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Abstract: Interpolymer complexes based on cellulose ethers have gained significant interest in
recent years due to their versatile applications. These complexes are formed by combining different
polymers through non-covalent interactions, resulting in stable structures. This article provides an
overview of the various fields where IPCs based on cellulose ethers find application. IPCs based on
cellulose ethers show great potential in drug delivery systems. These complexes can encapsulate
drugs and enable controlled release, making them suitable for sustained drug delivery. They offer
advantages in terms of precise dosage and enhanced therapeutic efficacy. Coatings and adhesives
also benefit from IPCs based on cellulose ethers. These complexes can form films with excellent
mechanical strength and enhanced water resistance, providing durability and protection. They have
applications in various industries where coatings and adhesives play a crucial role. In food packaging,
IPCs based on cellulose ethers are highly relevant. These complexes can form films with effective
barrier properties against oxygen and water vapor, making them ideal for packaging perishable
foods. They help extend to shelf life of food products by minimizing moisture and oxygen transfer.
Various methods, such as solvent casting, coacervation, and electrostatic complexation, are employed
to synthesize IPCs based on cellulose ethers.
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1. Introduction

The initial reference to interpolymer complexes (IPCs) (also referred to as polymer-
polymer complexes in some sources) can be traced back to the research documented
in [1]. Subsequently, Bungenberg de Jong extended these investigations, as indicated in
references [2–5]. The systematic studies in this field were first undertaken by Liquori,
as evidenced by works [6,7]. During the period of 1970–1980, extensive research was
conducted, which established the fundamental basis for the subsequent rapid progress
in the study and application of interpolymer complexes. Notable contributions in this
era were made by prominent scientists, such as Bekturov [8], Zezin [9], Papisov [10],
Izumrudov, Kabanov [11], and Tsuchida [12], who played pivotal roles in leading these
scientific endeavours.

IPCs exhibit a complex structural arrangement, which arises from the interaction
between macromolecules of polymers possessing complementary chemical structures when
in a solution. The characteristics of macromolecules are determined not only by the chemical
structure of the polymer chain but also by the formation of macromolecular aggregates.
Thus, the macromolecules exhibit higher-order structures, including the configuration
and conformation of the polymer chains, in addition to their primary structures. The
effects of aggregation are typically observed as phase separation phenomena, such as
precipitation, gelation, coacervation, emulsification, as well as the crystallization and liquid
crystallization of polymers, or the self-assembly of biopolymer subunits. At present, IPCs
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are recognized as highly promising materials for their ability to act as structure-forming
agents in various types of dispersions [13–16].

The investigation into the growth of interpolymer complex (IPC) films is of significant
interest both from a scientific perspective and for practical applications. The cooperative
interaction of complementary structures found in IPCs plays a crucial role in chemistry,
polymer physics, and molecular biology. Despite the extensive research conducted on
interpolymer complexes, there remain unanswered questions concerning their experimental
and theoretical data, highlighting the need for further scientific advancements in this field.

A comprehensive analysis of the available data leads to the following conclusions: the
primary focus of IPC research lies in understanding the material’s structural construction,
the physicochemical parameters that influence polycomplex growth, and the diverse range
of applications for IPCs. Essential factors influencing the structural growth of IPCs include
solution pH, the temperature at which functional group binding occurs, solution concentra-
tion, the presence of low molecular weight compounds, and other relevant parameters.

Based on the forces of interaction involved, intermacromolecular complexes can be
categorized into the following four distinct classes (Figure 1):

• Polyelectrolyte complexes [17–20];
• Complexes of hydrogen bonds [12,21–23];
• Stereocomplexes [6,24,25];
• Charge transfer complexes [26,27].
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2. Methods of Obtaining

Several methods have been established for obtaining interpolymer complexes, includ-
ing the following:

• Mixing complementary macromolecules in solutions [28–32];
• Matrix polymerization [33–37];
• Interactions at the boundary of liquid compounds [38–41];
• Application methods on solid and flexible surfaces [42–45].

Among these approaches, one of the feasible and reliable methods for creating inter-
polymer complexes involves employing joint assembly processes within multicomponent
polymer systems that contain complementary macromolecular components. Specifically,
electrostatically controlled joint assembly is utilized, where water solutions of oppositely
charged polyelectrolytes are mixed, leading to the formation of IPCs (Figure 2). These com-
plexes represent macromolecular co-assemblies stabilized by an interconnected network of
interpolymer salt bonds [28].
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Matrix polymerization is an intriguing approach based on the conventional matrix
synthesis model, which offers a means to synthesize composite materials that may be
challenging or unattainable using alternative methods. Originally, the method was denoted
as rreplica polymerization [46]; subsequently, it was assigned two additional designations,
namely, “Template polymerization” and “Matrix polymerization”, which ultimately super-
seded the former term. The interpolymer complexes obtained through this method exhibit
sufficient stability, and their polymer components can only be separated by disrupting the
cooperative systems of intermolecular bonds [35]. Połowiński [34] differentiates between
two distinct mechanisms of polymerization (Figure 3).
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Another method for obtaining IPCs involves conducting a reaction at the interface
of two immiscible liquid compounds. This technique relies on two solutions containing
complementary polymers in separate solvents, resulting in the formation of a thin film of
IPC at the phase boundary (Figure 4) [38].
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The application method on both solid and flexible surfaces entails the sequential
deposition of polymer solutions capable of forming soluble and insoluble interpolymer
complexes. This approach offers notable advantages, including precise control over coating
thickness and the ability to develop materials with tailored physicochemical properties.
Multilayer coatings can be applied to various surfaces, holding potential applications in
the medical field and other scientific disciplines (Figure 5) [43,45].
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Figure 5. Application methods on solid and flexible surfaces [45]. (A) Schematic of the film deposition
process using slides and beakers. (B) Simplified molecular picture of the first two adsorption steps,
depicting film deposition starting with a positively charged substrate. The molecules and solutions of
the polyanion and polycation are distinguished by the utilization of red and blue colors, respectively.

3. Methods of Studying IPCs

Throughout this research, a substantial body of scientific literature on interpolymer
complexes and their preparation and analysis methods has been thoroughly examined.
Notably, standardized approaches exist for investigating the partially formed complexes,
including the following:

• Titration [47];
• Viscometry and turbidimetry [48];
• Potentiometry [49];
• IR spectroscopy [50];
• Differential scanning calorimetry [50];
• Scanning electron microscopy [51];
• Dynamic light scattering [52];
• Three-dimensional (3D) integrated optics [53];
• Static light scattering [54], etc.

4. IPCs Based on Cellulose Ethers

This review primarily examines interpolymer complexes (IPCs) derived from cellulose
ethers as its main subject of interest.

Cellulose ethers are derivatives of cellulose with a general chemical formula
[C6H7O2(OH)3−x(OR)x]n, where n represents the degree of polymerization. In this for-
mula, x denotes the number of hydroxyl (OH) groups substituted in a single unit of the
cellulose macromolecule, while R represents an alkyl, acyl, or mineral acid residue. Each
unit of the macromolecule contains three hydroxyl groups, which have the capability to
undergo reactions to form ethers and esters. In the case of mixed cellulose esters, different
substitutive radicals are present.

The most commonly encountered cellulose ethers and esters include ethers, such as
carboxymethylcellulose, methylcellulose, ethyl cellulose, as well as methylhydroxypropyl
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cellulose, oxypropyl cellulose, and cyanethyl cellulose. Esters include cellulose acetates,
cellulose nitrates, as well as acetylphthalyl cellulose, acetopropionates, acetobutyrates, and
cellulose sulfates (Figure 6).
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Cellulosic materials encompass a variety of cellulose derivatives, including cellulose
esters, such as acetate, acetate trimellitate, acetate phthalate (CAP), hydroxypropyl methyl
(HPM, also known as hypromellose) phthalate, and HPM acetate succinate. These esters are
formed through the esterification of hydroxyl groups in cellulose using acetic, trimellitic,
dicarboxylic phthalic, and succinic acids, or a combination of them.

Additionally, cellulosic materials also comprise cellulose ethers, such as methyl, ethyl,
hydroxyethyl, hydroxyethyl methyl, hydroxypropyl (HP), HPM, and carboxymethyl ethers
of cellulose. These ethers are formed by etherification of hydroxyl groups in cellulose using
the appropriate alkyl halide (R-Cl) after the alkalization of cellulose, typically derived from
wood pulp (Table 1).

Table 1. Cellulose and its derivatives (Figure 6).

Cellulose Esters R Groups Cellulose Ethers R Groups

Acetate H, I Methylcellulose H, CH3

Acetate trimellitate H, I, II Ethyl cellulose H, CH2CH3

Acetate phthalate I, III Hydroxyethylmethyl cellulose H, CH3, [CH2CH2O]nH

Hydroxypropyl
methyl phthalate H, CH3, CH2CH(OH)CH3, III, IV Hydroxypropyl cellulose H, [CH2CH(CH3)O]nH

Hydroxypropyl methyl
phthalate acetate succinate H, CH3, CH2CH(OH)CH3, I, V Carboxymethylcellulose H, CH2COONa

The properties of cellulose ethers are primarily influenced by factors, such as the
number, degree of substitution, and type of substituent R. The degree of polymerization,
typically ranging from 150 to 500, significantly impacts the strength and viscosity properties
of cellulose ethers, allowing for a wide range of applications. The physico-mechanical
and chemical properties are determined by the degree of substitution. The average degree
of substitution, denoted as γ, falls within the range of 0 to 3. However, it is often calcu-
lated for 100 elementary units of cellulose macromolecules (e.g., cellulose triacetate with
γ = 280–290). The degree of substitution can be controlled by adjusting synthesis conditions,
such as the concentration of alkylating or esterifying agents, temperature, and duration.

The solubility of cellulose ethers relies on the composition and ratio of substituents
and free hydroxyl (OH) groups. For instance, cellulose acetate, with a degree of substitution
of 0.5–0.8 and 1.5–1.8, is, respectively, soluble in water and an acetone–water mixture (7:3).
Cellulose acetate with a degree of substitution of 2.2–2.6 is soluble in acetone, while methyl
cellulose, with a degree of substitution exceeding 2.6, dissolves in methylene chloride
and a mixture of methylene chloride-ethanol (9:1). As the alkyl radical’s chain length
increases, the hydrophobicity of cellulose ethers rises, enabling solubility in nonpolar
solvents (e.g., butyl- and propyl cellulose are insoluble in water but soluble in organic
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solvents). The solubility of cellulose ethers in organic solvents tends to increase with higher
temperatures but decreases with greater molecular weight.

As the number of carbon atoms in the substituent increases, several properties of
cellulose ethers undergo changes. These include a decrease in moisture absorption, as
well as reductions in softening and melting temperatures. It is worth noting that esters
exhibit thermal instability and possess low resistance to acids and alkalis. In contrast, ethers
demonstrate stability when exposed to acids and alkalis, and they can withstand relatively
high temperatures without decomposing or releasing free acids that may lead to metal
corrosion. Both cellulose ethers and esters exhibit good dielectric properties.

5. Application of IPCs

Cellulose ethers find extensive application in the manufacturing of contemporary dry
building mixes (such as hydroxyethyl methyl cellulose, HEMC, and hydroxypropyl methyl
cellulose, HPMC), which enhance water retention, thickening, and improve the processabil-
ity of the mixture (Figure 7). They are also utilized in the production of pharmaceutical
dosage forms. These complexes offer the advantage of prolonging the residence time of
dosage forms in mucous membranes, leading to increased bioavailability of medications
(Table 2).
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Table 2. Methods of delivery of various medicines.

Dosage Forms Drugs and Medicinal Products Links

Mucoadhesive tablets Metronidazole; chlorhexidine diacetate; theophylline; magnesium chloride;
diminazene; phenacetin; iodine. [56–65]

Medical patches Antimicrobial biomaterials; 5-fluorouracil; cetylpyridinium chloride. [66–70]

Hydrogels Metronidazole; oxaliplatin, Voltaren Emulgel (carbomer and propylene
glycol alginate) [71–73]

Eye drops Riboflavin [74,75]

Topical creams and ointments: Diclofenac sodium topical gel [76]

Inhalation products Beclomethasone dipropionate inhaler [77]

Irrespective of the route of drug administration, such as nasal, oral, ocular, or rec-
tal, mucoadhesive drug delivery systems are considered favorable and versatile in the
formulation of dosage forms.
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Certain polymer structural characteristics necessary for mucoadhesion can be summa-
rized as follows: the presence of strong hydrogen bonding groups, significant anionic or
cationic charges, high molecular weight, chain flexibility, and surface energy properties
that facilitate spreading on mucus.

A review of the works conducted by V.V. Khutoryansky and colleagues [56,78–81]
focused on the development of hydrophilic and hydrophobic films using combinations of
polycarboxylic acids, polysaccharides, and various nonionic polymers. These multilayer
materials composed of synthetic polymers and natural nonionic polysaccharides have
gained considerable interest due to their excellent biocompatibility and potential biomedi-
cal applications. The resulting films exhibited a wide range of glass transition temperatures
and mechanical properties, ranging from glassy polymers to highly elastic rubber-like
materials that displayed greater susceptibility to deformation compared to other counter-
parts. The unique properties of these interpolymer complexes (IPCs) hold promise for the
development of novel bioadhesive drug delivery systems, particularly in situations where
the material must possess sufficient softness to prevent damage to living tissues, such as in
ophthalmology [74]. Notably, several articles [82,83] examined the mucoadhesive potential
of soluble and cross-linked multilayer hydrogel films and evaluated their biocompatibility
in the mucous membrane of pig cheeks. The authors concluded that the developed films
have potential applications in the local delivery of anesthetics in dental treatments.

In a related study [31], efforts were made to develop novel formulations containing
metronidazole for the treatment of ulcerative wounds. Flour-adhesive tablets were prepared
by employing different combinations of cellulose and polyacrylic derivatives. The tablets
underwent characterization through investigations of swelling, mucoadhesion time, and
drug release. Results revealed that these tablets exhibited prolonged local release of
metronidazole in the oral cavity for a duration of 12 h, along with a significant reduction in
the daily dosage compared to traditional systemic therapy.

Similarly, Musial [71] conducted research in 2007 on the release rate of metronidazole
from hydrogels for the treatment of acne rosacea. The influence of various acrylic acid
polymers in conjunction with methylcellulose on the release rate of metronidazole from
hydrogels was examined. Compositions containing Carbopol 971P and methylcellulose
demonstrated an increase in viscosity within a specific range of methylcellulose concentra-
tion. The drug release process in all formulations exhibited a two-stage pattern. Among
the biopolymer formulations, Carbopol 980NF with methylcellulose exhibited the highest
release rate during the first stage. These gels with comparable rheological properties can be
utilized for ex vivo and in vivo studies to achieve optimal drug activity of metronidazole
in the treatment of inflammatory skin conditions.

Furthermore, in another study [57], researchers aimed to develop buccal tablets for
the delivery of chlorhexidine diacetate, an antimicrobial drug widely used for periodon-
tal disease treatment. Mesoporous silicate (MCM-41) was incorporated into the tablets
by combining an aqueous solution of sodium metasilicate with an aqueous solution of
cetyltrimethylammonium chloride, following the method described in reference [84]. Mu-
coadhesive polymers were employed in combination with MCM-41 to prepare the mu-
coadhesive tablets. Different mixtures of hydroxyethyl cellulose (HEC)/MCM-41 and
carboxymethylcellulose/MCM-41 were utilized. The tablets were evaluated for their
swelling behavior, ex vivo mucoadhesion time, and strength. Tablets formulated with a
ratio of 2:1 HEC/MCM-41 exhibited the most favorable mucoadhesive properties, efficient
drug release, and effective antifungal activity, indicating the suitability of HEC as the
starting polymer for the preparation of interpolymer complexes (IPCs).

In a study conducted by Majid Saidi et al. [58], the influence of polyvalent cations
on the release of theophylline from tablets made of polyanionic polymers, specifically
sodium alginate and sodium carboxymethylcellulose, was investigated. Theophylline is
commonly used as a bronchodilator for the treatment of chronic obstructive pulmonary
disease, making it crucial to identify optimal delivery methods for this therapeutic agent.
Dissolution studies revealed that the inclusion of cations facilitated the release of the drug.
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The duration and kinetics of drug release were also dependent on the characteristics of
the polymers, cations, their concentration, and valence. Notably, the combination of the
two polymers resulted in a more significant reduction in the drug release rate compared to
formulations containing each polymer separately.

Furthermore, Boaz Mizrahi [59], building upon previous research [85–87], focused
on the development of a mucoadhesive tablet using the commonly used pharmaceutical
polymers hydroxypropyl cellulose and crosslinked polyacrylic acid (PAA) (Figure 8). The
tablet was designed to release citrus oil and magnesium chloride.
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The tablet exhibited remarkable efficacy in reducing pain and promoting faster healing
in patients with both single ulcers and recurrent aphthous stomatitis. The polymer cap-
sule’s erosion time and flexibility demonstrated its ability to alleviate pain by shielding the
ulcerative wound from the oral environment. In addition to the discomfort and potential
nausea associated with many antimicrobial mouthwash solutions, the author and a col-
league [60] explored iodine complexes with hydroxypropyl cellulose (HPC) (Figure 7) and
ethyl cellulose (EC) as carriers for iodine in buccal dosage forms. The research involved
investigating the release profile of iodine from adhesive tablets and assessing their an-
timicrobial activity through diffusion assays using Candida albicans and Porphyromonas
gingivalis cultures [88]. The study revealed the unique binding and release properties
of these polymers in relation to iodine, with EC demonstrating superior complexation
capabilities compared to HPC.

The investigation [89] delves into the integration of polyethylene glycol (PEG) as both
a plasticizer and a compatibilizer in the blends. The researchers conducted a thorough ex-
amination and development of equilibrated solutions with an elevated solids concentration
(20%) to facilitate the production of hard capsules through the well-established dipping–
drying technique, employing stainless steel mold pins (Figure 9). Various aspects of the
HPMC/HPS blends, encompassing viscosity, transparency, tensile strength, water contact
angle, SEM, and FTIR, underwent meticulous characterization. The findings revealed that
the blend system exhibits immiscibility but demonstrates a discernible level of compati-
bility, particularly with the inclusion of PEG. The presence of hydroxypropylene groups
on both cellulose and starch contributed to an improved compatibility between HPMC
and the modified starch. It was observed that the contact angle of the films increased with
higher HPS content, indicating a heightened hydrophilicity of starch HPS in comparison to
HPMC. Additionally, the study identified intermolecular hydrogen bonding through the
migration and overlapping of FTIR peaks.

The study [90] examines the moisture sorption and desorption characteristics of
three types of hard capsules: gelatin, HPMC, and pullulan capsules (Figure 10). The
investigation delves into various aspects, including hygroscopicity, crystallinity, thermal
behaviors, and related factors. The results indicate that HPMC capsules demonstrate lower
moisture sorption rates, equilibrium moisture contents, moisture retention rates, and higher
critical relative humidity compared to pullulan or gelatin capsules. Additionally, pullulan
capsules exhibit a weaker moisture sorption ability but a comparable moisture retention
capacity when compared to gelatin capsules. Notably, both HPMC and pullulan capsules
demonstrate superior efficiency in safeguarding high, moderate, and low hygroscopic
capsule contents (such as chitosan, potato starch, or ethyl cellulose) from external moisture
absorption. Based on these findings, the study suggests that HPMC and pullulan cap-
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sules hold promise as viable alternatives to gelatin capsules derived from animal sources,
primarily due to their favorable moisture sorption and desorption properties.
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In their article [52], the authors conducted a study utilizing EC/(PAA) and employed
dynamic light scattering and transmission electron microscopy techniques. By selecting an
appropriate solvent, the authors successfully achieved intra- and intermolecular association
of the main chain in densely grafted copolymers, leading to the formation of micelles. The
conformation of the chain in solvents served as an illustrative example of the influence of
the solvent and graft length. This finding offers a strategy for controlling the micellization
of grafted copolymers by adjusting the chain conformation.

In another study [91], the complexation between PAA and methylcellulose (MC)
(Figure 7) in aqueous solutions was analyzed using the layer-by-layer deposition method
of polymers on glass surfaces with Biacore, a system designed for the analysis of biological
interactions.

It is noteworthy that Biacore analysis has become a valuable tool for quantifying drug–
protein binding, characterizing antibodies, assessing immunogenicity, and developing
vaccines, which are highly relevant research topics in today’s scientific landscape. The
results obtained in the aforementioned article subsequently facilitated the optimization of
experimental conditions for the sequential layering of films on slides.
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In another study [75], the researchers investigated films prepared by pouring polymer
solutions mixed with a drug at a pH of 4.5. The in vitro release of riboflavin from these
films was studied using rabbit models. It was observed that films with a higher content of
MC exhibited significantly slower release of riboflavin compared to samples containing
higher amounts of PAA. Films composed of PAA/MC interpolymer complexes (IPCs)
demonstrated relatively good adhesion and retention for 30–60 min, whereas films made
solely of methylcellulose lasted for 50 min, and those made of PAA lasted only 10 min.

Chitosan has been extensively studied in various research endeavors. For instance,
in the scientific article by N.A. Nafi et al. [69], mucoadhesive patches were prepared
using polyvinyl alcohol (PVA), HEC, and chitosan as carriers for the delivery of cetylpyri-
dinium chloride.

Additionally, Athos Maleki et al. [92,93] conducted research providing new insights
into the impact of stable shear flows on intramolecular and intermolecular associations
in dilute aqueous solutions of HEC in the presence of a crosslinking agent. The results
highlighted that by adjusting the shear rate, crosslinking density, and polymer concen-
tration, both intrapolymer and interpolymer crosslinking effects could be observed. A
significant conclusion from these studies was that the hydrophobicity and concentration
of the polymer can be manipulated as variables to regulate the compression of the gel
matrix in the post-gel region. This effect can be employed to modulate the porosity of the
hydrogel and consequently control the release characteristics of drugs in controlled drug
delivery systems.

Mun G.A. and his colleagues [94–97] used viscometry and turbidimetry to study the forma-
tion of complexes between PAA/HEC, PAA/HPC, PAA, and poly(2-hydroxyethylacrylate) in
media with different pH values. As a result of experiments, it was revealed that, depending
on the critical pH of the solution, both hydrophilic associates and hydrophobic interpoly-
mer complexes can form in these systems. Comparing the results of the turbidimetry
method, we can say that the PAA/HPC system prevails with a great ability for complex
formation compared to the PAA/HEC system. When inorganic salts are added to solutions
of PAA/HEC polymers in acidic media, a polycomplex with a compact structural organiza-
tion is formed, and the resulting films were considered as capsules for controlled isolation
of the antibiotic levomecitin.

In the article [50], a more comprehensive investigation was conducted on hydrogels
derived from PAA and HPC. The composition of the hydrogels, including the percentages
of the initial polymers and crosslinking agents, was varied, and the swelling capacity of
the hydrogels was evaluated. Hydrogels with higher swelling percentages were further
characterized using techniques, such as IR spectroscopy, differential scanning calorimetry,
dynamic mechanical analysis, and scanning electron microscopy. The most favorable
swelling results were obtained with the PAA/HPC 50/50 sample, which was attributed
to the interaction between divinyl sulfone (DVS) and the PAA chain as the preferred
crosslinking agent for HPC in this system, contrary to the initial assumption of using
glutaraldehyde. This gel, being partially biodegradable due to the presence of HPC,
exhibited viscoelastic properties similar to PAA.

In the articles [72,73,98], the study focused on PAA/HPC hydrogels loaded with
drugs, such as oxaliplatin, known for its potent antitumor activity, and bovine serum
albumin, serving as an antigen for assessing changes in immune response. The release
profiles indicated that the polymer composition played a crucial role in the drug release
behavior. In vitro cytotoxicity analysis [99] yielded positive results. Moreover, based
on these polymers, vesicles were also developed [100]. Vesicles are essential structures
used as models for simulating living cells and as drug carriers, featuring a spheroidal
two-layer shell. The dynamic formation process, encompassing the nucleation and growth
of PAA/HPC bubbles, was observed, which differed from theoretical predictions regarding
closed membrane models.

The article [101] presents a method for creating films by blending HEC and maleic
acid ester of methyl vinyl ether. The resulting films exhibit favorable mechanical and
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physical characteristics when subjected to relatively mild heat treatment. The heat treatment
induces crosslinking through intermolecular esterification and anhydride formation. The
crosslinked materials demonstrate water-swelling capabilities, and the extent of swelling
can be easily controlled by adjusting the temperature and duration of the heat treatment.
This control over swelling is crucial for film modification.

In the research conducted by Kwaben Ofori-Kwakye and John Fell [102], mixed films
containing pectin, chitosan, and HPMC were investigated with regard to polymer leaching
in gastrointestinal fluids and its impact on the integrity of film-coated products during
passage through the gastrointestinal tract. The ability to control the leaching of pectin
in different pH conditions makes film coating systems potential carriers for two-phase
drug delivery. Three years later, in [103], the authors explored the systematic complexa-
tion between polycarboxylic acids and HPMC. The study revealed that HPMC exhibits
a comparable complexing ability to PAA, a lower ability compared to MC, higher ability
than HPC, and a higher ability than HEC. In [104,105], the phase transition behavior of
the HPMC/PAA system in water was investigated, attributing the decrease in transition
temperature to strong hydrogen bonding between these polymers. At an acidic pH, inter-
polymer complexes were formed through hydrogen bonding at a specific stoichiometric
ratio (3:1) of polymers. With an increase in pH, a transition to the formation of interpolymer
associates was observed, accompanied by gelation.

Moreover, in the works [49,106,107] interpolymer complexes in dilute aqueous so-
lutions were obtained and studied using viscometry, turbidimetry, and potentiometry,
focusing on HPC and a copolymer of maleic acid and styrene. The investigations revealed
the formation of stable interpolymer complexes due to strong physical interactions be-
tween the functional groups of these polymers. The total polymer concentration in the
polycomplex solutions influenced the release profile of procaine, particularly when one of
the components was present in excess.

In the articles [51,108], experimental data concerning complexation between HPC
and polyacrylonitrile were presented. Various analytical techniques including viscometry,
polarized optical microscopy, scanning electron microscopy, infrared spectrophotometric
analysis, and thermogravimetric analysis were employed in this study. The results demon-
strated excellent compatibility within the mixture system, likely attributable to strong
hydrogen bonding interactions between the hydroxyl group of HPC and the nitrile group
of polyacrylonitrile. The interaction parameters, such as Huggins’ constants and association
constants, calculated based on viscosity measurements, provided reliable information, and
proved to be valuable tools for characterizing the compatibility of polymer mixtures.

In the research conducted by Rubner et al. [109], the formation of multilayers com-
posed of two weak polyelectrolytes, PAA and polyallylamine, was investigated under dif-
ferent pH conditions. Similarly, Bjorn Scheler, Evgeny Poptoshev, and Frank Caruso [110]
examined the structure of these multilayer films comprising a low but consistently charged
polyelectrolyte and the weak polyacid PAA, considering cases where PAA had a low or
high charge. The charge density of PAA was modified by adjusting the pH of the deposition
solutions, demonstrating that the magnitude of electrostatic and secondary interactions
in multilayer polyelectrolyte films can be controlled by varying the charge density of the
polyelectrolyte in response to the solution’s pH.

In the research conducted by Yuwei Zhang et al. [111–114], non-covalently linked
micelles with a polycaprolactone core and a shell based on PAA were obtained in aqueous
solutions due to specific interactions between the constituent polymers. Additionally,
thin films composed of water-soluble cellulose derivatives were developed. The study
highlighted the potential utility of cross-linked micelle shells and hollow spheres for encap-
sulation in various fields, particularly in biomedicine. The films exhibited excellent water
absorption properties and pH-sensitive behavior, making them suitable for applications in
biomedicine and oil purification from water in the oil industry.

Nanoparticles incorporating HPC with thermal sensitivity and carboxylic functional
groups were investigated at Shanghai University in the absence of surfactants and organic
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solvents [115–117], and with the application of surfactants and organic solvents [118]. In
the first system, rapid and reversible changes in dispersion–aggregation behavior were
observed, closely related to temperature variations within a narrow range near body tem-
perature. This phenomenon was confirmed through dynamic light scattering analysis. In
the second system, the size and morphology of the nanoparticles formed could be manipu-
lated by adjusting the ratio of HPC and the films. The authors of these studies concluded
that utilizing HPC as a renewable central material within a favorable solvent medium
offers numerous advantages, ranging from environmental safety to their applicability in
biologically significant systems.

In the article [63,119], the pH-dependent micellization and crosslinking of HEC/PAA
nanoparticles were comprehensively investigated. The loading of crosslinked nanopar-
ticles with drugs was also explored. Dynamic light scattering studies revealed that the
hydrodynamic diameter of the pH-induced micelles was influenced by temperature and
concentration. Additionally, the potential of crosslinked micelles for loading cationic drugs
was demonstrated using diminazene as a model drug.

In [70], novel drug delivery systems based on HPC and varying percentages of glucose
were developed and characterized to assess their suitability as patches. The primary
objective of the study was to investigate and minimize changes that may occur when
HPC is used as a patch or bandage on skin exposed to ultraviolet (UV) light. The total
amount of glucose released from the HPC matrix was primarily influenced by the amount
of glucose incorporated and, to a lesser extent, the duration of UV radiation exposure.
Morphological and surface energy analyses indicated the occurrence of photooxidation and
photodegradation processes, leading to chemical modifications on the polymer surface.

In the article [120], a novel drug carrier for the colon based on a natural polymer was
developed using carboxymethylcellulose and acrylic acid in an aqueous solution. The
impact of various synthesis parameters, including the content of natural polymer and
radiation dose, on the gelation process was investigated. The swelling behavior of the
prepared hydrogels was characterized by studying the time- and pH-dependent swelling
of hydrogels with different carboxymethylcellulose content. The swelling kinetics studies
revealed that the hydrogel exhibited Fickian diffusion in an environment similar to the
stomach (pH 1) and also in an environment resembling the intestine (pH 7).

Researchers from Kyoto University conducted a study [121] focusing on cellulose
and its derivatives. In this work, polycomplexes were obtained by casting from mixed
polymer solutions. It was observed that complex formation was driven by the increased
frequency of hydrogen bonding interactions between the residual hydroxyl groups of the
initial polymers. Considering the wide applications of cellulose derivatives in industries,
such as petroleum, textiles, food, pharmaceuticals, and others, further research in this area
remains relevant.

Solid dispersion, which involves dispersing compounds in water-soluble carriers, is
commonly used to enhance the dissolution properties and bioavailability of poorly water-
soluble drugs. Based on this concept, researchers from Tokyo University of Pharmacy and
Life Sciences conducted a study [64] on the controlled release of phenacetin from solid
dispersion by forming an interpolymer complex between methylcellulose and carboxyvinyl
polymer. The research demonstrated the feasibility of controlling the release of phenacetin
from solid dispersion granules by modulating the formation of a complex between the
starting polymers, which can be achieved by adjusting the ratio and molecular weight.

Considering the significant advancements highlighted in multiple works [122–125],
the production of interpolymer complexes stabilized by hydrogen bonding through the
layer-by-layer deposition method is a highly relevant area of study. In a scientific inves-
tigation [126], the authors focused on the study of multilayer film coatings obtained by
depositing polyacrylic acid-based polymers with nonionic polymers onto glass surfaces.
Chemical modification of the glass surface, followed by layer-by-layer deposition and
crosslinking of interpolymer complexes through heat treatment, enabled the production
of ultra-thin film coatings that remain adhered to the substrate. The thickness of these
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coatings is directly influenced by the number of deposition layers and crosslinking condi-
tions. An intriguing dependence of the swelling properties on the thickness of the film was
observed, possibly attributed to gradual transitions between the layers. Such coatings have
potential applications as substrates for investigating the adhesive properties of pharma-
ceutical tablets and simulating the overall adhesion observed during the detachment of
mucoadhesives from mucous membranes, among other uses.

The process of adsorbing a polymer solution onto a solid surface is widely employed
for film production, yet the forces governing adsorption are not fully understood. In the
article [127], the authors investigated the adsorption of cellulose surfactants on polymethyl-
methacrylate (PMMA) surfaces. This study provides a comprehensive understanding of
how surface-active molecules interact with solid surfaces and self-organize into distinct
architectures. The research revealed that regardless of the complex interactions between
the adsorbed molecules and the solid surface, hydrogen bonding plays a fundamental role
in the spontaneous adsorption on PMMA surfaces. Hydrogen bonding leads to strong
attachment of the molecules to the surface, resulting in irreversible adsorption that can-
not be removed by water washing. In contrast, in the absence of hydrogen bonding, the
molecules weakly adhere to the surface, leading to reversible adsorption. These findings
enable predictable manipulation of adsorption and self-assembled architectures by tailoring
the molecular structures and solid surfaces.

In the layer-by-layer deposition method, surface functionality plays a crucial role in
the deposition of polymer complexes. Hydrophobic surfaces in contact with water do
not provide accurate predictions of the surface’s ability to be covered with water-soluble
polymer complexes. The chemical composition of the surface also influences the deposition
efficiency, and surfaces that are prone to hydrogen bonding facilitate the deposition of
hydrogen-bonded polymer complexes. Importantly, surface properties are not solely
affected by the initial polymer deposition layer but can also propagate and impact the
properties of the resulting multilayer film on the surface.

Molecular dynamics modeling was employed in the study described in [128] to inves-
tigate the aggregates formed by different polymers in aqueous solutions. The investigation
focused on hydrolyzed polyacrylamide (PAM), HEC, and polyvinylpyrrolidone (PVP).
The structures of mixed aggregates were analyzed based on dihedral angular distribution,
comparing PAM in pure form, PAM in aqueous solution, and various ratios with HEC and
PVP. The research confirmed the presence of strong interaction between PAM and HEC
and provided additional microscopic insights into these systems through spectral analyses.

The article [129] describes the production of a volumetric polymer complex bound
by hydrogen bonds and thin films through solution mixing and layer-by-layer assembly.
PVP and ethylene polyoxide served as hydrogen bond acceptor polymers, while PAA and
PMMA acted as hydrogen bond donor polymers. When immersed in solvent systems,
the PVP/PAA films showed that as hydrogen bonds break, the polymer chains easily
detach from the film, leading to film thinning. Comparatively, the dissolution of bulk
polymer complexes became more challenging due to the need to break hydrogen bonds
and overcome polymer chain entanglement.

Films formed from ethylene polyoxide and PAA were also explored for three-dimensional
(3D) integrated optics using customizable multi-level building blocks, demonstrating their
usefulness in manipulating polarized light across a broad spectrum [53].

6. Conclusions

In conclusion, extensive research has been conducted on various polymer combina-
tions as highly specific functional materials, leading to the successful synthesis of IPCs
from different starting materials using diverse methods, both in solution and on different
surfaces. Experimental investigations have revealed that the formation of IPCs is influenced
by factors, such as pH, temperature, nature, and the ratio of initial polymers. To achieve
effective functionalization and growth of polycomplexes in solution and surface-based
processes, it is important to consider the presence of impurities and monomer particles from
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the initial polymers. These findings suggest that further modifications in IPC synthesis
methods have the potential to enhance performance in industrial processes and expand the
range of applications for IPCs.

Furthermore, cellulose ethers, including HEMC and HPMC, have gained significant
use in the manufacturing of contemporary dry building mixes and pharmaceutical dosage
forms. These polymers offer advantages, such as improved water retention, thickening
properties, and enhanced processability of mixtures. Moreover, they exhibit the capability
to prolong the residence time of dosage forms on mucous membranes, leading to increased
bioavailability of medications. The development of IPCs using cellulose derivatives and
other polymers has attracted attention due to their biocompatibility and potential for
biomedical applications. IPCs demonstrate a wide range of properties, spanning from
glassy to elastic rubber-like materials, making them suitable for diverse applications, such
as ophthalmology and local drug delivery. The utilization of layer-by-layer deposition
techniques has facilitated the fabrication of tailored multilayer films, further expanding the
potential of IPCs in drug delivery systems.

Additionally, research has focused on exploring the mucoadhesive properties of
cellulose-based formulations, showcasing their efficacy in treating conditions, such as
ulcerative wounds, acne rosacea, and periodontal diseases. Investigations into the incor-
poration of polyvalent cations and the optimization of polymer combinations have been
conducted to regulate drug release rates and enhance antimicrobial activity. Overall, these
studies contribute to the understanding and advancement of cellulose-based materials for
biomedical applications, offering promising avenues for future research and innovations in
the field of drug delivery systems.
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105. Şakar-Deliormanli, A. Flow Behavior of Hydroxypropyl Methyl Cellulose/Polyacrylic Acid Interpolymer Complexes in Aqueous
Media. Polym. Int. 2012, 61, 1751–1757. [CrossRef]

106. Bumbu, G.G.; Vasile, C.; Chitanu, G.C.; Staikos, G. Interpolymer Complexes between Hydroxypropylcellulose and Copolymers
of Maleic Acid: A Comparative Study. Macromol. Chem. Phys. 2005, 206, 540–546. [CrossRef]

107. Bumbu, G.G.; Vasile, C.; Eckelt, J.; Wolf, B.A. Investigation of the Interpolymer Complex between Hydroxypropyl Cellulose and
Maleic Acid-Styrene Copolymer, 1: Dilute Solutions Studies. Macromol. Chem. Phys. 2004, 205, 1869–1876. [CrossRef]

108. Gong, G.-L.; Li, H.; Li, X. yan Studies on Swelling Kinetics for HPC/PAN Thermo-Sensitive Blending Films. Polym. Adv. Technol.
2011, 22, 1422–1426. [CrossRef]

109. Yoo, D.; Shiratori, S.S.; Rubner, M.F. Controlling Bilayer Composition and Surface Wettability of Sequentially Adsorbed Multilayers
of Weak Polyelectrolytes. Macromolecules 1998, 31, 4309–4318. [CrossRef]

110. Schoeler, B.; Poptoshev, E.; Caruso, F. Growth of Multilayer Films of Fixed and Variable Charge Density Polyelectrolytes: Effect of
Mutual Charge and Secondary Interactions. Macromolecules 2003, 36, 5258–5264. [CrossRef]

111. Li-Bin, D.; Dong-Qing, Z.; Shou-Ping, L.; Yun-Xiang, Z. Effects of Ethylene Oxide Spacer Length on Solution Properties of
Water-Soluble Fluorocarbon-Containing Hydrophobically Associat-Ing Poly (Acrylic Acid-Co-Rf-PEG Macromonomer). Chin. J.
Chem. 2003, 2, 698–705.

112. Zhang, X.; Lin, F.; Yuan, Q.; Zhu, L.; Wang, C.; Yang, S. Hydrogen-Bonded Thin Films of Cellulose Ethers and Poly(Acrylic Acid).
Carbohydr. Polym. 2019, 215, 58–62. [CrossRef]

113. Babiker, D.M.D.; Zhu, L.; Yagoub, H.; Xu, X.; Zhang, X.; Shibraen, M.H.M.A.; Yang, S. Hydrogen-Bonded Methylcellu-
lose/Poly(Acrylic Acid) Complex Membrane for Oil-Water Separation. Surf. Coatings Technol. 2019, 367, 49–57. [CrossRef]

114. Zhang, Y.; Jiang, M.; Zhao, J.; Wang, Z.; Dou, H.; Chen, D. PH-Responsive Core-Shell Particles and Hollow Spheres Attained by
Macromolecular Self-Assembly. Langmuir 2005, 21, 1531–1538. [CrossRef]

115. Dou, H.J.; Yang, W.H.; Sun, K. A Facile Fabrication to Cellulose-Based Nanoparticles with Thermo-Responsivity and Carboxyl
Functional Groups. Chem. Lett. 2006, 35, 1374–1375. [CrossRef]

116. Liao, Q.; Shao, Q.; Wang, H.; Qiu, G.; Lu, X. Hydroxypropylcellulose Templated Synthesis of Surfactant-Free Poly(Acrylic Acid)
Nanogels in Aqueous Media. Carbohydr. Polym. 2012, 87, 2648–2654. [CrossRef]

117. Liao, Q.; Shao, Q.; Qiu, G.; Lu, X. Methacrylic Acid-Triggered Phase Transition Behavior of Thermosensitive Hydroxypropylcellu-
lose. Carbohydr. Polym. 2012, 89, 1301–1304. [CrossRef] [PubMed]

118. Dou, H.; Sun, K.; Yang, W. The Self-Assembly of Hydroxypropylcellulose and Carboxyl-Ended Surfactants to Multi-Morphological
Nanoparticles. Macromol. Chem. Phys. 2006, 207, 1899–1904. [CrossRef]

119. Khamitova, T.O.; Burkeev, M.Z.; Havlicek, D. Synthesis and Study of the Properties of Polymer-Immobilized Silver and Nickel
Nanoparticles. Bull. L.N. Gumilyov Eurasian Natl. Univ. Chem. Geogr. Ecol. Ser. 2022, 141, 7–18. [CrossRef]

120. El-Hag Ali, A.; Abd El-Rehim, H.A.; Kamal, H.; Hegazy, D.E.-S.A. Synthesis of Carboxymethyl Cellulose Based Drug Carrier
Hydrogel Using Ionizing Radiation for Possible Use as Site Specific Delivery System. J. Macromol. Sci. Part A Pure Appl. Chem.
2008, 45, 628–634. [CrossRef]

121. Ohno, T.; Yoshizawa, S.; Miyashita, Y.; Nishio, Y. Interaction and Scale of Mixing in Cellulose Acetate/Poly(N-Vinyl Pyrrolidone-
Co-Vinyl Acetate) Blends. Cellulose 2005, 12, 281–291. [CrossRef]

122. Ishida, M.; Machida, Y.; Nambu, N.; Nagai, T. New Mucosal Dosage Form of Insulin. Chem. Pharm. Bull. 1981, 29, 810–816.
[CrossRef]

https://doi.org/10.1039/b815913k
https://doi.org/10.1002/pola.24730
https://doi.org/10.1016/j.jconrel.2012.11.019
https://doi.org/10.1002/asia.201200155
https://doi.org/10.1002/macp.200500069
https://doi.org/10.1016/S0378-5173(02)00546-X
https://www.ncbi.nlm.nih.gov/pubmed/12480290
https://doi.org/10.1002/pi.2012
https://doi.org/10.1155/2011/507542
https://doi.org/10.1002/pi.4266
https://doi.org/10.1002/macp.200400489
https://doi.org/10.1002/macp.200400253
https://doi.org/10.1002/pat.1627
https://doi.org/10.1021/ma9800360
https://doi.org/10.1021/ma034018g
https://doi.org/10.1016/j.carbpol.2019.03.066
https://doi.org/10.1016/j.surfcoat.2019.03.051
https://doi.org/10.1021/la047912p
https://doi.org/10.1246/cl.2006.1374
https://doi.org/10.1016/j.carbpol.2011.11.056
https://doi.org/10.1016/j.carbpol.2012.04.002
https://www.ncbi.nlm.nih.gov/pubmed/24750946
https://doi.org/10.1002/macp.200600246
https://doi.org/10.32523/2616-6771-2022-141-4-7-18
https://doi.org/10.1080/10601320802168751
https://doi.org/10.1007/s10570-004-5836-7
https://doi.org/10.1248/cpb.29.810


Polymers 2023, 15, 3326 20 of 20

123. Ishida, M.; Nambu, N.; Nagai, T. Highly Viscous Gel Ointment Containing Carbopol for Application to the Oral Mucosa. Chem.
Pharm. Bull. 1983, 31, 4561–4564. [CrossRef]

124. Nikolaeva, O.; Budtova, T.; Alexeev, V.; Frenkel, S. Interpolymer Complexation between Polyacrylic Acid and Cellulose Ethers:
Formation and Properties. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 1323–1330. [CrossRef]

125. Nikolaeva, O.; Budtova, T.; Brestkin, Y.; Zoolshoev, Z.; Frenkel, S. Rheological Properties of an Interpolymer Complex Formed
between Poly(Acrylic Acid) and Methyl Cellulose. J. Appl. Polym. Sci. 1999, 72, 1523–1528. [CrossRef]

126. Khutoryanskiy, V.V.; Cascone, M.G.; Lazzeri, L.; Nurkeeva, Z.S.; Mun, G.A.; Mangazbaeva, R.A. Phase Behaviour of
Methylcellulose-Poly(Acrylic Acid) Blends and Preparation of Related Hydrophilic Films. Polym. Int. 2003, 52, 62–67. [CrossRef]

127. Dang, F.; Hasegawa, T.; Biju, V.; Ishikawa, M.; Kaji, N.; Yasui, T.; Baba, Y. Spontaneous Adsorption on a Hydrophobic Surface
Governed by Hydrogen Bonding. Langmuir 2009, 25, 9296–9301. [CrossRef] [PubMed]

128. Yuan, S.L.; Xu, G.Y.; Cai, Z.T.; Jiang, Y.S. Molecular Simulation Studies on the Interaction between Different Polymers in Aqueous
Solution. Colloid Polym. Sci. 2003, 281, 66–72. [CrossRef]

129. Ma, S.; Qi, X.; Cao, Y.; Yang, S.; Xu, J. Hydrogen Bond Detachment in Polymer Complexes. Polymer 2013, 54, 5382–5390. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1248/cpb.31.4561
https://doi.org/10.1002/(SICI)1099-0488(20000515)38:10&lt;1323::AID-POLB80&gt;3.0.CO;2-B
https://doi.org/10.1002/(SICI)1097-4628(19990620)72:12&lt;1523::AID-APP3&gt;3.0.CO;2-E
https://doi.org/10.1002/pi.1004
https://doi.org/10.1021/la900850u
https://www.ncbi.nlm.nih.gov/pubmed/19459684
https://doi.org/10.1007/s00396-002-0745-5
https://doi.org/10.1016/j.polymer.2013.07.047

	Introduction 
	Methods of Obtaining 
	Methods of Studying IPCs 
	IPCs Based on Cellulose Ethers 
	Application of IPCs 
	Conclusions 
	References

