Репозиторий Dspace

Generalized Hankel shifts and exact Jackson–Stechkin inequalities in L2

Показать сокращенную информацию

dc.contributor.author Tileubayev, T.E.
dc.date.accessioned 2024-12-18T05:07:17Z
dc.date.available 2024-12-18T05:07:17Z
dc.date.issued 2023
dc.identifier.issn 2663-5011
dc.identifier.other DOI 10.31489/2023M2/142-159
dc.identifier.uri http://rep.enu.kz/handle/enu/20277
dc.description.abstract In this paper, we have solved several extremal problems of the best mean-square approximation of functions f on the semiaxis with a power-law weight. In the Hilbert space L 2 with a power-law weight t 2α+1 we obtain Jackson–Stechkin type inequalities between the value of the Eσ(f)-best approximation of a function f(t) by partial Hankel integrals of an order not higher than σ over the Bessel functions of the first kind and the k-th order generalized modulus of smoothnes ωk(B r f, t), where B is a second–order differential operator ru
dc.language.iso en ru
dc.publisher Bulletin of the Karaganda University. Mathematics Series ru
dc.subject best approximation ru
dc.subject generalized modulus of smoothness of m-th order ru
dc.subject Hilbert space ru
dc.title Generalized Hankel shifts and exact Jackson–Stechkin inequalities in L2 ru
dc.type Article ru


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись