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Abstract: In this study, we synthesized a ternary transition metal sulfide, Zn0.76Co0.24S (ZCS-CE),
using a one-step solvothermal method and explored its potential as a Pt-free counter electrode for
dye-sensitized solar cells (DSSCs). Comprehensive investigations were conducted to characterize the
structural, morphological, compositional, and electronic properties of the ZCS-CE electrode. These
analyses utilized a range of techniques, including X-ray diffraction, scanning electron microscopy,
energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The electrocatalytic
performance of ZCS-CE for the reduction of I3

− species in a symmetrical cell configuration was
evaluated through electrochemical impedance spectroscopy and cyclic voltammetry. Our findings
reveal that ZCS-CE displayed superior electrocatalytic activity and stability when compared to plat-
inum in I−/I3

− electrolyte systems. Furthermore, ZCS-CE-based DSSCs achieved power conversion
efficiencies on par with their Pt-based counterparts. Additionally, we expanded the applicability of
this material by successfully powering an electrochromic cell with ZCS-CE-based DSSCs. This work
underscores the versatility of ZCS-CE and establishes it as an economically viable and environmen-
tally friendly alternative to Pt-based counter electrodes in DSSCs and other applications requiring
outstanding electrocatalytic performance.

Keywords: ternary sulfide; dye-sensitized solar cell; Pt-free counter electrode; photoelectrochromic
device; Prussian Blue

1. Introduction

Dye-sensitized solar cells (DSSCs), referred to as the third generation of photovoltaic
technology, have seen a surge in research efforts in recent decades. These innovative solar
cells, first reported in 1991 and with a modest 7% efficiency, have since emerged as a
promising alternative to expensive silicon-based photovoltaics. Their appeal lies in their
ease of fabrication under ambient conditions, flexibility, and cost-effectiveness [1–3]. Recent
advances in DSSCs have produced astonishing results. They achieve a remarkable energy
conversion efficiency of 15.2% under standard 1.5 AM light conditions and an unprece-
dented PCE of 34% under ambient light conditions [4,5]. This outstanding performance
positions DSSCs as viable options for outdoor and indoor applications [6,7]. Nevertheless,
the commercialization of DSSCs has suffered setbacks primarily due to economic factors,
including the cost of the technology and its moderate life expectancy. As a result, the focus
of DSSC research has shifted to optimizing performance and reducing costs.

Despite these challenges, the use of DSSCs represents an extremely novel and promis-
ing method for harnessing solar energy. The major components of these photovoltaic
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devices include the photoanode, sensitizers, electrolyte, and counter electrode, all of which
are critical for effective operation. Figure 1 shows a schematic diagram illustrating the
operation of DSSCs. The photoanode plays a central role in the absorption and conversion
of solar energy. It is usually made of nanocrystalline titanium dioxide (TiO2), which is
the preferred material due to its numerous advantageous properties, such as its excellent
electron mobility, stability, and cost-effectiveness. Its compatibility with dye molecules due
to its porosity and ease of fabrication make it a preferred choice for the efficient conversion
of solar energy [8]. The sensitizers or dyes in DSSCs are responsible for capturing solar
energy and converting it into electricity by absorbing light, generating electron–hole pairs,
injecting electrons into the semiconductor, and facilitating regeneration of the sensitizer
molecule to sustain the photovoltaic process. This mechanism enables DSSCs to efficiently
harness sunlight and convert it into usable electrical energy. Among commercial dyes, N719
is still widely accepted as a reference dye, mainly because of its well-documented optical
and electrochemical properties. In addition, it is preferred because of its relatively high
conversion efficiency and standardized test protocols that allow researchers to evaluate the
performance of DSSCs using established methods [9]. To enable the continuous conversion
of absorbed sunlight into electricity in a DSSC, an essential component is the electrolyte
solution located between the photoanode and the counter electrode. Among the most
widely used and established electrolyte systems employed in DSSCs is the iodide/triiodide
redox couple. This choice is mainly due to its exceptional efficiency in facilitating electron
transfer and the regeneration of dye molecules [10]. In addition to traditional liquid elec-
trolytes, the DSSC research community has recently shown increased interest in quasi-solid
and solid-state electrolytes. These emerging alternatives have distinct advantages over
their liquid counterparts, such as higher stability and lower potential for leakage. They
are typically made from polymer or gel matrices, highlighting their potential for future
advances in DSSC technology [11].
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Figure 1. A schematic diagram of the operational principles of DSSC. CB and VB denote the conduc-
tion and valence band of the TiO2, respectively. S/S+ signifies the ground and cationic state of the
dye, and S* represents the excited state of the dye. FTO stands for fluorine-doped SnO2.

Due to its excellent catalytic activity, platinum is the conventional and widely accepted
choice for counter electrodes (CEs) in DSSCs [12]. Pt enables efficient electron transport at
the counter electrode and supports the regeneration of oxidized dye molecules. Moreover,
platinum effectively drives the reduction of oxidized species in the electrolyte due to its
low overpotential for the reduction reaction. However, one of the drawbacks of using Pt as
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a counter electrode is its high cost, which limits the scalability and affordability of DSSCs.
In addition, Pt can be degraded and oxidized by the liquid electrolyte, especially when the
redox pair I−/I3

− is used, leading to stability problems [13]. Recently, extensive efforts
have been made to develop platinum-free counter electrodes. The ideal material should
not only be inexpensive, but also have excellent electrocatalytic activity in the reduction
of triiodide and high stability in corrosive environments. Among the various materials
studied, transition metal chalcogenides stand out due to their impressive electrocatalytic ac-
tivity, chemical stability, and abundant availability [14–21]. However, compared to Pt-based
solar cells, DSSCs with transition metal chalcogenides still lag behind in terms of power
conversion efficiency (PCE). In this context, ternary transition metal chalcogenides prove to
be a more promising route. They are characterized by the presence of two cations that cause
charge delocalization through d–d overlap within the crystal lattice. This phenomenon en-
hances the electrocatalytic activity of the material [22,23]. Recent studies have investigated
counter electrodes based on ternary transition metal chalcogenides for DSSCs and obtained
remarkable results, such as CoSbS (5.38%, Pt: 5.54%) [24], NiCo2S4 (8.29%, Pt: 7.35%) [25],
CuCo2S4 (7.56%, Pt: 7.42%) [17], Ni0.95Mo0.05S (7.15%, Pt: 7.20%) [26], and NiAl2S4 (5.02%,
Pt: 5.38%) [27]. In 2019, Li and Jin et al. presented a ternary sulfide counter electrode based
on Zn0.76Co0.24S for DSSCs, which achieved a PCE of 7.42% using a two-step preparation
method [28].

In this study, we introduce a Zn0.76Co0.24S-based DSSC counter electrode, designated
as ZCS-CE, synthesized via a cost-effective one-step solvothermal process. ZCS-CE exhibits
comparable photovoltaic performance to Pt-based DSSCs. Unlike prior research [28], which
employed a more complex and expensive two-step synthesis method, we propose an in-
novative approach to enhance the catalytic activity of Zn0.76Co0.24S through a streamlined
one-step process, reducing production costs. We comprehensively investigate its electro-
chemical behavior and conduct a comparative evaluation of composite DSSCs utilizing
platinum and ZCS-CE as counter electrodes. This analysis reveals the superior durability
of solar cells equipped with ZCS-CE, while also highlighting the cost-saving benefits of
the one-step synthesis. The outcomes of this study hold the potential to advance DSSC
technology by offering a more sustainable, eco-friendly, and economically viable approach
to harness solar energy.

In the following sections, we will discuss the synthesis procedure, structural and
morphological characterization, and electrochemical behavior of the Zn0.76Co0.24S electro-
catalyst, and present a performance evaluation of the ZCS-CE in DSSCs. These results
open new opportunities for the development of low-cost, environmentally friendly, and
high-performance solar cells and contribute to the global efforts to harness solar energy for
a clean and sustainable future. In addition to our primary focus on developing efficient and
cost-effective DSSCs, we are expanding our research to explore potential applications of
DSSCs in photoelectrochromic devices (PECDs). PECDs are devices that can dynamically
change their optical properties in response to external stimuli such as light or applied
voltage. The integration of DSSCs into PECDs holds promise for the development of smart
and energy-efficient solutions in a variety of areas, including smart windows, eyeglasses,
and various applications where adjustable transparency or coloration is desired.

2. Materials and Methods
2.1. Materials

All chemical reagents and materials are from commercial sources and have been used
without further modification unless otherwise noted.

2.2. Synthesis of ZCS-CE

A solution-based method was used to deposit a Zn0.76Co0.24S layer on a glass substrate
coated with fluorine-doped tin oxide (FTO). Before depositing the ZCS-CE layer, the
FTO substrates were thoroughly cleaned by washing with soapy water, deionized water,
and acetone under ultrasonic conditions. To prepare the zinc–cobalt sulfide material
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by solvothermal synthesis, the following steps were performed: thiourea (0.5 mmol),
Zn(NO3)2 × 6H2O (0.125 mmol), and Co(NO3)2 × 6H2O (0.250 mmol) were dissolved in
35 mL ethanol at room temperature for 30 min. This solution was then placed in a 50 mL
stainless steel reactor with a Teflon liner, where the FTO glass substrate was attached to the
wall with the conducting side down. The mixture was gradually heated at a rate of 5 ◦C per
minute until it reached 200 ◦C, and this temperature was maintained for 4 h. After natural
cooling to room temperature, the electrodes were repeatedly rinsed with deionized water
and ethanol to remove unreacted compounds. They were then dried in a vacuum oven at
80 ◦C for 12 h. For comparison with the fabricated ZCS-CE, a control CE was also prepared
by applying Pt paste (consisting of terpineol and hexachloroplatinic acid, Sigma-Aldrich,
St. Louis, MO, USA) to a clean and dry FTO glass substrate and then annealing at 500 ◦C
for 30 min.

2.3. Fabrication of Dye-Sensitized Solar Cells

Preparation of the photoanode began with cutting FTO glass (2.2 mm, surface resistiv-
ity 7 Ω/sq, Sigma-Aldrich) into pieces of 1.5 × 2.0 cm, washing in ethanol and acetone for
30 min each with ultrasound, and then drying under reduced pressure. A compact TiO2
film was deposited by immersing the clean and dry FTO slides in a 50 mM titanium (IV)
isopropoxide solution in 1 M aqueous HCl for 30 min and then sintering at 500 ◦C for the
same time. The compact film was then coated with a transparent TiO2 paste (DN-EP03,
Dyenamo (Stockholm, Sweden), particle size: 18–20 nm) using a doctor blade technique.
The film was air-dried for one hour before being sintered stepwise at 125 ◦C, 325 ◦C, 425 ◦C,
and 500 ◦C. The transparent TiO2 film was coated with a scattering TiO2 film (Greatcell
Solar WER2-O, Sigma-Aldrich, particle size: 150–250 nm) by doctor blading after cooling to
70 ◦C. The film was then air-dried for one hour before being sintered in the same manner
as the transparent TiO2 layer. The electrodes were then immersed in a solution of 0.25 mM
dye N719 (Sigma-Aldrich) in a mixture of acetonitrile:tert-butanol (1:1) with 0.75 mM chen-
odeoxycholic acid (CDCA, Sigma-Aldrich) for 24 h. The dye-loaded electrodes were then
carefully washed with ethanol before drying. Finally, the counter electrode was securely
attached to the TiO2 photoanode with double-sided tapes acting as spacers after dropping
the iodide/triiodide redox electrolyte (DN-OD03 S104, Dyenamo) over it.

2.4. Deposition of Prussian Blue and Fabrication of Photoelectrochromic Device

After ultrasonic cleaning in a mixture of ethanol and acetone for 15 min, a glass
substrate coated with FTO with a size of 0.5 × 1.5 cm2 was used as a conductive substrate
for the Prussian Blue (PB) electrochromic layer. This electrochromic layer was deposited
on the FTO surface using the electrodeposition method according to a procedure adopted
from the literature [29] with minor modifications. Specifically, the PB film was created
using the chronoamperometry method with a deposition time of 5 s and a voltage of
0.4 V. A standard three-electrode configuration was used for this deposition process, with
the FTO-coated glass, Ag/Ag+, and Pt wires serving as working, reference, and counter
electrodes, respectively. The electrolyte solution consisted of 20 mM each of HNO3, NaNO3,
Fe(NO3)3 × 9H2O, and K3[Fe(CN)6] in a 30 mL electrodeposition bath.

In the fabrication of the photoelectrochromic device, two prefabricated dye-sensitized
solar cells were connected in series with a Pt wire. In addition, a PB-coated FTO substrate
was immersed in an electrolyte solution. The anode (−) of the DSSCs was connected
to the PB-coated FTO, while the ZCS-CE-based counter electrode (+) was connected to
the Pt wire via an outer conductor. The electrolyte solution contained 0.1 M NaNO3 and
0.1 M HNO3. The performance of the photoelectrochromic device was investigated under
sunlight irradiation (AM 1.5).

2.5. Characterization

An X-ray diffractometer (XRD, Rigaku SmartLab X-ray, Cedar Park, TX, USA) was
used to determine the structural features of the synthesized materials. Energy dispersive
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X-ray spectroscopy and NEXSA Thermo Scientific (Waltham, MA, USA) X-ray photoelec-
tron spectroscopy (XPS) were used to determine the material composition, while a Zeiss
(Jena, Germany) Crossbeam 540 scanning electron microscope (SEM) was used to study the
morphological properties. The photovoltaic evaluation was performed using the Dyenamo
toolbox (DN-AE01). A Palmsens4 potentiostat was used for electrochemical experiments.
The electrochemical impedance spectroscopy (EIS) of the DSSCs was performed in complete
darkness with a bias voltage of −0.72 V, an amplitude of 10 mV, and a frequency range
of 0.1–100,000 Hz. EIS was performed on the symmetrical dummy cells under the same
conditions but with a bias voltage of 0 V. Cyclic voltammetry (CV) to evaluate the catalytic
activity of the electrocatalysts was performed at a scan rate of 0.1 V/s using Ag/Ag+, a Pt
wire, and the prepared materials (Pt and/or ZCS-CE films on FTO glass) with the working
area of 2.25 cm2 as the reference electrode, CE, and working electrode, respectively. LiI
(10 mM), LiClO4 (0.1 M), and I2 (1 mM) solution in acetonitrile (50 mL) were the compo-
nents of the electrolyte used for the CV test. A Thermo Scientific Evolution 300 UV-Vis
spectrophotometer was used to study the optical performance of the electrochromic device
(ECD). The experiment to evaluate the ECD was performed in a three-electrode system
using Prussian Blue film on FTO glass as the working electrode, platinum wire as the
counter electrode, and Ag/Ag+ as the reference electrode. Cycles were performed with an
aqueous electrolyte of 0.1 M NaNO3 and 0.1 M HNO3 (30 mL) and within a potential range
of −0.5 V to +1.0 V. The working area of the PB film was 0.5 cm2 and the voltage scan rate
was 20 mV/s.

3. Results and Discussion
3.1. Characterization of ZCS-CE

Ternary zinc–cobalt sulfide was synthesized using a solvothermal one-pot method,
as shown in Figure 2. The precursors of the elements Zn, Co, and S were taken in suitable
molar ratios and thoroughly dissolved by stirring and sonication. Heating the prepared
solution at 200 ◦C for 4 h together with a glass FTO substrate in a Teflon-lined autoclave
reactor resulted in the formation of a ZCS-CE film on the FTO.
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Figure 2. Schematic illustration of the one-pot synthesis of a Zn0.76Co0.24S counter electrode on an
FTO substrate.

The morphological characteristics of the ZCS-CE sample prepared on the FTO substrate
were analyzed using scanning electron microscopy (see Figure 3). As shown in Figure 3a,
the ZCS-CE has a predominantly spherical shape with diameters between 100 and 150 nm.
The SEM image shows the presence of microspheres, each of which has a distinct nanoflock-
like structure and forms a recognizable cluster on the surface. Figure 3b provides an insight
into the thickness of the ZCS-CE layer on the FTO glass, which measures approximately



Nanomaterials 2023, 13, 2812 6 of 16

465 nm. This image shows a smooth, flat, and uniform growth of the ZCS-CE layer that is
consistent along its entire length.
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perspective.

The as-prepared ZCS-CE sample underwent thorough investigation by powder X-ray
diffraction analysis to confirm its purity and crystal structure. In Figure 4a, the X-ray
diffraction pattern of ZCS-CE shows characteristic peaks at 2θ-diffraction angles of 28.6◦,
47.6◦, and 56.4◦ corresponding to the (111)-, (220)-, and (311)-planes of the cubic phase of
Zn0.76Co0.24S (JCPDS #47-1656) [30]. The pronounced sharpness of these peaks and the
conspicuous absence of extraneous signals in the diffraction pattern are compelling evi-
dence of the high crystallinity and impeccable purity of the ZCS-CE material. In particular,
these results confirm the successful synthesis of ZCS-CE by a simple one-step solvothermal
process. To validate the presence and uniform distribution of the constituent elements (Zn,
Co, and S) on the FTO glass substrate, we employed energy dispersive spectroscopy (EDS),
as depicted in Figure 4b. EDS is a powerful technique that not only identifies the elemental
composition of materials but also provides spatial information about their distribution.
The EDS analysis reaffirms the presence of all expected elements throughout the examined
area, and equally crucially, it demonstrates their uniform dispersion. This uniformity is
of paramount importance in various applications, notably in the development of semicon-
ductor materials and photovoltaic devices. In these contexts, the consistency of element
distribution significantly influences material performance and efficiency.

X-ray photoelectron spectroscopy was employed to investigate the chemical com-
position and oxidation states of the elements. In Figure 5a, the XPS spectrum reveals
characteristic peaks corresponding to the elements Zn, Co, and S, all possessing a 2p
electron configuration. These findings align with the results of energy dispersion X-ray
spectroscopy. Notably, the presence of carbon and oxygen peaks can be attributed to the
adsorption of CO2 and moisture from ambient air on the sample’s surface. For a more
in-depth examination of the chemical states, we turn to the high-resolution spectrum of Zn
2p (Figure 5b), in which two prominent peaks at 1022.3 eV and 1045.4 eV correspond to Zn
2p3/2 and Zn 2p1/2, respectively. These peaks confirm the 2+ oxidation state of zinc [31].
Similarly, the Co 2p emission spectrum in Figure 5c displays the coexistence of 2+ and 3+
oxidation states at the surface of the ZCS-CE sample. Here, two primary peaks at 781.2 eV
(Co 2p3/2) and 797.3 eV (Co 2p1/2) are associated with Co2+, while two additional sharp
peaks at 778.5 eV and 793.6 eV represent Co3+, confirming their distinct oxidation states.
The presence of Co 2p satellite peaks at 785.6 eV and 803.9 eV supports these results [32].
The high-resolution S 2p spectrum, shown in Figure 5d, exhibits an asymmetric peak that
can be divided into two distinct peaks at 161.6 eV and 162.8 eV, corresponding to S 2p3/2
and S 2p1/2, respectively. These peaks align with metal–sulfur bonds as described in the
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literature [33]. Additionally, a broad satellite peak at 169.6 eV suggests various forms of
oxidized sulfur. Overall, the XPS analysis conclusively establishes the chemical composi-
tion of the ZCS-CE sample, including the Zn2+, Co2+, Co3+, and S2− states, which agrees
seamlessly with the XRD results.
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3.2. Electrochemical Analysis of ZCS-CE

To evaluate the electrocatalytic performance of our fabricated ZCS-CE, cyclic voltam-
metry experiments were performed using a standard three-electrode configuration and
a scan rate of 100 mV/s. As shown in Figure 6a, both the Pt and ZCS CEs show distinct
anodic and cathodic peaks associated with two electron transfer processes involving io-
dide/triiodide redox reactions. These reactions can be described by Equations (1)–(4), which
represent the oxidation and reduction of I3

−/I2 and I−/I3
− species at the electrode surface.

Ox1: 3I− → I−3 + 2e− (1)

Ox2: 2I3
− → 3I2 + 2e− (2)

Red1: I3
− + 2e− → 3I− (3)

Red2: 3I2 + 2e− → 2I−3 (4)
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Usually, the electrocatalytic performance of CE materials is evaluated in terms of I3
−

reduction using two key parameters derived from the left pair of oxidation-reduction peaks
(Ox1/Red1): the peak cathodic current density (JPC1) and the peak-to-peak distance (Ep.p)
between the Ox1 and Red1 peaks. Higher JPC values and lower Ep.p values for the counter
electrodes indicate lower overpotentials for the initiation of the I−/I3

− redox reaction and
higher reaction rates, respectively. In our study, the ZCS-CE outperforms its Pt counterpart
by exhibiting higher peak cathodic current density. This result indicates that triiodide is
reduced faster on the ZCS-CE surface, suggesting better overall electrocatalytic activity.
Moreover, both the Pt and ZCS CEs exhibit the same Ep.p value (0.38 V), indicating their
comparable abilities to initiate the I−/I3

− redox reaction. Figure 6b shows the CV of ZCS-
CE at different scan rates, with the redox peak signals becoming more intense at higher scan
rates. The linear relationship between the current density of the redox peaks and the square
root of the scan rate (Figure S1, Supporting Information) shows that the electrocatalyst
and the redox electrolyte do not interact chemically. Instead, ion diffusion in particular
facilitates the reduction of triiodide.

Electrochemical impedance spectroscopy was used to evaluate the electrocatalytic
activity of the ZCS-CE in symmetrical dummy cells with a CE/electrolyte/CE configuration.
The Nyquist plots for both the ZCS-CE and Pt were fitted using the electrical equivalent
circuit based on the Randles model (see Figure S2 in the Supporting Information), resulting
in well-defined semicircles, as presented in Figure 6c. The series resistance (Rs) of the
electrodes, measured at 16.05 Ω for ZCS-CE and 17.72 Ω for Pt, marks the starting point
of these semicircles in the Nyquist diagram. These results indicate excellent adhesion
and contact behavior between the FTO substrate and the ZCS-CE electrocatalyst, with
lower ohmic resistance compared to Pt. The semicircular region provides information
about the charge transfer resistance (RCT) at the interface between the electrocatalyst and
the electrolyte. In general, a smaller RCT value indicates higher catalytic activity in the
reduction of I3

−/I− during charge transfer. From the EIS–Nyquist plots, the RCT values for
the ZCS-CE and Pt catalysts are 14.97 Ω cm2 and 4.18 Ω cm2, respectively. These results
highlight the increased internal resistance at the electrode–electrolyte interface and the
reduced electrocatalytic reduction of triiodide ions by the ZCS-CE electrocatalyst compared
to the reference electrode, which ultimately affects the performance of the DSSCs.

Tafel polarization curves were employed to evaluate the catalytic performance of the
CE materials, as shown in Figure 6d. The Tafel polarization curve describes three distinct
regions—the polarization region, the Tafel region, and the diffusion region—based on
different voltage levels, from low to high. The polarization region is located in the lower
potential region, the Tafel region is in the middle and plays a central role in controlling
the electrocatalytic activity, while the diffusion region covers the rest of the curve and
determines the diffusion behavior of the cathode ions. Two critical parameters, namely
the limiting diffusion current (Jlim) and the exchange current density (J0), can be derived
from the Tafel profiles. These parameters are critical for evaluating the electrocatalytic
performance of the CE. As shown in Figure 6d, the exchange current density within the Tafel
region can be determined by identifying the intersection of the slope with the zero voltage.
In addition, Equation (5) provides an alternative method for calculating J0, as follows:

J0 = RT/nFRCT (5)

In this equation, R represents the universal gas constant, T represents the absolute
temperature, n represents the number of electrons transferred during the redox process,
F represents the Faraday constant, and RCT is derived from the EIS experiment. In EIS
measurements, high catalytic activity was observed at low RCT values, which should
translate into high J0 values according to Equation (5). When we compared the ZCS-CE
with the Pt, we found that both have a slope in the range of log J0 = 3.30–3.50 mA/cm2,
which indicates comparable catalytic activity and is consistent with the results of EIS
measurements. At the same time, the high value of Jlim indicates a fast ion diffusion rate
within the electrocatalyst. Remarkably, both ZCS-CE and Pt have almost identical Jlim
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values on the panel curves, indicating that the I− and I3
− ions on the surfaces of both

electrodes have similar diffusion rates, which affects the power conversion efficiency values
of the dye-sensitized solar cells.

3.3. Photovoltaic Performance of ZCS-CE

The current–voltage (J-V) characteristics of the newly fabricated dye-sensitized solar
cells with ZCS-CE and standard Pt counter electrodes were measured in order to evaluate
and compare their photovoltaic performance (see Figure 7a). In Table 1, the resulting pho-
tovoltaic parameters are summarized, providing values for the open-circuit voltage (VOC),
short-circuit photocurrent density (JSC), fill factor (FF), and power conversion efficiency.

Nanomaterials 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 

determines the diffusion behavior of the cathode ions. Two critical parameters, namely 

the limiting diffusion current (Jlim) and the exchange current density (J0), can be derived 

from the Tafel profiles. These parameters are critical for evaluating the electrocatalytic per-

formance of the CE. As shown in Figure 6d, the exchange current density within the Tafel 

region can be determined by identifying the intersection of the slope with the zero voltage. 

In addition, Equation (5) provides an alternative method for calculating J0, as follows: 

J0 = RT/nFRCT (5) 

In this equation, R represents the universal gas constant, T represents the absolute 

temperature, n represents the number of electrons transferred during the redox process, 

F represents the Faraday constant, and RCT is derived from the EIS experiment. In EIS 

measurements, high catalytic activity was observed at low RCT values, which should 

translate into high J0 values according to Equation (5). When we compared the ZCS-CE 

with the Pt, we found that both have a slope in the range of log J0 = 3.30–3.50 mA/cm2, 

which indicates comparable catalytic activity and is consistent with the results of EIS 

measurements. At the same time, the high value of Jlim indicates a fast ion diffusion rate 

within the electrocatalyst. Remarkably, both ZCS-CE and Pt have almost identical Jlim val-

ues on the panel curves, indicating that the I− and I3− ions on the surfaces of both electrodes 

have similar diffusion rates, which affects the power conversion efficiency values of the 

dye-sensitized solar cells. 

3.3. Photovoltaic Performance of ZCS-CE 

The current–voltage (J-V) characteristics of the newly fabricated dye-sensitized solar 

cells with ZCS-CE and standard Pt counter electrodes were measured in order to evaluate 

and compare their photovoltaic performance (see Figure 7a). In Table 1, the resulting pho-

tovoltaic parameters are summarized, providing values for the open-circuit voltage (VOC), 

short-circuit photocurrent density (JSC), fill factor (FF), and power conversion efficiency.  

 

Figure 7. (a) Current–voltage curves and (b) Nyquist plot of DSSCs with Pt and ZCS CEs counter 

electrodes. 

Table 1. Photovoltaic parameters and electrochemical impedance spectroscopy results of Pt- and 

ZCS-CE-based CEs. 

CE PCE (%) VOC (V) JSC (mA/cm2) FF RCT (Ω cm2) RS* (Ω) RCT* (Ω) 𝐑𝐓𝐢𝐎𝟐
 (Ω) 

ZCS-CE 7.94 ± 0.02 0.760 ± 0.00 16.12 ± 0.07 0.65 ± 0.00 14.97 ± 0.38 24.32 ± 0.77 17.63 ± 0.31 29.23 ± 0.29 

Pt 8.12 ± 0.09 0.780 ± 0.00 16.24 ± 0.20 0.64 ± 0.02 4.18 ± 0.69 38.41 ± 0.64 11.83 ± 0.41 21.35 ± 0.31 

The DSSC with a Pt counter electrode showed remarkable photovoltaic performance 

with VOC, JSC, and FF values of 0.780 V, 16.24 mA/cm², and 0.64, respectively, resulting in 

a PCE of 8.12%. By contrast, the DSSC with the ZCS-CE counter electrode achieved 

slightly lower performance with VOC = 0.760 V, JSC = 16.12 mA/cm², and FF = 0.65, corre-

sponding to an efficiency of 7.94%. Although the photovoltaic properties of the ternary 

sulfide-based counter electrode lag behind those of the Pt counter electrode, they remain 

Figure 7. (a) Current–voltage curves and (b) Nyquist plot of DSSCs with Pt and ZCS CEs counter
electrodes.

Table 1. Photovoltaic parameters and electrochemical impedance spectroscopy results of Pt- and
ZCS-CE-based CEs.

CE PCE (%) VOC (V) JSC
(mA/cm2) FF RCT (Ω cm2) RS* (Ω) RCT* (Ω) RTiO2 (Ω)

ZCS-CE 7.94 ± 0.02 0.760 ± 0.00 16.12 ± 0.07 0.65 ± 0.00 14.97 ± 0.38 24.32 ± 0.77 17.63 ± 0.31 29.23 ± 0.29
Pt 8.12 ± 0.09 0.780 ± 0.00 16.24 ± 0.20 0.64 ± 0.02 4.18 ± 0.69 38.41 ± 0.64 11.83 ± 0.41 21.35 ± 0.31

The DSSC with a Pt counter electrode showed remarkable photovoltaic performance
with VOC, JSC, and FF values of 0.780 V, 16.24 mA/cm2, and 0.64, respectively, resulting in
a PCE of 8.12%. By contrast, the DSSC with the ZCS-CE counter electrode achieved slightly
lower performance with VOC = 0.760 V, JSC = 16.12 mA/cm2, and FF = 0.65, corresponding
to an efficiency of 7.94%. Although the photovoltaic properties of the ternary sulfide-based
counter electrode lag behind those of the Pt counter electrode, they remain remarkably
comparable, with only 2.2% difference from the reference electrode but with a much lower
production cost.

The superior catalytic activity of the Pt layer contributed significantly to the higher
JSC value observed for the prepared DSSC, which is consistent with our results from Tafel
measurements. The lower open circuit voltage values measured for the DSSCs with the ZCS-
CE counter electrode corresponded to a higher charge transfer resistance at the interface
between the electrocatalyst and the electrolyte, which is consistent with our electrochemical
impedance spectroscopy results from the symmetrical dummy cells. To properly account
for the impact of ZCS-CE on the electrochemical performance of DSSCs, we performed EIS
on a complete cell and fitted the plots shown in Figure 7b with the equivalent electrical
circuit presented in Figure S3 (Supporting Information). The EIS analysis yielded critical
electrochemical insights, including the charge transfer resistance (RCT*) at the counter
electrode–electrolyte interface (represented by a small semicircle on the EIS plot), the
resistance at the TiO2–dye–electrolyte interface (RTiO2 , a large semicircle), and the series
resistance (RS*, where the curve crosses the abscissa axis). These parameters are detailed in
Table 1. The electrocatalytic activity is directly reflected by the size of the small semicircle,
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correlating with RCT* at the counter electrode–electrolyte interface. Generally, a lower RCT*
value signifies heightened electrocatalytic activity in counter electrode materials for redox
reactions within the electrolyte. When comparing the two counter electrodes, the Pt-based
DSSC exhibited a lower RCT* value at 11.83 Ω, while the solar cell employing the ZCS-CE
counter electrode demonstrated a higher charge transfer resistance of 17.63 Ω, which is
consistent with our previous results with the symmetrical dummy cells.

Additionally, we assessed the stability of DSSC devices fabricated with both ZCS-CE
and Pt counter electrodes at room temperature. Photovoltaic parameters were periodically
monitored for up to 200 h (Figure 8). The observed JSC, VOC, FF, and PCE values were
recorded by averaging data from three devices. Notably, the stability of the Pt-based
DSSC exhibited fluctuations within the first 100 h, peaking at a PCE value of 8.35% at
the 75 h mark while maintaining a consistent efficiency of 8.11%. However, the power
conversion efficiency for the Pt counter electrode began to decline after 100 h, eventually
reaching 7.33% by the end of the stability test. This decline may be attributed to the
deactivation of Pt’s catalytic properties upon extended exposure to the corrosive I3

−/I−

electrolyte. Conversely, DSSCs utilizing the ternary sulfide counter electrode displayed
superior stability. Their PCE steadily increased during the initial 25 h, achieving its highest
efficiency peak of 8.28% at both the 25 h and 75 h marks. At the conclusion of the experiment,
the solar cell equipped with the ZCS-CE maintained an efficiency of 8.14%, surpassing
the standard platinum analog’s performance by 10% over the same timeframe. Notably,
this difference was primarily driven by the JSC value, as the VOC values for both Pt and
ZCS CEs remained constant after 100 h, reaching a voltage plateau at 0.8 V. These stability
test results underscore ZCS-CE as an ideal counter electrode material for dye-sensitive
solar cells.
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In a recent study by the research team of Li and Jin [28], Zn0.76Co0.24S was synthesized
in a two-step process. This process first involved the hydrothermal synthesis of a transition
metal oxide, ZnCo2O4, followed by its conversion to sulfide using thioacetamide as a
sulfur source. By contrast, our one-step technique provides a leaner and more efficient
route to the production of Zn0.76Co0.24S, which serves as a promising counter electrode
material. Our approach has several notable advantages, especially in terms of photovoltaic
conversion efficiency and open circuit voltage. Our solar cells based on Zn0.76Co0.24S
achieved an efficiency of 7.94%, exceeding the 7.42% reported in the reference study. In
addition, our cells exhibited a higher VOC of 0.76 V compared to the 0.65 V, indicating the
potential for improved efficiency and higher output voltage. However, it is worth noting
that the reference showed better current generation, with a higher short-circuit current
of 17.5 mA/cm2 compared to our 16.12 mA/cm2. This discrepancy can be attributed to
differences in the size of the nanoparticles. Their particles had a diameter of about 500 nm,
while our synthesis resulted in particles with a diameter of 100 to 150 nm. Unfortunately,
their studies did not provide information on the thickness of their counter electrode or
the concentration of the N719 dye used, which could also affect photovoltaic performance.
Overall, our one-step approach not only improves the efficiency of Zn0.76Co0.24S synthesis,
but also provides a more cost-effective and easily scalable process for the fabrication of
high-performance solar cells.
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3.4. Fabrication and Characterization of Photoelectrochromic Device

To comprehensively evaluate the electrochemical properties of thin Prussian Blue
films, cyclic voltammetry measurements were performed at a scan rate of 20 mV/s. A
three-electrode system was used with a solution containing 0.1 M NaNO3 and 0.1 M HNO3.
The potential range investigated was from −0.5 V to 1.0 V. Figure 9 illustrates the resulting
cyclic voltammogram.
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Figure 9. Electrochemical behavior of the Prussian Blue layer within the voltage range of −0.5 V to
1.0 V. The insets illustrate the visual color changes observed at various electrochemical states.

The voltammogram shows two detectable oxidation peaks and one reduction peak,
indicating the presence of two relatively stable redox couples within the system as well as
an additional oxidation process. Consistent with the chemical reactions described below,
the observed redox peak in the −0.4–0.4 V range corresponds to the conversion of Prussian
Blue to Prussian White (PW) [34]. This transformation is driven by the reduction of Fe3+

ions, accompanied by the intercalation of sodium ions:

Red1
∗: KFeIII

[
FeII(CN)6

]
+ Na+ + e− → KNaFeII

[
FeII(CN)6

]
(6)

Conversely, the reverse oxidation process together with the deintercalation of sodium
ions leads to coloration:

Ox1
∗: KNaFeII

[
FeII(CN)6

]
→ KFeIII

[
FeII(CN)6

]
+ Na+ + e− (7)

The second oxidation peak at 0.72 V (145.24 µA) can be attributed to the partial
oxidation of Fe2+ ions in PB:

Ox2
∗: KFeIII

[
FeII(CN)6

]
→ FeIII

[
FeIII(CN)6

]
+ K+ + e− (8)

The optical properties of the PB films were thoroughly investigated using transmit-
tance spectroscopy, which covers a wide wavelength range from 300 to 800 nm. Figure 10
shows the transmittance spectra of PB in its original, bleached, and dyed states. From
these spectra, we extracted critical data points, highlighting the maximum transmittance
at 488 nm and the minimum at 726 nm. To comprehensively evaluate the performance of
these coatings, we used key parameters such as electrochromic contrast (∆T), contrast ratio
(CR), and optical density (∆OD), which were calculated according to Equations (9)–(11).
These crucial parameters are briefly summarized in Table 2. This rigorous analysis provides
a comprehensive understanding of the optical properties and performance of PB films.

∆T = Tbleached − Tcolored (9)
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CR = Tbleached/Tcolored (10)

∆OD = log (CR) (11)
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accompanied by visual images corresponding to each state.

Table 2. Transmittance (T), electrochromic contrast (∆T), contrast ratio (CR), and optical density
(∆OD) of Prussian Blue in three different states.

λ (nm) Tas-deposited (%) Tcolored (%) Tbleached (%) ∆T (%) CR ∆OD

488 74.11 83.03 90.15 7.12 1.08 0.03
726 27.18 30.74 83.23 52.49 2.71 0.43

The parameters given vividly show the possibilities of optical modulation in the dye
bleaching process. From Figure 10 and Table 2, it can be seen that the most significant
transmittance shift of 52.49% and the highest ∆OD value of 0.43, which distinguish between
the transparent and blue states, occur at a wavelength of 726 nm. Conversely, the lowest
transmission shift of 7.12% and the lowest ∆OD value of 0.03, which distinguish between
the bleached and colored states, are mainly observed at 488 nm.

Recently, there has been increased interest in the development of smart windows
that can be optically controlled, especially as part of green building initiatives [35–37].
Smart windows have attracted attention because of several advantages they offer over
conventional window systems. These include potential savings in air conditioning, heating,
lighting, and curtain requirements. Among the various technologies being explored for
smart windows, photoelectrochromic devices have emerged as a promising solution. PECD
can combine the principles of a dye-sensitized solar cell and an electrochromic device,
resulting in a robust and reliable approach. These devices feature the remarkable ability
to reversibly change their coloration or transparency in response to external stimuli. At
the same time, the DSSCs integrated into the PECD efficiently convert incident light into
electrical energy. This combination of technologies holds significant potential for achieving
dynamic control over various aspects of window functionality. These integrated systems
can seamlessly regulate light transmission, tinting, and energy generation to help promote
sustainable and energy-efficient building practices.

By using dye-sensitized solar cells as an energy source, we seamlessly integrated an
electrochromic PB film into the design of a state-of-the-art photoelectrochromic device.
The schematic diagram of our experimental electrochromic device is shown in Figure 11.
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In this configuration, we had two solar cells connected in series. The negative terminal
of the DSSCs was connected to a PB-coated fluorine-doped tin oxide substrate, while the
positive electrode was connected to another platinum (Pt)-coated FTO substrate via an
outer conductor. The electrolyte solution used in this setup consisted of a 0.1 M NaNO3
+ 0.1 M HNO3 mixture. Upon exposure to light, the electrochromic PB film transitioned
from its initial state to a pale white state. This transition was reversible, and a short-circuit
mechanism was used to return the electrochromic film to its original state, thereby restoring
its coloration.
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Figure 11. Schematic illustration of the photoelectrochromic device powered by dye-sensitized solar cells.

4. Conclusions

In summary, this study represents significant progress in the field of renewable en-
ergy and smart window technologies by synthesizing and characterizing Zn0.76Co0.24S, a
ternary transition metal sulfide electrode prepared by a one-step solvothermal technique.
When used as a counter electrode in dye-sensitized solar cells, ZCS-CE exhibits exceptional
electrocatalytic activity with a competitive power conversion efficiency of 7.94%, making it
a promising alternative to conventional platinum-based CEs. Comprehensive material anal-
yses, including energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy,
X-ray diffraction, and scanning electron microscopy, confirmed the high crystallinity and
purity of ZCS-CE and highlight its suitability for DSSC applications. In particular, ZCS-CE
showed superior stability in electrolyte media and maintained its efficiency over 200 h of
testing. Moreover, the integration of ZCS-CE into a photoelectrochromic device represents
a novel, self-powered system that combines DSSC and electrochromic PB film technolo-
gies. This advancement holds great promise for smart window applications, enabling
dynamic control of tint and transparency for sustainable and energy-efficient building
design, shaping the future of renewable energy and architectural innovation.
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different resolutions.
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