Репозиторий Dspace

On weighted integrability of the sum of series with monotone coefficients with respect to multiplicative systems

Показать сокращенную информацию

dc.contributor.author Turgumbaev, M.Zh.
dc.contributor.author Suleimenova, Z.R.
dc.contributor.author Tungushbaeva, D.I.
dc.date.accessioned 2024-12-18T07:42:21Z
dc.date.available 2024-12-18T07:42:21Z
dc.date.issued 2023
dc.identifier.issn 2663-5011
dc.identifier.other DOI 10.31489/2023M2/160-168
dc.identifier.uri http://rep.enu.kz/handle/enu/20328
dc.description.abstract In this paper, we consider the questions about the weighted integrability of the sum of series with respect to multiplicative systems with monotone coefficients. Conditions are obtained for weight functions that ensure that the sum of such series belongs to the weighted Lebesgue space. The main theorems are proved without the condition that the generator sequence is bounded; in particular, it can be unbounded. In the case of boundedness of the generator sequence, the proved theorems imply an analogue of the well-known Hardy-Littlewood theorem on trigonometric series with monotone coefficients. ru
dc.language.iso en ru
dc.publisher Bulletin of the Karaganda University. Mathematics Series ru
dc.subject multiplicative systems ru
dc.subject decomposition ru
dc.subject weighted integrability ru
dc.subject sum of series ru
dc.subject generator sequence ru
dc.subject monotone coefficients ru
dc.subject Hardy-Littlewood theorem ru
dc.subject Lebesgue space ru
dc.title On weighted integrability of the sum of series with monotone coefficients with respect to multiplicative systems ru
dc.type Article ru


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Просмотр

Моя учетная запись