31489/2023M2/53-62 | |
dc.identifier.uri | http://rep.enu.kz/handle/enu/20244 | |
dc.description.abstract | The paper considers the space of generalized fractional-maximal function, constructed on the basis of a rearrangement-invariant space. Two types of cones generated by a nonincreasing rearrangement of a generalized fractional-maximal function and equipped with positive homogeneous functionals are constructed. The question of embedding the space of generalized fractional-maximal function in a rearrangementinvariant space is investigated. This question reduces to the embedding of the considered cone in the corresponding rearrangement-invariant spaces. In addition, conditions for covering a cone generated by generalized fractional-maximal function by the cone generated by generalized Riesz potentials are given. Cones from non-increasing rearrangements of generalized potentials were previously considered in the works of M. Goldman, E. Bakhtigareeva, G. Karshygina and others. | ru |
dc.language.iso | en | ru |
dc.publisher | Bulletin of the Karaganda University. Mathematics Series | ru |
dc.relation.ispartofseries | № 2(110)/2023; | |
dc.subject | rearrangement-invariant spaces | ru |
dc.subject | non-increasing rearrangements of functions | ru |
dc.subject | cones generated by generalized fractional-maximal function | ru |
dc.subject | covering of cones | ru |
dc.title | Cones generated by a generalized fractional maximal function | ru |
dc.type | Article | ru |