Репозиторий Dspace

Indoor Air Quality Control Using Backpropagated Neural Networks

Показать сокращенную информацию

dc.contributor.author Uskenbayeva, Raissa
dc.contributor.author Altayeva, Aigerim
dc.contributor.author Gusmanova, Faryda
dc.contributor.author Abdulkarimova, Gluyssya
dc.contributor.author Berkimbaeva, Saule
dc.contributor.author Dalbekova, Kuralay
dc.contributor.author Suiman, Azizah
dc.contributor.author Zhanseitova, Akzhunis
dc.contributor.author Amreyev, Aliya
dc.date.accessioned 2024-12-18T05:34:37Z
dc.date.available 2024-12-18T05:34:37Z
dc.date.issued 2022
dc.identifier.issn 1546-2226
dc.identifier.other DOI:10.32604/cmc.2022.020491
dc.identifier.uri http://rep.enu.kz/handle/enu/20286
dc.description.abstract Providing comfortable indoor air quality control in residential construction is an exceedingly important issue. This is due to the structure of the fast response controller of air quality. The presented work shows the breakdown and creation of a mathematical model for an interactive, nonlinear system for the required comfortable air quality. Furthermore, the paper refers to designing traditional proportional integral derivative regulators and proportional, integral, derivative regulators with independent parameters based on a backpropagation neural network. In the end, we perform the experimental outputs of a suggested backpropagation neural network-based proportional, integral, derivative controller and analyze model results by applying the proposed system. The obtained results demonstrated that the proposed controller can provide the required level of clean air in the room. The proposed developed model takes into consideration international Heating, Refrigerating, and air conditioning standards as ASHRAE AND ISO. Based on the findings, we concluded that it is possible to implement a proposed system in homes and offer equivalent indoor air quality with continuous mechanical ventilation without a profuse amount of energy. ru
dc.language.iso en ru
dc.publisher Computers, Materials & Continua ru
dc.relation.ispartofseries vol.70, no.2;
dc.subject Air quality ru
dc.subject indoor air ru
dc.subject PID ru
dc.subject backpropagation ru
dc.subject math model ru
dc.subject controller ru
dc.title Indoor Air Quality Control Using Backpropagated Neural Networks ru
dc.type Article ru


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись