Показать сокращенную информацию
dc.contributor.author | Alimbaev, A. A. | |
dc.contributor.author | Naurazbekova, A. S. | |
dc.contributor.author | Kozybaev, D. Kh. | |
dc.date.accessioned | 2024-12-25T06:03:21Z | |
dc.date.available | 2024-12-25T06:03:21Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | A. A. Alimbaev, A. S. Naurazbekova, D. Kh. Kozybaev, Linearization of automorphisms and triangulation of derivations of free algebras of rank 2, Sib. Elektron. Mat. Izv. ` , 2019, Volume 16, 1133–1146 | ru |
dc.identifier.issn | 1813-3304 | |
dc.identifier.other | doi.org/10.33048/semi.2019.16.077 | |
dc.identifier.uri | http://rep.enu.kz/handle/enu/20342 | |
dc.description.abstract | We define a class of ◦-varieties of algebras and prove that the tame automorphism group of a free algebra of rank two of any ◦-variety of algebras over a field admits an amalgamated free product structure. In particular, the automorphism group of a free right-symmetric algebra of rank two admits an amalgamated free product structure. Using this structure, we prove that any locally finite group of automorphisms of this algebra is conjugate to a subgroup of affine or triangular automorphisms. This implies that any reductive group of automorphisms of a two-generated free right-symmetric algebra is linearizable and any locally nilpotent derivation of this algebra is triangulable over a field of characteristic zero. All of these results are true for free commutative and free non-associative algebras of rank two. | ru |
dc.language.iso | other | ru |
dc.publisher | Siberian Electronic Mathematical Reports | ru |
dc.relation.ispartofseries | Volume 16, 1133–1146; | |
dc.subject | free right-symmetric algebra | ru |
dc.subject | automorphism | ru |
dc.subject | free product | ru |
dc.subject | linearization | ru |
dc.subject | triangulation | ru |
dc.title | Linearization of automorphisms and triangulation of derivations of free algebras of rank 2 | ru |
dc.title.alternative | ЛИНЕАРИЗАЦИЯ АВТОМОРФИЗМОВ И ТРИАНГУЛЯЦИЯ ДИФФЕРЕНЦИРОВАНИЙ СВОБОДНЫХ АЛГЕБР РАНГА 2 | ru |
dc.type | Article | ru |