Репозиторий Dspace

Deep learning based static hand gesture recognition

Показать сокращенную информацию

dc.contributor.author Satybaldina, Dina
dc.contributor.author Kalymova, Gulzia
dc.date.accessioned 2024-12-17T06:28:25Z
dc.date.available 2024-12-17T06:28:25Z
dc.date.issued 2021
dc.identifier.issn 2502-4752
dc.identifier.other DOI: 10.11591/ijeecs.v21.i1.pp398-405
dc.identifier.uri http://rep.enu.kz/handle/enu/20250
dc.description.abstract Hand gesture recognition becomes a popular topic of deep learning and provides many application fields for bridging the human-computer barrier and has a positive impact on our daily life. The primary idea of our project is a static gesture acquisition from depth camera and to process the input images to train the deep convolutional neural network pre-trained on ImageNet dataset. Proposed system consists of gesture capture device (Intel® RealSense™ depth camera D435), pre-processing and image segmentation algorithms, feature extraction algorithm and object classification. For preprocessing and image segmentation algorithms computer vision methods from the OpenCV and Intel Real Sense libraries are used. The subsystem for features extracting and gestures classification is based on the modified VGG16 by using the TensorFlow&Keras deep learning framework. Performance of the static gestures recognition system is evaluated using maching learning metrics. Experimental results show that the proposed model, trained on a database of 2000 images, provides high recognition accuracy both at the training and testing stages. ru
dc.language.iso en ru
dc.publisher Indonesian Journal of Electrical Engineering and Computer Science ru
dc.relation.ispartofseries Vol. 21, No. 1, January 2021, pp. 398~405;
dc.subject Computer vision ru
dc.subject Convolutional neural network ru
dc.subject Deep learning ru
dc.subject Gesture recognition ru
dc.subject Machine learning ru
dc.subject VGG-16 ru
dc.title Deep learning based static hand gesture recognition ru
dc.type Article ru


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись