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Abstract: Using the quasi-classical kinetic theory of dielectric relaxation, in addition to existing
methods, fundamental mathematical expressions are built, which make it possible to more strictly
consider the effects of the main charge carriers’ (protons’) tunneling on the numerical values of
the molecular parameters (activation energy, equilibrium concentration) of protons in HBC. The
formulas for calculating the statistically averaged non-stationary quantum transparency of a parabolic
potential barrier for protons have been modernized by more stringent consideration of the effects
of corrections caused by an external electric field. For the model of a double-symmetric potential
well, a generalized nonlinear solution of the quasi-classical kinetic equation of dielectric relaxation in
HBC was built. The phenomenological Bucci-Rive formula for thermally stimulated depolarization
current density (TSDC) was first investigated, taking into account quantum transparency, for the case
of a parabolic potential barrier. The choice of the parabolic shape of the potential barrier allowed,
at a theoretical level, for the mathematical model of relaxation polarization to be brought closer
to the conditions of the real spatial structure of the crystal potential field, in comparison with the
rectangular potential barrier model. It has been found that quantum effects due to proton tunnel
transitions significantly affect the mechanism of thermally stimulated depolarization currents in HBC,
over a wide temperature range (50–550 K) and external field parameters (0.1–1 MV/m). Generalized
solutions of the nonlinear kinetic equation, recorded considering the effects of field parameters on
proton tunnel transitions, made it possible to significantly approximate the theoretical values of
activation energies, equilibrium concentrations of protons and amplitudes of the theoretical maxima
of the current density of thermally stimulated depolarization, according to their experimental values
in the field of low-temperature (50–100 K) and high-temperature (350–550 K) maxima of TSDC density
in HBC. For the first time, precision measurements of TSDC temperature spectra were carried out
for chalcanthite crystals. The effects of alloying impurities concentrations and crystal calcination
temperatures on the parameters of experimental maxima in the TSDC spectrum of chalcanthite
were established. A physical mechanism of the quantum tunnel motion of protons in HBC with a
complex crystal structure (crystalline hydrates, layered silicates, ferroelectric HBC (KDP, DKDP))
is described. The patterns found in this article indicate a fairly high degree of applied scientific
significance for the obtained theoretical results, allowing for the further development of electrophysics
and optoelectronics of heterogeneous structures (MIS, MSM) based on proton semiconductors and
dielectrics (PSD) and their composites.
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1. Introduction

The development and receiving of materials with desired properties is an important
task in condensed matter physics and physical materials’ science, in which hydrogen-
bonded crystals (HBC) have been widely used in radio electronics, optoelectronics, and
laser technology over the past two decades [1,2].

Based on the results of precision measurements of the temperature spectra of ther-
mally stimulated depolarization currents (TSDC) in HBC, using the example of crystals
of natural phlogopite KMg3(AlSi3O10)(OH)2, muscovite KAl2(AlSi3O10)(OH)2, onot talc
Mg3(Si4O10)(OH)2 chemically pure chalcanthite CuSO4·5H2O, at temperatures above
50–550 K and polarizing field strengths of 0.1–1 MV/m, as a rule, 6–7 monorelaxation
maxima are found [1–4]. The physical nature of these maxima, revealed in combination
with the methods of calcination (at temperatures of 373–1373 K) and doping (in solutions
of HCl, HF, NH4OH), is diverse and occurs in the temperature range (100–450 K) through
the relaxation of ionization (H3O+, OH−) and orientational (L, D) Bjerrum defects, as
well as the rotations of H2O in an electric field, with different relaxer activation energies
(0.1–0.7 eV) [4].

Of particular scientific interest is the low-temperature (50–100 K) maximum of TSDC
density in HBC, shown by the low activation energies of relaxers (0.01–0.1 eV) [1,5]. The
temperature position of this maximum in the experiment varies slightly, and the amplitude
significantly depends on the concentrations of alloying impurities [4]. When crystals
are calcined at temperatures of 873–1373 K, this maximum completely disappears [4].
These circumstances allow for us to assert that the physical nature of this low-temperature
maximum significantly differs from the high-temperature maxima (100–450 K) and is
caused by the quantum tunneling transitions of protons inside and between the ions of
the anionic sublattice in the HBC [1,5,6]. Then, low-temperature, thermally stimulated
depolarization in HBC can be defined as nonlinear quantum proton relaxation caused
by the heating of the crystal in the absence of an external electric field [7,8]. This effect
opens up the possibility of applying the quantum theory of proton conduction [1,5] to the
study of nonlinear properties and the development of resonant tunnel diodes and quantum
field-effect transistors based on thin films of composite materials (MIS, MSM structures)
consisting of HBC-class crystals [9–15]. From this point of view, the memory elements of
high-speed, non-volatile devices (DRAM, FeRAM) based on ferroelectric HBC (or materials
similar to them in terms of properties and type of crystal structure) with a rectangular
hysteresis loop (triglycine sulfate (TGS), ferric salt) are promising for modern computer
technology [16–28]. They are characterized by abnormally high residual polarizations and
long relaxation times (from 5 to 10 years), as well as a high thermal stability and mechanical
strength [29–44].

The quantum theory of proton conduction and relaxation [1,5], due to the universality
and generality of mathematical models, will simplify the methodology for studying the
mechanisms of formation of the spontaneous polarization of ferroelectric HBC from the
perspective of protons’ quantum tunneling in a hydrogen sublattice near the point of phase
transition of the second kind [1]. Materials of this class (KDP, DKDP) have practical appli-
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cation in nonlinear optics and laser technology as regulators of laser radiation parameters,
electric gates, etc. [45–51]. Fiber-optic strain sensors based on KDP and related crystals are
promising [52–54].

The high proton conductivity of HBC makes it possible to use materials of this class as
solid-state electrolytes in electrochemical technologies and hydrogen energy [55–61].

From this brief review of the literature, it is obvious that the further development
of theoretical methods for the study of dielectric relaxation kinetics in HBC-class crystals
and their composites is relevant from the perspective of both fundamental research in the
mathematical description and the modeling of relaxation polarization (depolarization) and
proton conduction processes, as well as for the practical applications of proton semicon-
ductors and dielectrics in various branches of technology. The further development of this
theory, within the framework of this work, refers to the improvement in existing equations
and formulas describing proton relaxation and conductivity in HBC [1–8] by more strictly
considering the effects of the characteristic parameters of the crystal structure and the
parameters of external perturbation in formulas on the statistically averaged quantum
transparency of a potential barrier perturbed by an electric field. To this end, we will
take the previously built schemes of quasi-classical calculations of quantum transparency
as a basis for the relaxers (protons), supplemented by mathematical elements that are
important in terms of the physics of these processes. These elements will be introduced to
the design formulas due to their low external disturbance in comparison with the internal
crystalline potential. Previously, these elements were not taken into account in expressions
regarding the quantum transparency of the parabolic potential barrier [5–7]. We will also
propose a generalized non-linear solution of the quasi-classical kinetic equation of dielectric
relaxation [1,6] for a small parameter of the perturbation theory. Solutions to this equation
will be investigated for their polarization and depolarization processes. For the first time,
we will analyze the Bucci–Rive formula, and when calculating the density of the thermally
stimulated depolarization current (TSDC), relaxation times will be calculated by consider-
ing additional corrections to the rate of probability of the quantum transitions of protons
through the parabolic potential barrier due to external perturbations. Previously, these
amendments were not taken into account [1,6]. Note that the choice of the parabolic form
of the potential barrier brings the mathematical model of relaxation polarization closer to
the real spatial structure of the crystal lattice, and the results of numerical calculations of
the relaxer parameters (activation energy, equilibrium concentration) and TSDC density
maxima parameters should be closer to their experimental values than they were for the
previously studied model of the rectangular potential barrier for protons [1,4].

2. Materials and Methods (Theoretical Bases and Methods)

The methods of the quasi-classical theory of dielectric relaxation [1,4] make it possible
to accept a hydrogen ion (proton) as a physical relaxer, whose motion with different
values of molecular parameters (activation energy U0; natural oscillation frequency ν0;
potential barrier width δ0; lattice constant a; equilibrium concentration n0) in the vicinity
(on the set of points of the continuum measure) of the temperatures of the corresponding
monorelaxation maxima determines the features of thermally stimulated depolarization
in various temperature ranges [1,2,4]. This approach makes it possible to classify HBC
by its electrophysical properties in a wide range of field parameters (0.1–1 MV/m) and
temperatures (50–550 K), as proton semiconductors and dielectrics (PSD) [1,3,4].

Theoretical studies carried out using the phenomenological theory of dielectric relax-
ation [1,4] point to the classical mechanism of relaxation polarization caused by the thermal
activation of protons in the HBC at high temperatures (100–450 K). The calculations of the
parameters of relaxers successfully correspond to their measured values in the region of
high-temperature maxima of thermally stimulated depolarization currents (TSDC) [1,4].

In the low-temperature range (50–100 K), the activation energies and equilibrium
proton concentrations in HBC, calculated according to the classical theory, differ markedly
(by 20–50%) [1] from the values calculated from an analysis of the experimental spectra
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of thermally stimulated depolarization currents (TSDC) [1,4]. This indicates the need to
more strictly consider the quantum effects (associated with proton-tunneling transitions)
on the theoretical TSDC density spectra in the nitrogen temperature region. This approach
is further justified in the region of ultra-low temperatures (1–10 K), when the dimensional
effects associated with a high probability of the quantum transition of protons inside
clusters of nanometer size (1–10 nm) are manifested in HBC [1].

Recent theoretical studies have shown that the tunnel transitions of protons continue
to influence the dielectric relaxation in HBC in the region of sufficiently high temperatures
(250–550 K) during the formation of nonlinear space-charge polarization [1,3,7,8].

The aim of this paper is to improve the existing phenomenological theory of dielectric
relaxation in HBC [1,4] by extending it to the low-temperature region (50–100 K). On
this basis, a mathematical substantiation of the features of low-temperature thermally
stimulated depolarization was revealed in the experiment, associated with quantum proton
transitions through hydrogen bonds against the background of small activation energies
and the width of the potential when the statistically averaged transparency of the potential
barrier for protons reaches relatively high values. The Bucci–Rive method [1,4] will be used
as the experimental methodological basis of the study, and the theoretical methodology of
the study will be based on solutions of the kinetic equation describing proton transport
in a potential field of a crystal lattice when disturbed by an external field, with potential
parabolic barriers [1,3,7].

Based on this goal, the following research objectives were formulated:

1. Use a more stringent account of the effects that the external electric field corrections
had on the statistically averaged non-stationary quantum transparency of the parabolic
potential barrier for relaxers (protons) in HBC compared to previous studies [1–6]. This
kind of correction for a parabolic potential barrier was not previously calculated.

2. Write a generalized solution of the quasi-classical kinetic equation of nonlinear dielectric
relaxation using a small parameter of perturbation theory in HBC [1,6]. As a geometric
model of the undisturbed crystalline potential, we assumed a double symmetrical
potential pit with a barrier of parabolic shape. The kinetic coefficients of the kinetic
equation must be calculated, considering additional elements in the expression of the
quantum transparency of a potential barrier perturbed by a polarizing field. These
elements were not previously calculated for the parabolic potential barrier [6]. Solutions
to the generalized kinetic equation for an external field-perturbed double-symmetric
potential well of parabolic form have also not been presented to date.

3. Investigate the phenomenological Bucci–Rive formula for calculating the current density
of thermally stimulated depolarization (TSDC), considering additional corrections due to
the external electric field and rate of probability of quantum proton transitions through
the parabolic potential barrier (for initial polarization). These amendments for the
parabolic potential barrier have not been calculated to date. Note that the barrier’s
parabolic form brings the mathematical model closer to the real spatial structure of the
crystal lattice.

4. Analyze the temperature spectra of the thermally stimulated depolarization current
density (TSDC) measured by the authors [1,4] for crystals of the HBC class using the
example of phlogopite mica, onot talc and muscovite. Identify the physical nature of
each experimental maximum and reflect the effect of crystal structure parameters and
relaxer parameters (activation energy, equilibrium concentration) on the temperature,
position and amplitude of TSDC mono-relaxation maxima.

5. Perform precision measurements of TSCD density temperature spectra for chalcanthite
crystals. Analyze the effects of alloying impurities’ concentrations and calcination
temperatures on the properties and parameters of individual experimental maxima
in the TSDC chalcanthite spectrum. No studies have been conducted on the density
spectra of TSDC chalcanthite to date.

6. Calculate theoretical TSDC spectra for phlogopite, onot talc, muscovite and chemically
pure chalcanthite crystals. Establish the nature of the effects of the design values of
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the relaxer parameters on the temperature position and amplitude of each individual
theoretical maximum in the TSDC density spectrum. Previously, no theoretical TSDC
density spectra were calculated for the crystal potential model as a double-symmetric
potential well of parabolic shape.

7. Perform numerical calculations of the parameters of relaxers (activation energy, equi-
librium concentration), based on the minimizing comparison function method (MCF-
method) [1]. Calculations of relaxer parameters will be carried out over a wide
temperature range (50–550 K) and external field parameters (0.1–1 MV/m).

8. Investigate the effects of tunnel-proton transitions on the low-temperature (50–100 K)
and high-temperature (250–550 K) TSDC density maxima properties and relaxer pa-
rameters in HBC. Studies on this level of patterns for the double-symmetric parabolic
potential pit model have not been conducted to date.

9. Describe, in the form of chemical equations, the physical mechanism of quantum
tunnel proton motion in HBC with a complex crystal structure (layered silicates;
crystalline hydrates).

To simplify the solution to the kinetic equation, when describing the internal crystal
field, we used a double-symmetric potential well [1,6], which makes it possible to exclude
the influence of spatial inhomogeneities in the electric field induced by the dielectric on
the kinetics of polarization. Since this paper focuses on the study of proton-tunneling
mechanisms and their effect on the contours of theoretical current density graphs, rather
than providing a detailed analysis of the electret effect [1], this approach is justified from
a physical point of view. The crystal potential relief for protons in HBC is assumed to be
one-dimensional UC(x), where x is the proton coordinate [1]. The effect of proton–proton
interactions (due to the low equilibrium concentration of protons n0 ≈ 1016÷ 1018м−3) and
proton–phonon interactions (due to the low oscillation frequencies of anions in comparison
with protons ν0,anion

ν0,proton
≈ 10−4 ÷ 10−3) is not taken into account, and the motion of protons is

considered against the background of a static anionic subsystem [1,7].
Let us preliminarily note the fundamental formulas of the quasi-classical theory of

dielectric relaxation in HBC [1,2,6,7].
The energy spectrum E of the main charge-carrier (protons) in HBC in the quasi-

classical model is assumed to be quasi-continuous [1,2,7].
The one-dimensional potential barrier for the proton in HBC is assumed to be parabolic

U(x) = U0

(
1− 4x2

δ2
0

)
, where δ0 denotes the potential barrier width and U0 denotes the

activation energy.
Calculated by the WKB method, the quantum transparency of a parabolic potential

barrier (1) unperturbed by an external field is D(0)(E) = exp
(
−πδ0

√
m(U0−E)

ћ
√

2U0

)
. Here, m

and E denote the mass and energy of the relaxer (proton), respectively.
The transparency of the unperturbed parabolic potential barrier, averaged using the

quantum canonical Gibbs distribution, is the continuous function of the crystal tempera-
ture [1,2,6,7]

Dq.−classic;(0)
quant,tunn (T) = 〈D(0)(E)〉 = 1

kBT

∫ U0

0
exp

(
− E

kBT

)
× D(0)(E)dE =

exp(−Λ)− exp(−X)
1− Λ

X

Here, the dimensionless parameters X = U0
kBT , Λ = πδ0

√
mU0

ћ
√

2
are calculated as functions

of the molecular parameters δ0, U0.
From the condition X = Λ, we calculate, for the parabolic potential barrier (2), the

critical temperature Tcr =
2
πkB

√
ћ2U0
2mδ2

0
, below which T < Tcr, the dominant contribution to

dielectric relaxation is made by the proton-tunneling inside and between ions of the anionic
sublattice (quantum relaxation). At the temperatures T > Tcr relaxation is determined by
thermally activated proton transitions (thermal activation) [2,3].
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Let us proceed to the study of additional properties to the temperature dependences
indicated above Dq.−classic;(0)

quant,tunn (T).

The expression Dq.−classic;(0)
quant,tunn (T) can be used to calculate, and statistically average using

the energy levels of the quasi-continuous spectrum, the probability of the protons quantum
tunneling (quantum transfer) in the experimental temperature range in the vicinity of
the maximum thermally stimulated depolarization currents’ (TSDCs) density spectrum
Ptunn(T) =

exp(−Λ)−exp(−X)
1−Λ

X
. It is not difficult to see the identity Λ

X = T
Tcr

.

Thermal activation probability was calculated with the help of formula
Ptherm(T) = exp

(
− U0

kBT

)
[1,2,6,7].

According to the experimental data, the width of the potential barrier in HBC varies
within δ0 ≈ 0.085÷ 0.1 nm [1]. The experimental activation energy of protons in HBC
varies from 0.01 to 0.7 eV [1].

In order to extend the theoretical range of activation energy variation, we accept this
parameter within U0 = (0.01÷ 1) eV.

At low temperatures, when T� Tcr and Λ� X, according to 1
1−Λ

X
≈ 1 + Λ

X , we have

Dq.−classic;(0)
quant,tunn (T) ≈

(
1 + Λ

X

)
exp(−Λ).

Near the temperature of absolute zero, the kinetics of migratory polarization in HBC
are only determined by the parameters of the potential pattern and are practically indepen-
dent of temperature Dq.−classic;(0)

quant,tunn (0) = exp(−Λ).

With T = Tcr, taking X→ Λ, we have Dq.−classic;(0)
quant,tunn (Tcr) = Λ exp(−Λ).

The point of intersection of function graphs Dq.−classic;(0)
quant,tunn (T), Dclassic;(0)

therm (T) = exp
(
− U0

kBT

)
,

calculated from the equation
(

2+ Λ
X

)
exp(−X) = exp(−Λ), indicates temperature Tc > Tcr.

The maximum point of the functions Dq.−classic;(0)
quant,tunn (T), calculated from the foll-

owing equation

X2
(

Λ
X

(
1 +

1
X

)
− 1
)

exp(−X) = Λ exp(−Λ),

indicates temperature Tmax > Tc. Here, Λ = −ln
(

Dq.−classic;(0)
quant,tunn (0)

)
.

Thus, the conditions are met:

Tcr < Tc < Tmax; Dq.−classic;(0)
quant,tunn (Tcr) < Dq.−classic;(0)

quant,tunn (Tc) < Dq.−classic;(0)
quant,tunn (Tmax).

Obviously, at T→ ∞ , Dq.−classic;(0)
quant,tunn (T)→ 0 .

The behavior of the function Dclassic;(0)
therm (T) corresponds to the classical statistical theory.

The quasi-classical probability rate of proton transfer through the unperturbed poten-
tial barrier is determined considering both thermal activation and tunneling [1,7]

Wq.−classic;(0)(T) =
ν0

2

(
exp(−X) + Dq.−classic;(0)

quant,tunn (T)
)
=
ν0

2
·
exp(−Λ)− Λ

X exp(−X)

1− Λ
X

(1)

Here, ν0 denotes the natural frequency of oscillations in the proton in a potential well.
In the temperature area T� Tcr, Equation (1) is converted as follows:

Wq.−classic;(0)(T) ≈ Wq.−classic;(0)
quant,tunn =

ν0

2
× exp(−Λ)− exp(−X)

1− Λ
X

. (2)

In the temperature area T� Tcr, Equation (1) is converted as follows:

Wq.−classic;(0)(T) ≈Wclassic;(0)
therm =

ν0

2
× exp(−X). (3)
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Within the model of parabolic potential, between parameters δ0 and U0, there is

an obvious communication U0 =
mω2

0δ
2
0

8 . Taking the energy spectrum of the proton

E(0)
n = }ω0

(
n + 1

2

)
as quasi-continuous

∣∣∣E(0)
n±1 − E(0)

n

∣∣∣ = }ω0 � kBT, write down the

condition for the quasi-classicity of proton motion in HBC
U0

E(0)
0

=
mω0δ

2
0

4} � 1. Here,

ω0 = 2πν0.
The analysis of Equations (1)–(3) shows that, for any type of relaxation, the value of the

critical temperature calculated for a rectangular barrier is 78.5% of the critical temperature
in the parabolic barrier model.

From the above comparison, it is obvious that the model of a parabolic pattern in the
physical sense, in contrast to the model of a rectangular pattern, is closer to the real process
of the migration of structural defects and can be used in a more rigorous calculation of the
theoretical spectra of thermally stimulated depolarization currents in layered crystals.

Taking the increment in the potential energy of the proton in the electric field
E(t) = E0eiωt in the approximation of a weak field inhomogeneity at distances of the
order of the lattice constant |∆U(t)| = 1

6 qδ0(ε∞ + 2)E0eiωt [7], where ε∞ is the permittivity
associated with inductive polarization and ion charge, we write:

Wq.−classic;(±)(t) =
ν0

2

(
exp

(
−U0 ± |∆U(t)|

kBT

)
+ Dq.−classic;(±)

quant,tunn (t)
)

(4)

The quantum transparency of a parabolic potential barrier perturbed by an external
electric field will be calculated in the approximation |∆U|

U0
<< 1 [7] for a proton moving with

potential energy |∆U(t)| in this direction, either along the field Dq.−classic;(−)
quant,tunn (U0 − |∆U(t)|; E)

or against the field Dq.−classic;(+)
quant,tunn (U0 + |∆U(t)|; E). In [1,2], this kind of calculation was

performed for a rectangular potential barrier. In this case, the choice of the parabolic form of
the potential barrier allowed, at the theoretical level, for the mathematical model to be brought
closer to the re-spatial structure of the crystal potential field. Then,

D(±)(E) = exp
(
−πδ0

√
m(U0 ± |∆U(t)| − E)
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of the migration of structural defects and can be used in a more rigorous calculation of the 
theoretical spectra of thermally stimulated depolarization currents in layered crystals. 

Taking the increment in the potential energy of the proton in the electric field E(𝑡) =E଴e୧ன୲ in the approximation of a weak field inhomogeneity at distances of the order of the 
lattice constant |∆U(𝑡)| = ଵ଺ qδ଴(εஶ + 2)E଴e୧ன୲ [7], where εஶ is the permittivity associated 
with inductive polarization and ion charge, we write:     𝑊௤.ି௖௟௔௦௦௜௖;(±)(𝑡) = ν02 ൭exp ቆ− U0 ± |∆U(𝑡)|kBT ቇ + 𝐷௤௨௔௡௧,௧௨௡௡௤.ି௖௟௔௦௦௜௖;(±)(𝑡)൱ (4)

The quantum transparency of a parabolic potential barrier perturbed by an external 
electric field will be calculated in the approximation |∆୙|୙బ << 1  [7] for a proton moving 

with potential energy |∆U(𝑡)| in this direction, either along the field 𝐷௤௨௔௡௧,௧௨௡௡௤.ି௖௟௔௦௦௜௖;(−)(U଴ −|∆U(𝑡)|; 𝐸) or against the field 𝐷௤௨௔௡௧,௧௨௡௡௤.ି௖௟௔௦௦௜௖;(+)(U଴ + |∆U(𝑡)|; 𝐸). In [1,2], this kind of calcula-
tion was performed for a rectangular potential barrier. In this case, the choice of the para-
bolic form of the potential barrier allowed, at the theoretical level, for the mathematical 
model to be brought closer to the re-spatial structure of the crystal potential field. Then, D(±)(𝐸) = exp ቆ− πδ଴√m(U଴ ± |∆U(𝑡)| − 𝐸)ħඥ2U଴ ቇ (5)

Unlike earlier works [1,2,7], in this article, the statistical averaging of non-stationary 
quantum transparency will be carried out with a stricter consideration of the effects of the 
corrections ξ(𝑡) = ቚ∆୙(௧)୩ా୘ ቚ , η(𝑡) = Λ ቚ∆୙(௧)୙బ ቚ due to the electric field. To create a parabolic po-
tential barrier, these transformations will be completed for the first time. Then, based on 

𝐷௤௨௔௡௧,௧௨௡௡௤.ି௖௟௔௦௦௜௖;(±)(𝑡) = 1kBT න exp ቆ− 𝐸kBTቇU0±|∆U(𝑡)|
2|∆U(𝑡)|,0 × D(±)(U0 ± |∆U(𝑡)|; 𝐸)d𝐸 (6)

and considering Equation (5), we obtain 𝐷௤௨௔௡௧,௧௨௡௡௤.ି௖௟௔௦௦௜௖;(+)(𝑡) = exp(−Λ) exp൫η(𝑡)൯ exp൫−2ξ(𝑡)൯ − exp(−X) exp (−ξ(𝑡))1 − ΛX  (7)

√
2U0

)
(5)

Unlike earlier works [1,2,7], in this article, the statistical averaging of non-stationary
quantum transparency will be carried out with a stricter consideration of the effects of the
corrections ξ(t) =

∣∣∣∆U(t)
kBT

∣∣∣, η(t) = Λ
∣∣∣∆U(t)

U0

∣∣∣ due to the electric field. To create a parabolic
potential barrier, these transformations will be completed for the first time. Then, based on

Dq.−classic;(±)
quant,tunn (t) =

1
kBT

U0±|∆U(t)|∫
2|∆U(t)|,0

exp
(
− E

kBT

)
×D(±)(U0 ± |∆U(t)|; E)dE (6)

and considering Equation (5), we obtain

Dq.−classic;(+)
quant,tunn (t) =

exp(−Λ) exp(η(t)) exp(−2ξ(t))− exp(−X) exp(−ξ(t))
1− Λ

X
(7)

Dq.−classic;(−)
quant,tunn =

exp(−Λ) exp(η(t))− exp(−X) exp(ξ(t))
1− Λ

X
(8)

Calculating the kinetic coefficients leads to:

Ω(ω)(t) = Wq.−classic;(−)(t)+Wq.−classic;(+)(t)
2 =

= ν0
2

(
exp(−X)ch(ξ(t)) +

1
2 exp(−Λ) exp(η(t))(1+exp(−2ξ(t)))−exp(−X)ch(ξ(t))

1−Λ
X

), (9)
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Ξ(ω)(t) = Wq.−classic;(−)(t)−Wq.−classic;(+)(t) =

= ν0

(
exp(−X)sh(ξ(t)) +

1
2 exp(−Λ) exp(η(t))(1−exp(−2ξ(t)))−exp(−X)sh(ξ(t))

1−Λ
X

)
, (10)

Here,ω is the cyclic frequency of the external field.
In this case, the relation η(t)

ξ(t) = Λ
X = T

Tcr
, which is important for the quasi-classical

model, is fulfilled.
In Equations (9) and (10), in addition to [1,2,7] elements, 1

2 exp(η(t))× (1± exp(−2ξ(t)))
indicates the influence of external indignation in the form of correction parameters
ξ(t) =

∣∣∣∆U(t)
kBT

∣∣∣, η(t) = Λ
∣∣∣∆U(t)

U0

∣∣∣ on non-stationary kinetic coefficients Ω(ω)(t), Ξ(ω)(t).
Earlier, such amendments were not taken into account. Their consideration in these functions
will make it possible to more strictly assess the influence of the external electric field on the
solutions of the kinetic equation and, accordingly, polarization.

The study of dielectric relaxation in layered dielectrics uses the solution of the kinetic
equation [6]:

d∆n(ω)(t)
dt

+ 2Ω(ω)(t)∆n(ω)(t) =
1
3

n0Ξ(ω)(t) (11)

In (11), ∆n(ω)(t) = ∆n(ω)(t)− n0 is a concentration of relaxers (protons) in excess of
the balanced concentration n0.

No initial polarization was used: ∆n(ω)(0) = 0.
Kinetic Equation (11) was built and studied in [6,8]. Moreover, Ref. [2] solved an even

more physically stringent kinetic equation regarding proton (for HBC) and ion (for a wide
class of dielectrics) relaxation based on a multi-pit crystal potential model. Here, we limit
ourselves to a simpler kinetic equation for a dual-symmetric potential pit model, with the
aim that the format of this model will qualitatively fit the Bucci–Rive thermally stimulated
depolarization (TSCD) current calculation scheme described below. The disadvantage of the
kinetic equation solutions we chose is that this model does not consider the heterogeneity
of the electric field in the dielectric, unlike other works [1,2]. However, since we did not
conduct studies on the electro-tertiary effect and the effects associated with homocharge
relaxation in this manuscript, the physical severity of the final re-results is not at all reduced
when choosing a more simplified kinetic Equation (11).

In addition, in this work, in continuation of that of [6], we will strengthen the influence
of external perturbation parameters ξ(t) =

∣∣∣∆U(t)
kBT

∣∣∣, η(t) = Λ
∣∣∣∆U(t)

U0

∣∣∣ on the final solutions
to Equation (11). To this end, solutions of Equation (11) must be written using perturbation
theory methods, allowing for their decomposition into infinite power series by degrees of
perturbation parameters ξ(t) in the form:

∆n(ω)(t) = ∑∞
s=1 ξ

s
0∆
(

∆n(ω)(t)
)(s)

,

Ω(ω)(t) = ∑∞
l=0 ∑∞

p=0(ξ(t))
l( η(t))p

(
Ω(ω)(t)

)(l,p)
,

Ξ(ω)(t) = ∑∞
l=0 ∑∞

p=0(ξ(t))
l( η(t))p

(
Ξ(ω)(t)

)(l,p)
.

According to the relation η(t)
ξ(t) =

T
Tcr

, the auxiliary identities hold.

(ξ(t))l(η(t))p = (ξ(t))l+p ×
(

T
Tcr

)p
, (ξ(t))l(η(t))p = (η(t))p+l ×

(
Tcr

T

)l
.

Elements of series
(

Ω(ω)(t)
)(s)

,
(

Ξ(ω)(t)
)(p)

follow from Equations (9) and (10).
This method is effective in the construction of solutions to Equation (11) for the

processes of dielectric losses when the electric field is variable and the parameters ξ(t), η(t)
are considered only as functions of time. This work examines the process of thermally
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stimulated depolarization; therefore, there is no strict need to apply perturbation theory
methods and the work can be limited to other, more mathematically simple methods, which
are set out below. However, it should be noted that the methods of perturbation theory are
the solutions of Equation (11).

Without limiting the generality of the results, let us write the solution of Equation (11)
through a linear approximation using the small dimensionless parameters
ξ(t) = ξ0 exp(iωt), η(t) = η0 exp(iωt), where ξ0 =

∣∣∣ (∆U)0
kBT

∣∣∣, η0 = Λ
∣∣∣ (∆U)0

U0

∣∣∣,
(∆U)0 = 1

6 qδ0(ε∞ + 2)E0. Then, using the approximate expressions

∆n(ω)(t) = ξ0

(
∆n(ω)(t)

)(1)
,

Ω(ω)(t) ≈ ν0
2

(
exp(−X) + exp(−Λ)−exp(−X)

1−Λ
X

)
= Wq.−classic;(0),

Ξ(ω)(t) ≈ ν0

(
exp(−X) + exp(−Λ)−exp(−X)

1−Λ
X

)
× ξ(t) = 2Wq.−classic;(0)×

ξ0 exp(iωt),

set up the equation:

d
(

∆n(ω)(t)
)(1)

dt
+ 2Wq.−classic;(0)

(
∆n(ω)(t)

)(1)
=

2
3

n0Wq.−classic;(0) × exp(iωt). (12)

Its solution, taking into account
(

∆n(ω)(0)
)(1)

= 0, describes transient processes in
the dielectric(

∆n(ω)(t)
)(1)

=
2
3
× n0Wq.−classic;(0)

iω+ 2Wq.−classic;(0)

(
exp(iωt)− exp

(
−2Wq.−classic;(0)t

))
. (13)

In the stationary polarization mode, we have

∆n(ω)(t) =
1
9
×

n0W(0)qδ0(ε∞ + 2)E0(
iω+ 2W(0)

)
kBT

exp(iωt). (14)

Whenω = 0, we obtain

∆n(ω=0)(t) =
1
18
×

n0qδ0(ε∞ + 2)E0

kBT
. (15)

The system relaxation time τ(ω)(t) = 1
2Ω(ω)(t)

in the accepted approximation is

τ(ω)(t) ≈ 1
2Wq.−classic;(0)(T)

.

The solution of the kinetic Equation (11) in the form of Equations (12) and (13) is
applicable in the region of weak fields ξ(t)� 1, η(t)� 1.

To more strictly take into account the influence of the external perturbance parameters
ξ(t), η(t) on the polarization of the dielectric, it is necessary to construct a generalized
solution to the nonlinear kinetic equation. This approach is effective in the region of
anomalously high-polarization nonlinearities, which manifest themselves in HBC in the
region of ultralow temperatures (1–10 K) in weak fields (0.1–1 MV/m), and in the region of
ultrahigh temperatures (550–1500 K and higher) in strong fields (10–1000 MV/m) [1,2,7].
The theoretical investigation of the kinetics of quantum proton relaxation and conductivity
near absolute zero temperatures are a rather complicated scientific problem from a physical
point of view. If, formally, we have the opportunity to extend the mathematical model
of the nonlinear quantum polarization in HBC in the form of Equations (9)–(11), and in
the form of [1,2,5] to the temperature range T = 0–1 K, then from the point of view of the
fundamental physical rigor of the final results, it is extremely difficult to assert anything
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in this case. In [1,2], situations with values of the dimensionless small parameter ξ of
perturbation theory equal to ξ = 0.1–1 at temperatures T = 1–10 K are touched upon, but the
model of these phenomena remains quasi-classical, and is not strictly quantum mechanical.
At HBC temperatures near absolute zero, fundamentally new quantum kinetic phenomena
appeared, associated with the interaction between proton and phonon subsystems similar
to electronic superconductivity. However, at this time, these effects in HBC have not yet
been explored, either theoretically or experimentally. Although the theoretical studies
of quantum proton relaxation in nanosized HBC layers (1–10 nm) in an electric field at
ultralow temperatures (4–25 K) are described in great detail in [1], in the physical sense, the
mathematical model of these studies is still far from perfect. In this situation, taking into
account the influences of sufficiently high values of field parameters (10–1000 MV/m) and
ultra-low temperatures, we will limit the region T = 1–10 K within the framework of the non-
linear quasi-classical theory of proton relaxation. In this case, to conduct a more rigorous
study of the kinetic Equation (11), we write down its solution in the generalized form:

∆n(ω)(t) =
1
3

n0

∫ t

0
Ξ(ω)(t)× exp

(
2
∫

Ω(ω)(t)dt
)

dt× exp
(
−2

∫
Ω(ω)(t)dt

)
, (16)

where the expression
∫

Ω(ω)(t)dt means the antiderivative of the function Ω(ω)(t).
The study of the Equation (16), in a complex with Equations (9) and (10), is a problem

that cannot be analytically solved, especially in the complex plane.
A numerical study of Equation (16) is a separate problem, the solution of which goes

beyond the boundaries of this paper and will be determined later.
Let us move on to the case of polarization in a stationary electric field. Then, from

Equation (16), we can obtain

∆n(ω=0)(t) =
1
3

n0 ×
Ξ(ω=0)

2Ω(ω=0)
×
[
1− exp

(
−2Ω(ω=0)t

)]
, (17)

where

Ω(ω=0) = Ωst =
ν0

2

(
exp(−X)ch(ξ0) +

1
2 exp(−Λ) exp(η0)(1 + exp(−2ξ0))− exp(−X)ch(ξ0)

1− Λ
X

)
, (18)

Ξ(ω=0) = Ξst = ν0

(
exp(−X)sh(ξ0) +

1
2 exp(−Λ) exp(η0)(1− exp(−2ξ0))− exp(−X)sh(ξ0)

1− Λ
X

)
. (19)

Equation (17), a stationary non-linear function of temperature, makes it possible to
study the process of thermally stimulated polarization, considering Equations (18) and (19),
written as functions of temperature. The system relaxation time is given in the accepted
approximation: τ(ω)(t)→ τ(ω=0)(T) = τst(T) = 1

2Ωst(T)
.

The application of Equation (17) for the case of isothermal polarization assumes
that Equations (18) and (19) are model constants, calculated at an equal temperature to
the crystal polarization temperature Tpol. In this case, when t � τst, the linear approx-
imation with respect to the small parameters ξ0 � 1, η0 � 1 leads to the transforma-
tion of the Ωst →Wq.−classic;(0), Ξst → 2Wq.−classic;(0)ξ0 and Equation (17) to Equation (15)
in the form ∆n(ω=0)(t)→ 1

3 n0 × ξ0 , which is one of the criteria for the reliability of
Equations (9), (10) and (16).

The results of numerical calculations are given in Equation (18). We will sepa-
rately investigate temperature dependencies for stationary probabilities of a classical
Dclassic

term;stationary(T) = exp(−X)ch(ξ0) and quantum tunnel characters on the basis of equal-

ity Dq.−classic
quant,tunn;stationary(T) =

1
2 exp(−Λ) exp(η0)(1+exp(−2ξ0))−exp(−X)ch(ξ0)

1−Λ
X

. The temperature is

accepted in diapason from 0 to 2500 K. The value of the polarizing field strength is taken



Appl. Sci. 2023, 13, 8755 11 of 29

as E0 = 106 V/m. According to the results of numerical calculations, the value of the
polarizing field strength has practically no effect on the values of quantum transparency
Dq.−classic

quant,tunn;stationary(T) in the region of fields E0 =
(
106 ÷ 107) V/m at a wide range of

temperatures T = 0–2500 K, and only in the region E0 =
(
108 ÷ 109) V/m does the field

begin to affect the value of quantum transparency.
According to the results of numerical calculations, at the activation energy of U01 = 0.01 eV,

when the characteristic parameter is Λ1 = πδ0
√

mU01
ћ
√

2
= Xcr,1 = U01

kBTcr,1
≈ 2.921406892621811,

the critical temperature of Tcr,1 = ћ
√

2U01
πkBδ0

√
m ≈ 39.5774 K, at which the stationary statisti-

cally averaged quantum transparency of the parabolic potential barrier that is perturbed by
the external field is Dq.−classic

quant,tunn;stationary(Tcr,1) ≈ 0.1555. Further, at the activation energy of

U02 = 0.03 eV, the critical temperature is Tcr,2 = ћ
√

2U02
πkBδ0

√
m ≈ 68.55 K, and the correspond-

ing stationary quantum transparency is Dq.−classic
quant,tunn;stationary(Tcr,2) ≈ 0.031. At the activation

energy of U03 = 0.05 eV, when the critical temperature is Tcr,3 ≈ 88.4977 K the stationary
quantum transparency is Dq.−classic

quant,tunn;stationary(Tcr,3) ≈ 0.008. Further, at the activation energy of

U04 = 0.07 eV, we obtain, respectively, Tcr,4 ≈ 104.7119 K, Dq.−classic
quant,tunn;stationary(Tcr,4) ≈ 0.0035.

At an activation energy of U05 = 0.1 eV, we have Tcr,5 ≈ 125.1546 K,
Dq.−classic

quant,tunn;stationary(Tcr,5) ≈ 0.00087.
The obtained numerical results indicate that the theoretical values of the stationary

quantum transparency Dq.−classic
quant,tunn;stationary(T) are shifted towards higher critical temper-

atures Tcr with a decrease in the amplitude values of the quantum transparency and an
increase in the energy of proton activation. Against the background of small activation
energies (0.01.0.03.05, 0.07 eV), critical temperatures (39.57 K, 68.55 K, 88.49 K, 104.71 K)
are distributed in the T < 105 K region with sufficiently high amplitudes of quantum
transparency (0.1555, 0.031, 0.008, 0.0035) for such heavy (in comparison with electrons)
charge carriers as protons. With an activation energy of 0.1 eV, the critical temperature
shifts to 125.15 K, and the amplitude of the quantum transparency decreases to 0.00087.
This indicates the significant contribution of quantum tunneling to the relaxation motion of
protons in HBC in the temperature region T = 1–100 K. At temperatures T > 100, quantum
tunneling continues to affect the relaxation of protons in HBC to a certain extent.

The phenomenological model of thermally stimulated depolarization currents pro-
posed by Bucci-Rive [23,32], involves a study of the mechanism of thermal destruction of
the polarized state established during polarization (in a uniform stationary electric field of
strength Epol,0 at polarization temperature Tpol) in the absence of an external electric field.

The solution of kinetic Equation (11) for the process of thermally stimulated depolariza-
tion in the absence of an external electric field, when the equation
d∆ndepol(t)

dt +
∆ndepol(t)
τdepol

= 0, considering the initial condition ∆ndepol(0) = ∆n(ω=0)
pol (∞),

takes the form ∆ndepol(t) = ∆npol × exp
(
−2
∫ t

0 Ωdepol(T)dt
)

. The advantage of this ex-
pression for excessive proton concentration in the thermally stimulated depolarization
formulated in this article is as follows. First, in [4,8], the calculation of the function
∆ndepol(t) is constructed considering the effects of quantum tunneling on the statistically
averaged transparency of the parabolic potential barrier, which is reflected in the expression
for Ωdepol(T). Previously, no studies of this kind have been conducted for the potential
barrier of the parabolic form. Moreover, the parabolic potential barrier model is physi-
cally closer to the structure and properties of the real crystal lattice than the rectangular
potential barrier model [4]. Secondly, unlike [8], the calculation of the excess concentration

of protons ∆npol = ∆n(ω=0)
pol (∞) = 1

3 n0 ×
Ξst(Tpol)

2Ωst(Tpol)
established during polarization is

carried out by us in Equation (17), by taking into account the effects of additional correction
elements элeмeнтoв 1

2 exp(η0)× (1± exp(−2ξ0)) on non-stationary kinetic coefficients
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Ωst, Ξst (18) and (19). This technique increases, at a theoretical level, the contribution to the
polarization of the dielectric caused by the external field of nonlinearities.

The rate of proton transition probabilities at thermally stimulated depolarization,
according t0 Equation (9), at the ξ(t) = 0, η(t) = 0, takes the form

Ωdepol(T) = Wq.−classic;(0)(T) =
ν0

2

(
exp(−X) +

exp(−Λ)− exp(−X)
1− Λ

X

)
. (20)

The relaxation time of the ions for the process of thermally stimulated depolarization
is τdepol(T) = 1

2Ωdepol(T)
.

The increase in the concentration of relaxers during thermally stimulated depolariza-
tion becomes a function of temperature. For an arbitrary nonlinear law of heating with a
rate c(T) = dT

dt , we have

∆ndepol(T) = ∆npol × exp

(
−2

∫ T

T0

Ωdepol(T)dT
c(T))

)
. (21)

Thermally stimulated depolarization current density jdepol(t) = −
∂Pdepol(t)

∂t , calculated

on the basis of Pdepol(t) = 1
2 qδ0 × ∆ndepol(t) according to the Bucci–Rive theory [7], in the

case of heating of the crystal according to the linear law c = dT
dt = const, takes the form

jdepol(T) = qδ0 × ∆npol ×Ωdepol(T)× exp
(
−2

c

∫ T

T0

Ωdepol(T)dT
)

. (22)

The study of the integral
∫ T

T0
Ωdepol(T)dT with the integrand Ωdepol(T) was carried

out by numerical methods.
The applied scientific novelty of the Equation (22), in the context of this problem,

consists of a number of additional model transformations and refinements embedded in
the structure of analytical expressions for calculating quantities ∆ndepol и Ωdepol(T) that,
as noted above, carries significant physical stress associated with the effects of nonlinear
polarization effects on proton relaxation kinetics during polarization in HBC. The solution
of these issues is relevant to the analysis of the experimental spectra of thermally stimulated
dependence currents (TSDC) and in predicting the properties and parameters of functional
elements of electrical installations and electronic and electronically controlled systems
based on HBC with a complex crystal structure.

3. Results (A Comparison of the Theoretical and Experimental Results)

The calculation of the theoretical values of the parameters of relaxers (activation en-
ergy, balanced concentration) was carried out by computer-processing Formula (25) with
the help of the minimizing the comparison function method (MCF method) [62–67], com-
paring the theoretical and experimental graphs of the thermally stimulated depolarization
current (TSDC) density in the vicinity of each experimental monorelaxation maximum(

Texp,max, jexp,max

)
on the set of points of the continuum measure by varying the numerical

values of the theoretical parameters of the set ζ0 = {U0; δ0;ν0; n0; a}.
The results of the numerical calculation are shown in Tables 1–4.
The numerical values of the molecular parameters in the Tables 1–3, calculated for

each type of relaxer, correspond to the experimentally measured peaks in the density
spectra of thermally stimulated depolarization currents (TSDC) in Figures 1–3 for mica
natural phlogopite, onot talc, and muscovite at various polarization temperatures Tpol and
polarization field strengths Epol,0. The identification of the physical nature of the first six
maxima was carried out in combination with the calcination methods (in the temperature
range Tcalcination = 473–1373 K when adsorbed, and crystallization water was completely
removed from the crystals) before doping (proton–acceptor and proton–donor impurities).
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As a result, from dependencies jmax = f
(

Tpol, Epol,0, Tcalcination

)
, it was found that maxima

1-6 are due to dipole polarization [1,4]. The density amplitude of the TSDC in the region of
the seventh maximum is nonlinearly dependent on the quantity Epol,0. At the same time,
with a decrease in Tpol, regardless of the temperature Tcalcination, the seventh maximum
shifts to the low-temperature area and can even cover the sixth maximum. At a fixed
polarization temperature Tpol, the temperature position of the seventh maximum depends
on the temperature Tcalcination of the sample [1,4]. Therefore, it can be assumed that the
high-temperature maximum is due to the accumulation and resorption of charge (bulk-
charge polarization). This type of polarization can be defined as interlayer polarization. In
this area of temperature (300–500 K), an electric current is introduced to the dielectric.

Table 1. Relaxator parameters in natural phlogopite KMg3(AlSi3O10)(OH)2, calculated using the
phenomenological theory of thermally stimulated depolarization currents (TSDC) for the parabolic
potential barrier model (Graph 1 in Figure 1).

Temperature of
Experimental
Maximum of

TSDC

Type of Relaxator

Energy Activation U0, eV Balanced Concentration n0, 1016 m−3

Experimental
[1,4]

Theoretical (Calculated Based on
Equation (22))

Experimental
(Calculation

in This Paper)

Theoretical (Calculated Based on
Equation (22)), 1016

Without
Considering the

Quantum
Tunneling

Considering the
Quantum
Tunneling

Without
Considering the

Quantum
Tunneling

Considering the
Quantum
Tunneling

100 HSiO3−
4 0.05 ± 0.01 0.12 0.06 1.4 1.5 1.4

130 H3O+ 0.17 ± 0.02 0.19 0.18 1.3 1.33 1.29

178

H2O water
molecules of

crystallization
(structural water)

0.25 ± 0.03 0.27 0.27 200 208 205

206
H2O-adsorbed

water molecules
(on bundles)

0.31 ± 0.03 0.32 0.32 30 32 32

235 OH− 0.40 ± 0.04 0.42 0.41 120 122 120

257 L,D defects,
VL,VD complexes 0.49 ± 0.05 0.51 0.49 200 207 205

405 H3O+ , OH− , H+ 0.35 ± 0.05 0.45 0.42 3500 3200 3520

Table 2. Relaxer parameters in natural mineral of onot talc Mg3(Si4O10)(OH)2, calculated using the
phenomenological theory of thermally stimulated depolarization currents (TSDC) for the parabolic
potential barrier model (Graph 1 in Figure 2).

Temperature of
Experimental
Maximum of

TSDC

Type of
Relaxator

Energy Activation U0, eV Balanced Concentration n0, 1016 m−3

Experimental
[1,4]

Theoretical (Calculated Based on
Equation (22))

Experimental
(Calculation in

This Paper)

Theoretical (Calculated Based on
Equation (22)), 1016

Without
Considering the

Quantum
Tunneling

Considering the
Quantum
Tunneling

Without
Considering the

Quantum
Tunneling

Considering the
Quantum
Tunneling

86 HSiO3−
4 0.06 ± 0.01 0.12 0.06 1.4 1.5 1.4

112 H3O+ 0.09 ± 0.02 0.19 0.18 1.3 1.33 1.29

180

H2O water
molecules of

crystallization
(structural

water)

0.19 ± 0.02 0.27 0.27 200 208 205

206
H2O-adsorbed

water molecules
(on bundles)

0.25 ± 0.03 0.32 0.32 30 32 32

230 OH− 0.32 ± 0.04 0.42 0.41 120 122 120

251
L,D defects,

VL,VD
complexes

0.41 ± 0.04 0.51 0.49 200 207 205

305 H3O+ , OH− , H+ 0.40 ± 0.06 0.49 0.43 4600 3900 4610
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Table 3. Relaxer parameters in natural mineral of muscovite KAl2(AlSi3O10)(OH)2, calculated
using the phenomenological theory of thermally stimulated depolarization currents (TSDC) for the
parabolic potential barrier model (Graph 4 in Figure 3).

Temperature of
Experimental
Maximum of

TSDC

Type of
Relaxator

Energy Activation U0, eV Balanced Concentration n0, 1016 m−3

Experimental
(Calculation in

this Paper)

Theoretical (Calculated Based on
Equation (22))

Experimental
(Calculation in

This Paper)

Theoretical (Calculated Based on
Equation (22)), 1016

Without
Considering the

Quantum
Tunneling

Considering the
Quantum
Tunneling

Without
Considering the

Quantum
Tunneling

Considering the
Quantum
Tunneling

105 HSiO3−
4 0.04 ± 0.01 0.08 0.05 1.2 1.4 1.2

153 H3O+ 0.08 ± 0.02 0.12 0.09 1.5 1.45 1.52

190

H2O water
molecules of

crystallization
(structural

water)

0.17 ± 0.02 0.19 0.19 240 241 240

206
H2O-adsorbed

water molecules
(on bundles)

0.23 ± 0.03 0.25 0.25 34 34 34

230 OH− 0.30 ± 0.04 0.34 0.34 127 123 127

246
L,D defects,

VL,VD
complexes

0.40 ± 0.04 0.44 0.44 230 228 231

295 H3O+ , OH− , H+ 0.38 ± 0.06 0.40 0.45 4370 4250 4350

Table 4. Relaxator parameters in chalcanthite CuSO4·5H2O, calculated using the phenomenological
theory of thermally stimulated depolarization currents (TSDC) for the parabolic potential barrier
model (Graph 1 in Figure 4).

Temperature of
Experimental
Maximum of

TSDC

Type of Relaxer

Energy Activation U0, eV Balanced Concentration n0, 1016 m−3

Experimental
(Calculation in

This Paper)

Theoretical (Calculated Based on
Equation (24)) Experimental

(Calculation in
This Paper

Carried Out by
Quasi-Empirical

Methods [1,4])

Theoretical (Calculated Based on
Equation (24))

Without
Considering the

Quantum
Tunneling

Considering the
Quantum
Tunneling

Without
Considering the

Quantum
Tunneling

Considering the
Quantum
Tunneling

94 HSO−4 0.07 ± 0.01 0.16 0.08 1.8 1.7 1.79

138 H3O+ 0.11 ± 0.01 0.13 0.12 1.5 1.6 1.52

170

H2O water
molecules of

crystallization
(structural

water)

0.23 ± 0.02 0.26 0.25 190 185 189

206
H2O-adsorbed

water molecules
(on bundles)

0.35 ± 0.03 0.37 0.37 410 410 410

230 OH− 0.50 ± 0.05 0.54 0.54 550 530 550

246
L,D defects,

VL, VD
complexes

0.70 ± 0.08 0.77 0.75 2100 2000 2080

290 H3O+ , OH− , H+ 0.34 ± 0.04 0.41 0.35 24,734 23,128 24,572

In this article, we will not go into the experimental schemes for studying the properties
and parameters of spectra (TSDC) described in [1,4].

In this paper, we studied, under various experimental conditions, the spectrum of
thermally stimulated depolarization current density (TSDC) for crystals of chemically pure
chalcanthite, classified by the type and properties of their crystal structure as a crystalline
hydrate, which is classified by Werner as a complex compound [1]. With the experimental
measuring device described in [68], we measured the main spectrum (Graph 1 in Figure 4)
and a number of additional spectra (Graphs 2–5 in Figure 4), from which it was found that,
in chalcanthite, as in samples of laminated silicates (phlogopite, talc, muscovite), seven
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monorelaxation TSDC density maximums were found due to the silicate-like physical
mechanisms of relaxation polarization [1,3].
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Figure 1. Phlogopite TSDC density spectrum for Epol,0 = 106 V × m−1, Tpol = 373 K, d = 30 mkm: 1+,
1−—natural phlogopite; 2+, 2−, 3+, 4+—calcined at temperatures Tan,2 = 873 K, 3+—Tan,3 = 1073 K,
4+—Tan,4 = 1373 K; 5+—density spectrum of thermally stimulated polarization current (TSPC). The
sign next to the number indicates the polarity of the sample [1,4].
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Figure 2. Thermally stimulated depolarization current density spectrum of onot talc. 1—natural 
mineral of onot talc Mgଷ(SiସOଵ଴)(OH)ଶ , 2—talc doped in hydrochloric acid solution ( nୌେ୪ =7.4 × 10ିହmol/mଷ). 3—talc doped in NHସOH solution (n୒ୌర୓ୌ = 9.2 × 10ିହ mol/mଷ). The meas-
urements were carried out at  E୮୭୪,଴ = 2 × 105 V × m−1, T୮୭୪ = 300 К, с = 0.1 К × s-1 [1,4]. 

Figure 2. Thermally stimulated depolarization current density spectrum of onot talc.
1—natural mineral of onot talc Mg3(Si4O10)(OH)2, 2—talc doped in hydrochloric acid solution
(nHCl = 7.4× 10−5mol/m3). 3—talc doped in NH4OH solution (nNH4OH = 9.2× 10−5 mol/m3).
The measurements were carried out at Epol,0 = 2 × 105 V ×m−1, Tpol = 300 K, c = 0.1 K × s−1 [1,4].
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Table 4. Relaxator parameters in chalcanthite CuSOସ ∙ 5HଶO, calculated using the phenomenological 
theory of thermally stimulated depolarization currents (TSDC) for the parabolic potential barrier 
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Figure 3. Thermally stimulated depolarization current density spectrum of muscovite
KAl2(AlSi3O10)(OH)2. 1—Epol,0 = 2 × 105 V × m−1, 2—Epol,0 = 5 × 105 V × m−1,
3—Epol,0 = 106 V × m−1, 4—Epol,0 = 5 × 106 V × m−1. The measurements were carried out at
Tpol = 300 K, tpol = 15 min, c = 0.1 K × s−1 [1,4].
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Figure 4. Thermally stimulated depolarization current density spectrum of copper sulfate.
1—CuSO4·5H2O (chemically pure chalcanthite), 2—CuSO4·3H2O, 3—CuSO4·H2O, 4—CuSO4

(300 ◦C), 5—CuSO4·5H2O, doped in hydrochloric acid solution (nHCl = 10−5 mol/m3). The mea-
surements were carried out at Epol,0 = 2 × 105 V ×m−1, Tpol = 300 K, c = 5.5 K/min.
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Since there are no original experimental data on the activation energy U0 and equilib-
rium concentrations of relaxers n0 for muscovite crystals, for comparison with the theory,
we determined them using three methods to calculate the parameter U0: 1—initial as-
cent method (Garlica–Gibson); 2—Heat Velocity Variation Method (Bohuna–Buta); 3—the
method based on the calculation of relaxation time [1,4]. The experimental equilibrium
concentration of relaxers was calculated from an expression for the static dielectric per-
meability of thermo-stimulated depolarization ε0(εS − ε∞)Epol,0 =

qind
S = σind, where

ε∞ represents the high-frequency dielectric permeability of the crystal. When accumu-
lated (during polarization in stationary electric field) on flat capacitor plates, the charge
qind = σindS, is computed in an equal polarization time tpol, and the surface density of the

charge induced in dielectric σind =
∫ tpol

0 jpol(t)dt = Ppol

(
tpol

)
≈ n0Epol,0q2δ2

0
12kBTpol

, computed by

an approximate formula of the classical dipole polarization theory Ppol

(
tpol

)
≈ n0p2

0Epol,0
3kBTpol

at p0 = 1
2 qδ0, is the area below the curve corresponding to the individual experimental

TSDC density maximum σind =
∫ ∞

0 jdepol(t)dt = 1
c

∫ ∞
T0

jdepol(T)dT.
A comparison of TSDC spectra and activation energies implies that a maximum of

2, both crystalline sulfate and silicates, is caused by the relaxation of ion defects H3O+,
and a maximum of 6 is due to the formation of complexes “vacancy + L-defect” (VL) or
“vacancy + D-defect” (VD) [1]. In [1], the activation energy of complexes VL (VD) is
estimated to be equal to 0.4–0.5 eV, which is comparable to the results (Tables 1–4). The
formation of complexes of interstitial molecules with L- and D-defects [1] is not excluded.
The types of relaxers and their orientation are indicated in Tables 1–4.

Ion OH− activation energies calculated from the infrared and combination scattering
spectra [1,4] and obtained for a maximum of 5 in the TSDC density spectra
(Tables 1–4). These coincide with the error range, so a maximum of 5 is associated with ion
OH− relaxation. The low-temperature, first ordinal number in the TSDC density spectrum
is strongly associated, as noted in Section 1 of this paper, with the tunneling of protons
within and between anions.

The third and fourth maxima weaken in amplitude when HBC-class crystals are calci-
nated at temperatures of 373–473 K, wherein, when calcinated to temperatures 473–573 K
disappears at the fourth maximum and, at 873–1373, K disappears at the third maximum,
which allows for them to be connected with the movement of dipole molecules’ crystallizing
(structural) water and adsorbed water (on bundles) [1,4].

A comparison of the theoretical and experimental values of relaxer parameters in the
natural phlogopite KMg3(AlSi3O10)(OH)2 shows that, at temperatures of 178 K and 206 K
(Figure 1 [1,4]), where structural defects associated with the relaxation of structural and
adsorbed water molecules, respectively, are activated, the theoretical activation energy is
0.01 eV higher than the experimental one, and at temperatures of maxima 235 K (Figure 1)
and 260, the theoretical values of activation energy fall within the confidence interval of
measurements (Table 1).

At low temperatures, there is a significant discrepancy between the experiment and
the results of calculations: at the temperature of 130 K (Figure 1) in the experiment, the ions
H3O+ relaxes with an activation energy 0.17 ± 0.02 eV, and according to the calculation re-
sults U0 = 0.18 eV, in the vicinity of the maximum associated with the tunneling transitions
of protons between layers of water molecules and ions SiO4−

4 , the measured activation
energy is equal to 0.05 ± 0.01 eV, and the calculated energy is 0.08 eV. In addition, in the
vicinity of low-temperature maxima, the theoretical values of the equilibrium concentration
are two orders of magnitude lower than the experimental ones [1,4].

For natural mineral onot talc Mg3(Si4O10)(OH)2, the TSDC maxima were observed at
temperatures of 86 K, 112 K, 180 K, 206 K, 230 K, 251 K, 305 K (Figure 2) [1,4].

According to Tables 1 and 2, a more rigorous account of proton tunneling brought the
calculated values of activation energy closer to the measured values for low-temperature
Bjerrum ionization defects H3O+, which are responsible for the monorelaxation max-
imum of the TSDC density at a temperature of 130 K (Table 1) in the natural phlo-
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gopite KMg3(AlSi3O10)(OH)2 and at the temperature of 112 K in onot talc (Table 2)
Mg3(Si4O10)(OH)2.

Phlogopite structure KMg3(AlSi3O10)(OH)2 is characterized by the fact that the dis-
tance between the layers SiO4−

4 does not exceed 1.8 Å; that is, it is no more than the length
of the hydrogen bridge [1]. Therefore, according to the calculation results (Table 1), we can
assume two possibilities for the diffusion of defects in H3O+:

1. Ion migration H3O+ along the water layer and between H2O molecules of
neighboring layers;

2. Ion migration H3O+ between a layer of water molecules and a layer of ions SiO4−
4 .

In phlogopite crystals, two layers of anionic groups SiO4−
4 , associated with aluminum

ions form two layers oriented perpendicular to the crystalline axis C. There are molecules
in some of the potassium nests while, in some interpacket zones, there are continuous
monomolecular water layers. Considering the dense packing of the layers, it is possible to
allow for the electron shells of oxygen ions belonging to anions SiO4−

4 and neighboring wa-
ter molecules to overlap. As a result, both the tunneling and over-barrier transitions of the
proton from the H3O+ ion, formed in the water layer near the SiO4−

4 anion, are facilitated.
The results of the quantum mechanical calculation of the relaxer parameters

(Tables 1 and 2) in the natural phlogopite KMg3(AlSi3O10)(OH)2 and onot talc
Mg3(Si4O10)(OH)2 confirm the following Bjerrum defect migration scheme for H3O+:

Defect formation in H3O+ in the water layer or due to the introduction of proton–
donor impurities is as follows:

H2O + H+ → H3O+.

The transition from ion H3O+ to anion SO2−
4 , for the formation of a protonated HSiO3−

4
anion, is as follows:

H3O+ + SiO4−
4 → H2O + HSiO3−

4 .

3. The reorientation of a protonated anion due to the transition of protons inside it:

HSiO3−
4 → SiO4H3−.

4. The transition of a proton between cells of the anionic sublattice, where the newly
formed protonated anion acquires the opposite orientation:

SiO4H3− → HSiO3−
4 .

5. Reorientation of the second protonated anion:

HSiO3−
4 → SiO4H3−.

6. The transition of a proton to a water molecule and the formation of a defect in H3O+:

SiO4H3− + H2O→ SiO4−
4 + H3O+.

For natural muscovite KAl2(AlSi3O10)(OH)2, TSDC maxima were observed at tem-
peratures of 105 K, 153 K, 190 K, 206 K, 230 K, 246 K, 295 K (Figure 3) [1,4].

According to Table 3, the similarity of the chemical structure of muscovite to crystals
of phlogopite and onot talc determines the commonality of the physical mechanism of the
migration of ionization defects in H3O+, which are responsible for the monorelaxation
maximum of the TSDC density at the temperature of 153 K (Table 3), associated with proton
tunneling between layers of silicate anions SiO4−

4 and layers of water molecules.
Note that the experimental values of the energy activation of protons in the area of

low-temperature maxima (in natural phlogopite: 0.05 ± 0.01 eV at 100 K; in onot talc:
0.06 ± 0.01 eV at 86 K; in muscovite: 0.04 ± 0.01 eV at 105 K) fall within the range of small
values of this parameter for HBC (from 0.01 to 0.1 eV) [1]. At the same time, the theoretical
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activation energy values computed for the data maxima by analytic Equation (27), taking
into account the tunneling of protons, as is to be expected, are much closer to experimental
values (computed by semi-empirical methods [1,4]) than those computed using only the
thermal activation of protons on hydrogen bonds (Tables 1–3). Theoretical equilibrium
concentrations of protons, calculated by tunneling, are also closer to the experimental
ones (Tables 1–3). This circumstance makes it possible to reassert the commonality of the
physical nature of data on thermally stimulated current maximums, connected in laminated
silicates at temperatures T = 50–100 K, with the tunnel movement of protons inside and
between silicate anions SiO4−

4 [1,2,69].
It is not difficult to see that the influence of tunneling on dielectric relaxation in

laminated silicates also appears for the high-temperature (290–450 K) maximum of TSDC
density associated with volumetric charge polarization (nonlinear bulk charge relaxation)
caused by a relaxation movement of mixed type (due to the movement of structural
defects H3O+, OH−, H+) [1]. Here, according to Tables 1–3, the experimental values of
the energy activation of protons (in natural phlogopite: 0.35 ± 0.05 eV at 405 K; in onot
talc: 0.40 ± 0.06 eV at 305 K; in muscovite: 0.38 ± 0.06 eV at 295 K) fall within a range of
values from 0.3 to 0.45 eV. At the same time, the values of theoretical activation energies
computed considering quantum effects, as well as at low temperatures, are closer to the
experimental values than those computed with only classical proton transitions (Tables 1–3).
The theoretical values of equilibrium concentrations computed for proton tunneling are also
closer to experimental values than those computed for thermal activation only (Tables 1–3).

The experimental spectra of thermally stimulated depolarization current density for
the chemically pure chalcanthite crystals CuSO4·5H2O were measured with the help of
the empirical schemes developed and described in [68] and are presented (depicted) in
Figure 4.

The experimental values of U0, n0 for chalcanthite crystals were calculated in this
paper by famous quasi-empirical methods [1,4] and are shown in Table 4. The theoretical
values of U0, n0 for chalcanthite were calculated based on Equation (22) with the MCF
method [69], and are also presented in Table 4.

For chalcanthite crystals, on the basis of the Equation (22), similar results were ob-
tained, and in the region of the low-temperature maximum of the TSDC density (94 K,
Graph 1 in Figure 4), due to processes in protonated anions HSO−4 , the theoretical activation
energy (U0 = 0.16 eV) is two times higher than the experimental one (U0 = 0.07± 0.01 eV,
Table 4), which, taking into account the errors of the quasi-classical theory, falls within the
confidence interval of the measured values.

According to the results of an X-ray analysis of the crystal structure CuSO4·5H2O, two
possibilities for the displacement of H3O+ defects [1] can be proposed:

1. Ion migration H3O+ along and between adjacent water layers;
2. Ion migration H3O+ between a layer of water and a layer of sulfate ions SO2−

4 .

Mixed motion is also possible along the layer—between interstitial water molecules
and SO2−

4 ions.
The results of the quantum mechanical calculation of the relaxer parameters (Table 4)

confirm the following Bjerrum defect migration scheme H3O+ (Figure 5):

1. Defect H3O+ formations are found in the water layer or due to the introduction of
proton-donor impurities:

H2O + H+ → H3O+.

2. A transition from H3O+ ion to SO2−
4 anion can form a protonated HSO−4 anion:

H3O+ + SO2−
4 → H2O + HSO−4 .

3. A protonated anion can be reoriented due to the transition of protons inside it:

HSO−4 → SO4H−.
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4. If a proton undergoes a transition between cells of the anionic sublattice, the newly
formed protonated anion acquires the opposite orientation:

SO4H− → HSO−4 .

5. Reorientation of the second protonated anion occurs:

HSO−4 → SO4H−.

6. The transition of a proton to a water molecule and formation of a defect in H3O+ can
occur as follows:

SO4H− + H2O→ SO2−
4 + H3O+.
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Figure 5. Scheme of H3O+ ion movement due to the gradual transfer of the proton in a chalcanthite
crystal CuSO4·5H2O. The arrows show the movement of the proton; the numbers indicate the stages
of its movement.

A similar mechanism can be applied to study ion migration OH−; however, in this
case, the defect will move in the opposite direction. It should be noted that when the ions
H3O+ and OH− move along hydrogen bonds under the action of an electric field, their
influence on the orientation of water molecules and anions SO2−

4 is the opposite.
The contribution of L and D defects and VL(VD) complexes to the electrical conductiv-

ity is possible, but very small (as mentioned above). The mechanism of their movement
from layer to layer will differ at the initial stage of the formation of orientational defects,
since the proton will approach the ion SO2−

4 only after the rotation of the water molecule.
H3O+- conductivity at elevated temperatures could be considered proton conductivity;
however, as the experiment showed, protons play only an intermediate role.

The Relaxer parameter numerical values (Table 4) obtained for chalcanthite (miner-
alogical characteristics of hydrated copper sulfates, along with other aqueous sulfates, such
as epsomite MgSO4·7H2O, melenterite FeSO4·7H2O, morezonite NiSO4·7H2O, gypsum
CaSO4·2H2O, etc.), as in the case of laminated silicates, indicate the dominant role of tunnel-
ing dielectric relaxation protons in the low-temperature area, since the maximum density of
TSDC (measured at 94 K (graph 1 in Figure 4) with an activation energy of 0.07 ± 0.01 eV)
is characterized. Taking into account the quantum effects, the theoretical calculated energy
of activation is equal to 0.08 eV and, excluding tunneling, 0.16 eV. At high temperatures, in
the field of non-linear volumetric charge polarization (290 K (graph 1 in Figure 4; Table 4)),
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a comparison of the numerical values of activation energy calculated from the experiment
(0.34 ± 0.04 eV) and phenomenological theory (based on Equation (24)), respectively, is
presented, considering tunneling (0.35 eV) and thermal activation only (0.41 eV). This
points to the significant influence of quantum kinetic phenomena on proton-relaxation
polarization in crystalline hydrates.

The mechanism of migration of defects in H3O+ due to the gradual transfer of the
proton described in Figure 5 can be used write the refined chemical formula of a chalcanthite
crystal, from the perspective of the geometrical location of the main structural elements in
the tetrahedral elementary cell of the complex compound

[
Cu2+·4H2O

]
·
[
SO4

2−]·H2O.
Due to the commonality of the chemical structure and the geometry of the crystalline

structures, an H3O+ ion transfer mechanism is implemented in materials such as crystalline
hydrates by analogous hydrogen ion migration schemes, according to the detailed ion
formulas of the class:

FeSO4·7H2O =
[
Fe2+·6H2O

]
·
[
SO4

2−]·H2O,

MgSO4·7H2O =
[
Mg2+·6H2O

]
·
[
SO4

2−]·H2O,

NiSO4·7H2O =
[
Ni2+·6H2O

]
·
[
SO4

2−]·H2O.

The mineral moresonite NiSO4·7H2O is characterized by emerald green or greenish
white with glassy gloss, crystallized in an orthorombic system. It occurs as small crys-
tals, stalactites or crusts. Natural crystals are needle-shaped, and synthetic–prismatic.
Moresonite is soluble in water and dehydrates in open air, turning into NiSO4·6H2O [70].

Magnesium sulfate, magnesium sulfate MgSO4 (salt, colorless crystals, density
2.66 g/cm3. At 1100–1200 ◦C, it decomposes into MgO, SO2, and O2) [71]. The solubility
of MgSO4 in water at 20 ◦C, 25.2% by massMgSO4 forms crystalline hydrates with 1, 2, 3,
4, 5, 6, 7, and 12 water molecules [71]. At room temperature, it crystallizes from aqueous
solutions into epsomite MgSO4·7H2O (Epsom salt). It is also found in nature as a mineral
of kizerite MgSO4·H2O. Alkaline salts with MgSO4 form double salts, including natu-
rally occurring langbeinite K2SO4·2MgSO4, astrakhanite Na2SO4·MgSO4·4H2O, polygalite
Na2SO4·MgSO4·2Ca2SO4·2H2O and cainite KCl·MgSO4·3H2O [72,73].

We also note the appearance of aqueous sodium sulfate Na2SO4·10H2O mineral
mirabilite (Glauber’s salt) [72,73].

Regardless of whether there is an even or odd number of water molecules in the
sulfate-based expression, the H3O+ ion transfer mechanism in the electric field remains
similar to the one described above (Figure 5).

Let us return to the question of the theoretical spectra of thermally stimulated currents
in the HBC. Equation (27), in conjunction with the MCF method, allows for the construction
of the theoretical dependencies of TSDC density jth(T) in the vicinity of temperatures
Texp,max of corresponding maxima 1–7 experimental graphs (graph 1 for phlogopite in
Figure 1; graph 1 for onot talc in Figure 2; graph 4 for muscovite in Figure 3; graph
1 for chalcanthite in Figure 4). At the same time, theoretical graphs jth(T) were con-
structed by mathematical modeling (using the MathLab program) by a computer-assisted
search on a set of theoretical numerical values for the parameters of relaxers
ς0,th = {U0,th; δ0,th;ν0,th; n0,th; ath}, provided that the difference between the calculated theo-

retical Tth,max = Ψ
(

ς0,th; jth,max

)
and experimental temperature Texp,max = Φ

(
ς0,exp; jexp,max

)
of each measured maximum density of TSDC is minimized. At the same time, the the-
oretical calculation of the amplitude of the current density of the thermally stimulated
depolarization jth,max = jth

(
ς0,th; Tth,max

)
, calculated from analytical expressions, can differ

significantly from the measured values jexp,max = jexp

(
ς0,exp; Texp,max

)
.

In general, Equation (22), studied by the MCF method of the set of parameters ς0,th
from a comparison with experimental data ς0,exp in the surrounding area (on the set of

measures of the continuum) of each point
(

Texp,max; jexp,max

)
of TSDC density, which
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provides a set of theoretical graphs jth(T) of curves, each tied to its experimental point
and its surroundings. In essence, graph jth,i(T), computed for a single i-th experimental
maximum, corresponds to the decomposition of a generalized (theoretically not yet studied)
function jth,whole(T) into a power series by parameter T−Texp,max

Texp,max
, while retaining the number

of series members corresponding to the degree of precision of the mathematical model. The
rigorous study of function jth,whole(T) over the entire temperature range of the experimental
spectrum jexp,whole(T) is the subject of a separate study.

To calculate a separate theoretical graph jth(T), we apply Equation (22), in which the
relaxation time τdepol(T) = 1

2Ωdepol(T)
is calculated in a temperature function based on the

absence of an electric field:

Ωdepol(T) =
ν0

2
×

exp(−Λ)− Λ
X exp(−X)

1− Λ
X

. (23)

Transformations are established in Equation (22) considering the Equation (23), ac-
cording to X = U0

kBT , Λ = πδ0
√

mU0
ћ
√

2
, based on

B(T) =
1
c

T∫
T0

dT
τdepol(T)

= − U0

ckB

X∫
X0

Ωdepol,0(X)×
dX
X2 =

ν0U0

ckBΛ

Λ
X∫

Λ
X0

exp(−Λ)− u exp
(
−Λ

u

)
1− u

× du,

applying notation b = ν0U0
ckBΛ , we have

B(T) = b

(
exp(−Λ)× ln

(
1− Λ

X0

1− Λ
X

)
−A(T)

)
.

Here,

A(T) =

Λ
X∫

Λ
X0

u exp
(
−Λ

u

)
1− u

× du.

This integral, which reflects the specific effect of temperature on the thermally stimu-
lated depolarization current, is studied by numerical methods [68].

Denote jdepol,0 = qδ0 × ∆npol.
Then, Equation (22) takes a convenient form for numerical analysis

jth(T) = jdepol(T) = jdepol,0 ×Ωdepol(T)× exp(−B(T)). (24)

In Equation (24), expressions Ωdepol(T), B(T) are monotonically increasing functions
of temperature.

In expression jdepol,0, function ∆npol =
1
3 n0 ×

Ξst,pol
2Ωst,pol

is computed at the polarization
temperature Tpol and intensitypolarizing field Epol,0, with the help of Equations (18) and (19).
Nonlinear dependencies are as follows:

Ωst,pol =
ν0

2

exp
(
−Xpol

)
ch
(
ξ0,pol

)
+

1
2 exp(−Λ) exp

(
η0,pol

)(
1 + exp

(
−2ξ0,pol

))
− exp

(
−Xpol

)
ch
(
ξ0,pol

)
1− Λ

Xpol

, (25)

Ξst,pol = ν0

exp
(
−Xpol

)
sh
(
ξ0,pol

)
+

1
2 exp(−Λ) exp

(
η0,pol

)(
1− exp

(
−2ξ0,pol

))
− exp

(
−Xpol

)
sh
(
ξ0,pol

)
1− Λ

Xpol

. (26)
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Here, ξ0,pol =

∣∣∣∣ (∆U)0,pol
kBTpol

∣∣∣∣, η0,pol = Λ
∣∣∣∣ (∆U)0,pol

U0

∣∣∣∣, (∆U)0 = 1
6 qδ0(ε∞ + 2)E0,pol.

Figures 6–9 show theoretical graphs jth(T), calculated according to the described
methodology by Equation (24) against the background of the measured spectra of density
TSDC in crystals of natural phlogopite, onot talc, muscovite, and chalcanthite.
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In Figures 6–9: 2–8, the theoretical graphs are calculated, taking into account only the
thermal activation of protons within the classical model of dipole polarization [1,3] when
Equation (24) is simplified

jth,class.(T) = jdepol,class.(T) = Ppol

(
tpol

)
×Ωdepol,class.(T)× exp(−Bclass.(T)). (27)
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Here,

Ppol

(
tpol

)
≈ n0Epol,0q2δ2

0
12kBTpol

, Ωdepol,class.(T) =
ν0
2 × exp(−X) = ν0

2 × exp
(
− U0

kBT

)
,

Bclass.(T) = 1
c

T∫
T0

dT
τdepol,class.(T)

= −ν0U0
ckB

Λ
X∫

Λ
X0

exp(−X)× dX
X2 = ν0U0

ckBΛ

Λ
X∫

Λ
X0

exp
(
−Λ

u

)
× du.

In Figures 6–9: 2′-8′, show the theoretical graphs calculated by Equation (27), taking
into account the thermal activation and tunneling of protons, and the temperature values
Texp,max of the respective maxima 1–7 of the experimental spectrum jexp,whole(T).

In Figures 6–9, the number of theoretical graphs is greater by 1 compared to the
corresponding experimental maximums.

4. Discussion

From the analysis of the graphs in Figures 6–9, it is clear that theoretical curves
3′-6′(computed by a stricter theory, taking into account the tunneling of protons) are situated
slightly higher and closer, and theoretical curves 3–6 (calculated according to the classical
model of dipole polarization, taking into account only the thermal activation of protons) are
located lower and a little further along the amplitude of the current density relative to the
corresponding experimental maximums 2–6. In fact, this situation is quite qualitative and
reflects both methods (both classical and quantum) regarding the description of properties
and theoretical spectra parameters of density TSDC in HBC in the temperature range
T = 100–235 K, where polarization is dipole and is related to the relaxation movement of
Bjerrum orientation defects and the rotation of water molecules in the electric field.

The theoretical curves 2′ are markedly closer and curve 2 is noticeably further along
the amplitude to the experimental maximum 1. Thus, considering the effects of proton
tunneling on low-temperature polarization (50–100 K), the results of or the model of a
double-symmetric potential pit (not considering the influence of electric field irregularities
in the matter) show a marked convergence with the results of the theory and experiment
(the same can be seen in Tables 1–4).

The theoretical curves 7, 8 (calculated according to the classical linear model of dipole
polarization, taking into account only the thermal activation of protons) are situated
significantly lower (by three to four orders) by amplitude to the experimental maxima 6, 7.
At the same time, considering the effects of proton tunneling on the nonlinear polarization
model at the theoretical level, according to the curves 7′, 8′, provides an almost complete
consistency with the results of the theory and experiment on the amplitude density TSDC
in HBC.

Thus, taking into account the effects of proton tunneling against the background of
the nonlinear dependences embedded in Equation (24) on the dimensionless polarization
parameters ξ0,pol, η0,pol leads to a more rigorous effect, in comparison with the classical
linear theory according to Equation (27), of the polarizing field strength Epol,0 on polariza-
tion at high temperatures (230–550 K). First of all, this effect refers to the volume–charge
polarization (290–450 K), the formation of which, in the HBC, proceeds with a significant
dependence on quantum effects (the same can be seen in Tables 1–4).

The results obtained in this paper are relevant and scientifically significant for a
number of areas of modern science, particularly for the development of theoretical ideas
about the quantum mechanisms of the formation of the ferroelectric state due to the tunnel
motion of protons in the hydrogen sublattice of KDP, DKDP crystals, which are of significant
practical importance for laser technology (regulators of radiation parameters), nonlinear
optics and optoelectronics (electro-optical sensors, strain sensors of hard rocks and building
materials, machine parts and mechanisms, etc.) [45–54], and information technology (thin-
film ferroelectric elements of microcircuits for high-speed, non-volatile storage devices with
an abnormally long time maintaining the residual polarization (up to 10 years)) [29–44].
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5. Conclusions

This work is devoted to improving the schemes and methods of the existing quasi-
classical kinetic theory of dielectric relaxation [1–5] and, on this basis, numerical calcu-
lations of the parameters of relaxers (protons) in HBC over a wide temperature range
(50–550 K) and fields (0.1–1 MV/m). The subject of these improvements is the devel-
opment of a more stringent, in comparison with [1–5], theoretical method to consider
the effects of corrections to the non-stationary quantum transparency of a parabolic po-
tential barrier caused by an electric field. In previous works [1,6], such corrections to
the parabolic potential barrier were not calculated. A double-symmetrical potential pit
with a parabolic potential barrier was adopted as a geometric model of the crystalline
potential field. The solutions of the nonlinear quasi-classical kinetic Equation (11), in con-
tinuation [1,6], are constructed in the most general form in Equation (16), considering the
additional elements of exp(−2ξ(t)) in expressions for non-stationary quantum transparency
in Equations (7) and (8). The diffusion and mobility coefficients of protons are constructed
to model the parabolic double-symmetric potential well of forms that are perturbed by an
external variable field in Equations (9) and (10).

The Bucci–Rive phenomenological formula (Equation (22)) for thermally stimulated
depolarization current density (TSDC) was first written first, considering the stationary
quantum transparency of the parabolic potential proton barrier (Equation (24)). When
calculating the initial polarization of the crystal, the updated stationary Equations (17)–(19)
obtained in this work were used. Previously, these tasks were not solved. In this case,
the choice of the parabolic form of the potential barrier allows, at the theoretical level, for
the mathematical model to be brought closer to the real spatial structure of the crystalline
potential field. This is evident from the comparison of the numerical values of the relaxer
parameters (activation energy, equilibrium concentration) calculated from the experiment
and on the basis of Equation (22), considering tunneling and excluding proton tunneling,
using the example of crystals of phlogopite, onot talc, muscovite and chemically pure
chalcanthite (Tables 1–4). It can be seen from Tables 1–4 that accounting for proton tun-
nel transitions in the Equation (22) significantly approximates the theoretical values of
activation energy and equilibrium concentration of protons relaxing in low-temperature
(50–100 K) and in high-temperature (350–550 K) maxima regions of TSDC density, com-
pared to their experimental values in HBC. Thus, in this work, at a higher theoretical level,
in comparison with [4], it was confirmed that the quantum effects associated with proton
tunnel transitions in the HBC anion sublattice dominate the region of low-temperature
(50–100 K) TSDC maxima. In continuation of this [1,7], we found that quantum effects
continue to significantly affect the dielectric relaxation kinetics in proton semiconductors
and dielectrics (PSD) in the region of high-temperature (250–550 K) TSDC maxima.

At the same time, in continuation of [1,4], we carried out precision measurements
of temperature spectra of TSDC density for chalcanthite crystals. The effect of alloying
impurities’ concentrations and crystal calcination temperatures on the properties and
parameters of experimental maxima in the TSDC spectrum of chalcanthite was established.

We described, in the form of chemical equations, the physical mechanism of the
quantum tunnel motion of HBC protons with a complex crystal structure (Figure 5).

A significant effect of proton tunneling on the amplitudes of theoretical TSDC density
maxima has been established. It follows from Figures 6–9 that, taking into account quantum
effects in the Bucci–Rive formula (Equation (24)), the theoretical amplitudes of TSDC can
be approximated in comparison to experimental ones over almost the entire temperature
range (50–550 K).

The above patterns indicate a fairly high degree of applied scientific significance for
the theoretical results obtained in this article for the further development of physics and
proton semiconductors and dielectrics (PSD) technology.
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