Показать сокращенную информацию
dc.contributor.author | Tileubayev, T.E. | |
dc.date.accessioned | 2024-12-18T05:07:17Z | |
dc.date.available | 2024-12-18T05:07:17Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 2663-5011 | |
dc.identifier.other | DOI 10.31489/2023M2/142-159 | |
dc.identifier.uri | http://rep.enu.kz/handle/enu/20277 | |
dc.description.abstract | In this paper, we have solved several extremal problems of the best mean-square approximation of functions f on the semiaxis with a power-law weight. In the Hilbert space L 2 with a power-law weight t 2α+1 we obtain Jackson–Stechkin type inequalities between the value of the Eσ(f)-best approximation of a function f(t) by partial Hankel integrals of an order not higher than σ over the Bessel functions of the first kind and the k-th order generalized modulus of smoothnes ωk(B r f, t), where B is a second–order differential operator | ru |
dc.language.iso | en | ru |
dc.publisher | Bulletin of the Karaganda University. Mathematics Series | ru |
dc.subject | best approximation | ru |
dc.subject | generalized modulus of smoothness of m-th order | ru |
dc.subject | Hilbert space | ru |
dc.title | Generalized Hankel shifts and exact Jackson–Stechkin inequalities in L2 | ru |
dc.type | Article | ru |