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Ergosterol derivatives exhibited copious promising biological activities. +e fungus Gyromitra esculenta is widely distributed in
Europe and North America. In order to examine the chemical properties of Gyromitra esculenta, a phytochemical study has been
preceded and resulted in the isolation of the steroid, ergosta-5, 22-dien-3β-ol (brassicasterol), from itsmethanol extract.+e complete
identification and absolute configuration of the isolated compound have been established by X-ray structural analysis to be (22E,
24R)-24-methylcholesta-5, 22-dien-3beta-ol. +e reported cytotoxicity and the great structural similarity of the isolated compound
with the cocrystallized ligand of the aromatase enzyme inspired us to run molecular docking studies against that protein. Ergosta-5,
22-dien-3β-ol occupied the target protein with a binding mode almost the same as the cocrystallized ligand and a binding affinity of
−33.55 kcal/mol, which was better than that of the cocrystallized ligand (−22.61 kcal/mol). +is promising result encouraged us to
conduct in silicoADMETand toxicity studies of ergosta-5, 22-dien-3β-ol against 6models, and the results expected the likeness of the
isolated compound to be a drug. In conclusion, ergosta-5, 22-dien-3β-ol has been isolated from Gyromitra esculenta, identified by
X-ray structural analysis, and exhibited promising in silico activities against aromatase enzyme.

1. Introduction

Natural products are the key source that humankind relied
on to treat diseases and maintain good health [1, 2]. +e
effective secondary metabolites that are responsible for

natural products’ activity could be derived from plants
[3, 4] or marines [5, 6]. Furthermore, fungi represent an
unlimited origin of bioactive metabolites [7–13]. +e iso-
lated bioactive metabolites could be classified regarding
their chemical classes to be flavonoids [14–17], saponins
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[18, 19], isoflavonoids [20], sesquiterpene lactones [21],
diterpenes [22], pyrones [23], alkaloids [24, 25], and ste-
roids [26].

Gyromitra esculenta is a fungus that belongs to the
genus Gyromitra which is widely distributed across
Europe and North America. It normally fruits in spring
and early summer in sandy soils under the coniferous
trees. +e fruiting body (mushroom) is an irregular brain-
shaped dark brown cap that can reach 10 cm in height
and 15 cm in width, perched on a stout white stipe up to
6 cm in hight [27, 28]. Despite the reported toxicity of
G. esculenta, it is still consumed and used in some
countries in North America and Europe due to its high
nutritive value [29, 30].

Ergosterol and its derivatives were reported to have
various cytotoxic effects. As an example, ergosterol could
inhibit in vitro and in vivo cancer growth through upre-
gulation of multiple tumor suppressors [31, 32]. Further-
more, ergosterol peroxide exerted promising antitumor
activities in colorectal cancer [33] and several other tumor
types [34]. Additionally, dehydroergosterol derivatives
induced apoptosis in human malignant melanoma cells
[35] and inhibited the growth of human breast adeno-
carcinoma MCF-7 cells [36]. Interestingly, a dehy-
droergosterol derivative isolated from Ganoderma lucidum
inhibited the proliferation of human cervical carcinoma
cells with an IC50 value of 8.58 μM through induction of
apoptosis [37]. Some ergosterol derivatives displayed an-
ticancer activities through the inhibition of aromatase
protein [38, 39].

Compound 1 (brassicasterol) has been isolated before
from several plant sources such as the steam distillate of
rapeseed oil [40] and Brassica juncea seeds [41]. More-
over, it was found in algae [42] and marine organisms
[43]. In addition to the anti-inflammatory effect [44],
brassicasterol could inhibit bladder carcinogenesis in an
in vivo study [45].

X-ray crystallography is the technique that uses the
ability of X-rays to be diffracted by a crystalline structure
into different specific directions. +e angles and intensities
of the diffracted X-ray beams could be used to determine the
three-dimensional picture of the electron density of the
diffracting crystal. Consequently, the atoms’ positions,
chemical bonds, absolute configuration, and several other
information can be determined [46].

Herein, we discuss the isolation, crystal structure, and
molecular docking of ergosta-5, 22-dien-3β-ol against the
aromatase enzyme.

2. Results and Discussion

2.1. Isolation and Identification of Brassicasterol (Compound
1). Brassicasterol (Figure 1 and Table 1) was isolated from
G. esculenta using different chromatographic techniques
and identified as (22E, 24R)-24-methylcholesta-5, 22-
dien-3beta-ol (ergosta-5, 22-dien-3β-ol) or brassicasterol.
+e compound was identified by comparing its 1D and 2D
NMR spectroscopic spectra with the published data
(supplementary materials, Figures S1–S5) [44, 47].

2.2. X-Ray Analysis. In order to confirm the absolute con-
figuration of 1, the crystal structure of its crystalline hydrate
was investigated by X-ray diffraction analysis. Compound 1
crystallized in the Sohnke space group P21, with the
asymmetric unit consisting of two dehydroergosterol mol-
ecules and two hydrate water molecules (Figure 2).

It follows from the data obtained that the bond lengths
and bond angles in compound 1 are close to the usual ones
[48]. Ring A takes a somewhat distorted chair conformation
in the first (1a) and second (1b) crystallographically inde-
pendent molecules (the minimum parameters of cycle
asymmetry [49] and intracyclic torsion angles are given in
Table 2). +e conformation of cycle B in 1a and 1b, con-
taining the C5=C6 double bond, is close to the slightly
distorted 9α, 8-half-chair. +e third carbocycle C in mole-
cules 1a and 1b deviates more significantly from the ideal
chair. +e 5-membered cycle D in molecule 1a takes the
conformation of a 13β-envelope, strongly distorted towards
the 14α, 13β-half-chair. In the second molecule 1b, this cycle
takes the conformation of the 14α, 13β-half-chair, strongly
distorted towards the 13β-envelope. In general, distortions
of the conformation of A-D cycles are close to those ob-
served in the crystal structures of 3β-hydroxy-Δ5-sterols, for
example, in 24 (R), 25-epoxycholesterol [50], stigmast-5-en-
3-ol [51], (24E)-26-hydroxydesmosterol [52], and (24E)-26-
hydroxydesmosterol monohydrate [53].

HO

H

H

H

H

Figure 1: Chemical structure of compound 1.

Table 1: C NMR data of brassicasterol in CDCl3 compared with the
reported literature [13].

C δ C of 1 Reported δ C [47] C δ C of 1 Reported δ C [47]
1 37.4 37.4 15 24.4 24.4
2 30.1 29.9 16 28.7 28.7
3 72.0 72.0 17 56.2 56.2
4 42.4 42.4 18 12.2 12.2
5 140.9 140.9 19 19.5 19.6
6 121.9 121.9 20 40.3 40.3
7 32.0 31.8 21 21.1 21.1
8 32.0 32.1 22 136.0 136.0
9 50.3 50.3 23 131.9 131.9
10 36.7 36.7 24 43.0 43.0
11 21.2 21.2 25 33.2 33.3
12 39.8 39.8 26 20.1 20.1
13 42.4 42.5 27 19.8 19.8
14 57.0 57.0 28 17.8 17.8

2 Journal of Chemistry



In the crystal, molecules 1a and 1b and molecules of
hydration water are linked by intermolecular hydrogen
bonds (Table 3), forming infinite ribbons in the (−1 0 2)
plane along the b-axis (Figure 3).

2.3. Molecular Docking Studies. Four reasons motivated us to
run molecular docking studies of ergosta-5, 22-dien-3β-ol
against the aromatase enzyme: first, the great structural sim-
ilarity between ergosta-5, 22-dien-3β-ol and the cocrystallized
ligand (EXM) of the aromatase receptor (Figure 3); second, the
reported cytotoxic effects of ergosterol derivatives; third, the
reported anticancer effects of aromatase inhibitors [54]; and
finally, the aromatase inhibition reports of some ergosterol

derivatives [38, 39]. In this work, molecular docking studies
were carried out for ergosta-5, 22-dien-3β-ol against aromatase
(PDB ID: 3s7s) using the cocrystallized ligand as a reference

Figure 2: +e asymmetric unit of the crystal structure of hydrate brassicasterol, with an atom labeling scheme. +ermal displacement
ellipsoids are shown at the 50% probability level.

Table 2: Intracyclic torsion angles (τ, °) and asymmetry parameters (ΔC (min), °) in the structure of hydrate brassicasterol.

Crystallographically independent molecule 1a Crystallographically independent molecule 1b
Torsion angles τ ΔC Torsion angles Τ ΔC

Cycle A
C10-C1-C2-C3 −57.9 (4) ΔCS

2 = 2.3 C40-C31-C32-C33 −59.1 (4) ΔCS
2 = 1.3

C1-C2-C3-C4 57.0 (4) ΔC2
2,3 = 2.7 C31-C32-C33-C34 57.2 (4) ΔC2

1,2 = 3.2
C2-C3-C4-C5 −54.2 (4) C32-C33-C34-C35 −52.2 (5)
C3-C4-C5-C10 52.2 (4) C33-C34-C35-C40 50.8 (4)
C4-C5-C10-C1 −49.4 (4) C34-C35-C40-C31 −50.1 (4)
C2-C1-C10-C5 51.6 (4) C32-C31-C40-C35 53.3 (4)

Cycle B
C10-C5-C6-C7 2.2 (5) ΔC2

8,9 = 1.9 C40-C35-C36-C37 2.0 (5) ΔC2
8,9 = 2.0

C5-C6-C7-C8 14.8 (5) C35-C36-C37-C38 15.4 (5)
C6-C7-C8-C9 −45.5 (3) C36-C37-C38-C39 −46.5 (4)
C7-C8-C9-C10 62.2 (3) C37-C38-C39-C40 63.0 (3)
C8-C9-C10-C5 44.1 (3) C38-C39-C40-C35 −45.2 (4)
C6-C5-C10-C9 12.5 (4) C36-C35-C40-C39 12.8 (4)

Cycle C
C14-C8-C9-C11 −46.0 (3) ΔCS

9 = 4.3 C44-C38-C39-C41 −48.5 (3) ΔCS
9 = 2.2

C8-C9-C11-C12 45.3 (3) ΔC2
9,11 = 4.7 C38-C39-C41-C42 48.9 (4) ΔC2

9,11 = 4.0
C9-C11-C12-C13 −52.6 (4) C39-C41-C42-C43 −54.4 (4)
C11-C12-C13-C14 58.9 (3) C41-C42-C43-C44 57.5 (3)
C12-C13-C14-C8 −64.2 (3) C42-C43-C44-C38 −60.4 (3)
C9-C8-C14-C13 58.0 (3) C39-C38-C44-C43 56.5 (3)

Cycle D
C17-C13-C14-C15 42.4 (3) ΔCS

13 = 8.0 C47-C43-C44-C45 46.0 (3) ΔCS
13 = 14.0

C13-C14-C15-C16 −30.3 (3) ΔC2
13,14 = 11.8 C43-C44-C45-C46 −35.5 (3) ΔC2

13,14 = 4.9
C14-C15-C16-C17 5.9 (3) C44-C45-C46-C47 10.9 (4)
C15-C16-C17-C13 19.9 (3) C45-C46-C47-C43 17.4 (3)
C14-C13-C17-C16 −37.4 (3) C44-C43-C47-C46 −37.9 (3)

Table 3: Hydrogen-bond geometry for hydrate brassicasterol.

D-H···A D-H···A H···A (Å) D···A (Å) D···A (Å)
O1-H1··· O2Wi 0.84 1.87 2.703 (5) 175.3
O31-H31··· O1ii 0.84 2.09 2.869 (4) 155.1
O1W-H12W···O31iii 0.87 TJ2.11 2.875 (6) 146.3
O2W-H21W··· O1iv 0.87 1.95 2.812 (5) 171.2
O2W-H22W··· O1W 0.87 1.96 2.821 (6) 172.8
Symmetry codes: (i) x−1, y, z; (ii) x+ 1, y, z; (iii) –x+ 2, y+ 1/2, −z+ 1; −z+ 1;
(iv) −x+ 1, y−1/2, −z+ 1.
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molecule. We depended on the binding free energy (∆G) and
the correct binding mode between the docked molecules and
the active site of aromatase. +e binding free energies are
summarized in Table 4.

At first, 3D-flexible alignment of ergosta-5, 22-dien-3β-
ol with the cocrystallized ligand (EXM) was carried out
(Figure 4). From 3D-flexible alignment, it was observed that
the structure of ergosta-5, 22-dien-3β-ol has a good overlap
with the cocrystallized ligand (EXM).

+en, validation of the docking process was checked
through the running of the docking procedure for only the
cocrystallized ligand (EXM) against the active pocket of
aromatase. It was found that the produced RMSD value
between the generated pose of the docked molecule and the
original one equals 0.90. +is indicates the validity of the
docking process (Figure 5).

+e binding mode of the cocrystallized ligand (EXM) as
a reference molecule showed a binding free energy of
−22.61 kcal/mol (Table 3). +e binding interaction showed
that the steroidal nucleus overlapped with the hydrophobic
environment of the binding pocket of the aromatase re-
ceptor. +e methyl group at position-13 formed two hy-
drophobic interactions with Leu477 and Val370. Besides, the
C ring of steroidal moiety was involved in hydrophobic
interactions with Ile133. +e B ring was engaged in two
hydrophobic interactions with Val370 and Cys437. +e
methyl group at position-10 formed two hydrophobic in-
teractions with Cys437 and Val370. Finally, the methylene
group at position-6 was involved in two hydrophobic in-
teractions with Cys437and Val373 (Figure 6).

Brassicasterol interacted with the active site of aromatase
showing a binding mode almost the same as that of the
cocrystallized ligand with extra hydrogen bonding and
hydrophobic interactions. Ergosta-5, 22-dien-3β-ol exerted
a binding affinity of −33.55 kcal/mol, which was higher than
that of the cocrystallized ligand. +e binding mode revealed
the orientation of the steroidal nucleus of the docked
molecule toward the hydrophobic pocket of the aromatase
receptor. +e D ring of the steroidal moiety was involved in
hydrophobic interaction with Val370, Val373, and Cys437.
+e methyl group at position-13 formed two hydrophobic
interactions with Trp224 and Ile133. Also, the C ring of the
steroidal moiety was involved in hydrophobic interaction
with Ile133. +e B ring was engaged in two hydrophobic
interactions with Ile133 and Cys437. +e A ring formed
three hydrophobic interactions with Ile133, Ala306, and
Cys437. +e methyl group at position-10 formed two hy-
drophobic interactions with Cys437 and Ile133. +e hy-
droxyl group at position-3 was involved in hydrogen
bonding interaction with Gly349. Finally, the side chain (5,
6-dimethylhept-3-ene) moiety formed extra hydrophobic
interactions with Val369, Val370, Leu477, Phe221, and
Trp224 (Figure 7).

2.4. In Silico ADMETAnalysis. ADMETstudies were carried
out for ergosta-5, 22-dien-3β-ol and the cocrystallized li-
gand. Discovery studio 4.0 was used to predict ADMET
descriptors for all compounds. +e predicted descriptors are
listed in Table 5.

+e ADMET-Blood-Brain Barrier (BBB) penetration
study predicted that ergosta-5, 22-dien-3β-ol has a very low
level of penetration indicating that ergosta-5, 22-dien-3β-ol
is safe against the central nervous system (CNS). ADMET
aqueous solubility of ergosta-5, 22-dien-3β-ol was very low,
and andergosta-5, 22-dien-3β-ol was predicted to have a
poor level of intestinal absorption. CYP2D6 is involved in
the metabolism process of a broad range of metabolites
inside the liver [55]. Ergosta-5, 22-dien-3β-ol was predicted
as a noninhibitor of CYP2D6. Consequently, the liver
dysfunction reaction is not expected upon administration of
brassicasterol. +e plasma protein binding model predicts
whether a xenobiotic is highly bound (>=90% bound) to
carrier proteins in the blood [56]. Ergosta-5, 22-dien-3β-ol
was expected to bind plasma protein over than 90%
(Figure 8).

2.5. In Silico Toxicity Studies. Toxicity prediction was carried
out based on the validated and constructed models in
Discovery studio software [57, 58] as follows: (i) FDA rodent
carcinogenicity, (ii) rat maximum tolerated dose, (iii) rat
oral median lethal dose (LD50), (iv) rat chronic lowest

Figure 3: Packing diagram of the crystal structure of 1, with in-
dicated intramolecular hydrogen bonds between the dehy-
droergosterol OH-groups and hydrate water molecules.

Table 4: Binding free energies (∆G in kcal/mol) of brassicasterol
and cocrystallized ligand against aromatase.

Compound ∆G [kcal/mol]
Cocrystallized ligand −22.61
1 −33.55

4 Journal of Chemistry



observed adverse effect level (LOAEL), (v) ocular irritancy in
the Draize test [59], and (vi) skin irritancy in a rabbit skin
irritancy test [59]. As shown in Table 6, ergosta-5, 22-dien-
3β-ol showed in silico low adverse effects and toxicity against
the tested models. Regarding FDA rodent carcinogenicity,
ergosta-5, 22-dien-3β-ol was predicted to be

noncarcinogenic. Regarding the rat maximum tolerated
dose model, ergosta-5, 22-dien-3β-ol showed a maximum
tolerated dose value of 0.028 g/kg body weight which was
higher than that of the cocrystallized ligand (0.026 g/kg body
weight). Ergosta-5, 22-dien-3β-ol showed a rat oral LD50
value of 1.071mg/kg body weight/day, which was less than of

O

O

Cocrystallized ligand (EXM)
HO

Ergosta-5, 22-dien-3β-ol

(a)

(b)

Figure 4: (a) Chemical structures and (b) flexible alignment of brassicasterol (carbon atoms in turquoise) with the cocrystallized ligand
(EXM) (carbon atoms in green).

(a) (b)

Figure 5: Superimposition of the cocrystallized molecule (green) and the docking pose (turquoise) of the same molecule.
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the cocrystallized ligand (2.015mg/kg body weight/day). For
the rat chronic LOAEL model, ergosta-5, 22-dien-3β-ol
showed a LOAEL value less than the cocrystallized ligand.

Moreover, ergosta-5, 22-dien-3β-ol was predicted to be ir-
ritant and moderately irritant against ocular irritancy and
skin irritancy models, respectively.

(a)

H-bonds
Donor

Acceptor

(b)

Figure 6: (a) 3D representation of the cocrystallized ligand (EXM) docked into the active site of aromatase. (b)Mapping surface showing the
cocrystallized ligand (EXM) occupying the active pocket of aromatase.

(a)

H-bonds
Donor

Acceptor

(b)

Figure 7: (a) 3D representation of brassicasterol docked into the active site aromatase. (b) Mapping surface showing ergosta-5, 22-dien-3β-
ol occupying the active pocket of aromatase.

Table 5: Predicted ADMET for the brassicasterol and reference drug.

Comp. BBB levela Solubility levelb Absorption levelc CYP2D6 predictiond PPB predictione

1 4 1 3 False True
Cocrystallized ligand 1 2 0 False True
aBBB level, blood-brain barrier level, 0 = very high, 1 = high, 2 =medium, 3 = low, 4 = very low. bSolubility level, 1 = very low, 2 = low, 3 = good, 4 = optimal.
cAbsorption level, 0 = good, 1 =moderate, 2 = poor, 3 = very poor. dCYP2D6, cytochrome P2D6, TRUE= inhibitor, FALSE= noninhibitor. ePBB, plasma
protein binding, FALSE means less than 90%, TRUE means more than 90%.
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3. Experimental

3.1. Isolation of Brassicasterol (1). +e raw material of
G. esculenta was collected in summer in the vicinity of the
city of Karkaraly, Karaganda Region, Kazakhstan.
G. esculenta was extracted via adding 300mL of MeOH to
207.5 g of a semidried powder and sonicated at 40–50°C for
3 hrs. +e procedure was repeated 3 times per day. +e
obtained extracts were combined and evaporated under
reduced pressure. Total weight of the obtained extract was
–62.9 g.

+e total extract was subjected to a SiO2 column (400 g)
using hexane–EtOAc and CH2Cl2–MeOH as mobile phases
in a manner of increasing polarity. Pure white-colored
crystal of 1was obtained from fraction 54 (hexane–EtOAc 1 :
10).

3.2. X-Ray Analysis. X-ray intensity data for the compound
C28H46O·H2O were collected at 100K, on a Rigaku Oxford
Diffraction Supernova Dual Source (Cu at zero) diffrac-
tometer equipped with an Atlas CCD detector using ω scans
and CuKα (λ= 1.54184 Å) radiation. +e images were
interpreted and integrated with the program CrysAlisPro
[60]. Using Olex2 [61], the structure was solved by direct

methods using the ShelXT structure solution program and
refined by full-matrix least squares on F [2] using the ShelXL
program package [62, 63]. Nonhydrogen atoms were an-
isotropically refined, and the hydrogen atoms in the riding
mode were with isotropic temperature factors fixed at 1.2
times U (eq) of the parent atoms (1.5 times for methyl and
hydroxyl groups). +e absolute configuration was estab-
lished showing a refined Flack parameter of 0.0 (2).

CCDC-2060747 contains the supplementary crystallo-
graphic data for this paper. +ese data can be obtained free
of charge from+eCambridge Crystallographic Data Centre
via http://www.ccdc.cam.ac.uk/structures.

Details of the X-ray crystal structure data collection and
refinement are given in Table 7.

3.3. In Silico Studies

3.3.1. Molecular Docking. +e used software was Molecular
Operating Environment (MOE) [64–67]. For more details,
see the supplementary materials.

3.3.2. ADMET. ADMET descriptors of brassicasterol were
computed by Discovery studio 4.0 20. More details are given
in the supplementary materials.
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Figure 8: +e expected ADMET study of brassicasterol.

Table 6: Toxicity properties of brassicasterol and the cocrystallized ligand.

Compound FDA rodent carcinogenicity (rat-
male)

Rat maximum tolerated
dose (feed)b

Rat oral
LD50

b
Rat chronic
LOAELb

Ocular
irritancy

Skin
irritancy

1 Noncarcinogen 0.028 1.071 0.002 Irritant Moderate
Cocrystallized
ligand Noncarcinogen 0.026 2.015 0.015 Irritant Moderate

aUnit: mg/kg body weight/day. bUnit: g/kg body weight.
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3.3.3. In Silico Toxicity. Discovery studio 4.0 was used to
calculate the toxicity parameters of brassicasterol [25]. For
more details, see the supplementary materials.

4. Conclusions

Ergosta-5, 22-dien-3β-ol (1) was isolated from a methanol
extract of the fungus Gyromitra esculenta. +e absolute
configuration of 1 was determined by X-ray structural
crystallography. Ergosta-5, 22-dien-3β-ol occupied the
binding site of the aromatase enzyme with a binding
mode very similar to that of the cocrystallized ligand
and a binding affinity of −33.55 kcal/mol, which was
higher than that of the cocrystallized ligand (−22.61 kcal/
mol). In silico ADMET and toxicity studies against 6
models have been conducted, and the results expected the
safety of 1 with a disadvantage of poor water solubility and
absorption.

Data Availability

Details of the in silico experimental part and NMR data of
compound 1 are available in the supplementary data. Also,
CCDC-2060747 contains the supplementary crystallo-
graphic data for this paper. +ese data can be obtained free
of charge via https://www.ccdc.cam.ac.uk/structures.
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