Репозиторий Dspace

Criteria for the boundedness of a certain class of matrix operators from lpv into lqu

Показать сокращенную информацию

dc.contributor.author Temirkhanova, A.M.
dc.contributor.author Beszhanova, A.T.
dc.date.accessioned 2024-12-17T06:24:14Z
dc.date.available 2024-12-17T06:24:14Z
dc.date.issued 2023
dc.identifier.issn 25187929
dc.identifier.other DOI 10.31489/2023M3/122-137
dc.identifier.uri http://rep.enu.kz/handle/enu/20248
dc.description.abstract One of the main aims in the theory of matrices is to find necessary and sufficient conditions for the elements of any matrix so that the corresponding matrix operator maps continuously from one normed space into another one. Thus, it is very important to find the norm of the matrix operator, at least, to find upper and lower estimates of it. This problem in Lebesgue spaces of sequences in the general case is still open. This paper deals with the problem of boundedness of matrix operators from lpv into lqu for 1 < q < p < ∞, and we obtain necessary and sufficient conditions of this problem when matrix operators belong to the classes O ± 2 satisfying weaker conditions than Oinarov’s condition. ru
dc.language.iso en ru
dc.publisher Bulletin of the Karaganda University. Mathematics Series ru
dc.subject matrix operator ru
dc.subject conjugate operator ru
dc.subject weight sequence ru
dc.subject boundedness ru
dc.subject weight inequalities ru
dc.subject weight Lebesgue space ru
dc.subject Oinarov’s condition ru
dc.subject Hardy operator ru
dc.subject Hardy operator ru
dc.subject Hardy inequality ru
dc.subject matrix ru
dc.title Criteria for the boundedness of a certain class of matrix operators from lpv into lqu ru
dc.type Article ru


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись