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When q;; =1,i =j =1 the inequality (1) was investigated in [1], [2] for various
combinations of the parameters p, s and q.

Our main result reads as follows:

Theorem 1. Let 1 < p,s < q < +oo and the elements of matrix (a;;) satisfy condition (2).

Then the inequality (1) holds if and only if A = max{A,, A,} < oo, where

Ay
L, 1
- [o.0] , [o.0] , S_[
= sup (Z ) z a]pm v] (Z w; s > , 3)
m=1 4 4
i=1 j=m i=m
Ay
L 1
- [o.0] [o.0] , S_[
= sup (Z afu ) D (Z wis ) 4)
mz1 =1 j=m i=m

Moreover, where A = C(A is approximately equal to C) is best constant in (1).
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We consider the following third-order difference equation
ly = —A®y, + aAy; = af'f;, fi€l, i€Z={0+1+243, ..}, (1)

where
= {yl l_—OO’

Aty ={A_ Y320 = i — Yic1 )22 oo
Ary = {A+y l——oo = {¥iy1 — yi}?-zoiom

+ oo

A®y; = A(APy;) = AMyipr — 29 + ¥ie132 00 = i1 — 3V + 3Vic1 — Viea} il o,

and 0<a <1 a =>&>0.

In this work we will set that equation has unique solution and for it the estimate
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° 1 1
c’Ay, S—ilyi , a+?:1, (1< p<o) (2)

I Cipl

)

holds.

The theory of differential operators finds various applications in all fields of modern
science, in particular, in biology, economics, physics, and chemistry. Attention to difference
operators and the equations derived from them originates from the use of difference operator
devices in the study of the solvability of differential, integral and functional equations. The study
of different types of difference equations is implemented in the works of many authors, including
A.G. Baskakov, R. Bellman and K.L. Cook, I.C. Gohberg and I.A. Feldman, P.P. Zabreiko and
Nguyen Van Minh, S.G. Crane, W.G. Kurbatov, B.M. Levitan and V.V. Zhikov, H.L. Masser
and H.H. Schaeffer, W.M. Turin, D. Henry, M. Otelbaev, K.N. Ospanov.

Estimate of type (2) for the first order difference equation was obtained in [1] and for
second order equation in the work [2, 3].

Our main result reads:

Theorem. Let ¢c; = ¢ > 0. Then equation (1) at 1 > a > 0 and for any right-hand side of

f={i}ely(a+ 5 = 1) has a solution satisfying inequality (2).

To proof the theorem at first we denote Ay, = Z,, so we have
lz=-A?z, +cz =c’f,. A3)

Y

Then multiply the both side of equation (3) by Z; (Zi2 )2 (y > —1) and sum over all by i we get:

+00 4
2

Z[— ANz, (zj )% +¢,z,(z2 )Z} = i:Z:ci“ fz (zf)

i=—0

It is easy to check the following ratios:

(4)

v

i(A(Z)Zi )Zi (Zi2 )E = i[(zm —-7)— (Zi — Zi—l)]zi (Ziz)g =

=0

=0

= i(zlﬂ 2; )2 (22)2 - i(zm — )Zi+1(zi2 )g =

Obviously, each summand of the sum on the right side of the last equality is not positive.
Therefore, an estimate follows from the ratio (4):

+00 +00

Zci ‘Zi ‘ZW < Zci”“zi ‘M‘ fi‘ =

j=—00 ji=—o0
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L=

<[ Zer
=0

(1+7)p j

Take p, a, y satisfying conditions: pa =1, (1+y)p=2+y, p=
inequalities are eliminated: 1 < p < o,y > —1,

(i\fi\p)h, (%4‘%:1, 1< p<ooj.
1

=27
y=-r Then the

1 1
+00 2-p +00 2-p B +00 . ;
D el e D alzfer || DR

j=—00 j=—00 j=—00

Therefore, there is an assessment

(sehl VP <(80)  @ion

Let {f;} be a finite sequence. Then equation (1), by virtue of condition ¢; = &> 0 in [,
has a solution {y;}. Using inequality (2), it is not difficult to make sure that this solution belongs

to L, at §+ a = 1. Passing a to 0 or 1, we get that the above is true at a € [0,1], and the

inequality (2) holds.
If now {f]} belongs to 1,,/(1 < p’ < o), but is not a finite sequence, then, approximating
{fj} in L,/ finite sequences, we get that equation (1) has a solution satisfying inequality (3).
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Perturbation theory is the most used techniques in quantum mechanics, atomic physics and
especially in the study of dynamical systems. The classical method is for one perturbated
problem obtaining complete system of eigenfunctions. (If system is complete, it is a basis of the
space.) Main purpose of this work to defining does singular perturbated Laplace operators has a
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