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Abstract: A depth-resolved Raman spectroscopy technique was used to study the residual stress
profiles in polycrystalline silicon nitride that was irradiated with Xe (167 MeV, 1 × 1011 cm−2 ÷
4.87 × 1013 cm−2) and Bi (710 MeV, 1 × 1011 cm−2 ÷ 1 × 1013 cm−2) ions. It was shown that both
the compressive and tensile stress fields were formed in the irradiated specimen, separated by a
buffer zone that was located at a depth that coincided with the thickness of layer, amorphized due
to multiple overlapping track regions. The compressive stresses were registered in a subsurface
region, while at a greater depth, the tensile stresses were recorded and their levels reached the
maximum value at the end of ion range. The size of the amorphous layer was evaluated from the
dose dependence of the full width at half maximum (FWHM) (FWHM of the dominant 204 cm−1

line in the Raman spectra and scanning electron microscopy.
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1. Introduction

Irradiation with heavy ions of 1–3 MeV/nucleon energies is characterized by pro-
nounced inhomogeneous ionization and nuclear stopping profiles. As a result, the level of
energy losses varies over a very wide range, which, in turn, leads to an inhomogeneous
spatial distribution of the radiation damage and the associated mechanical stresses. The
range of ions with the above energies, depending on the density of the material, does not
exceed several tens of microns. For energies of ~1 MeV/nucleon, which are of the greatest
interest from a practical point of view for the simulation of the fission fragments impact,
this value is in the range of several microns to ~10 microns. Therefore, to get reliable
information about the stress profiles, it is necessary to use experimental methods with
a spatial resolution of ~1 micron. Such accuracy can be achieved in techniques that are
based on the use of the piezospectroscopic effect (PS), which connects the spectral shift in
optical absorption, luminescence, or Raman scattering spectra with the level of mechanical
stresses [1,2].

The physical nature of the PS effect is based on the fact that when the lattice of ions that
are surrounding an optically active impurity or defect is distorted, for example, under the
action of applied stresses, the potential of the crystal field in the luminescent site changes,
which changes the energies of electronic transitions (i.e., any applied or residual stress
induces changes in the vibrational and electronic levels of the studied material). Although
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the Raman signal is directly sensitive to strain rather than stress, conversion to stress is easy
if the corresponding elastic constants are known. When they are unknown, the problem can
be circumvented by performing piezospectroscopic calibration on the same material [1,2].
In the linear approximation, the piezospectroscopic effect (PS) is expressed as a Taylor’s
expansion about the unperturbed (i.e., unstressed) center peak position of the frequency ν0:

νσ = ν0 +

(
∂ν

∂σij

)
ij

∂σij, (1)

Equation (1) shows that the stress induced shift, ∆ν = νσ − ν0, a scalar quantity, is the
product of the stress tensor, σij, times the tensor of the first derivatives, which is called the
piezospectroscopic tensor and is usually denoted as Πij and is usually represented as:

∆ν = Πijσij, (2)

As noted above, the piezospectroscopic coefficients are determined by means of
appropriate calibrations, during which a known stress is applied to the material and the
corresponding change in the frequency relative to the unstressed state is recorded [1,2].

It should also be emphasized that the PS effect does not depend on the source of the
spectral signal: photoluminescence, cathodoluminescence, or Raman scattering. In other
words, regardless of whether monochromatic light, electrons, or ions are used as radiation
sources to stimulate luminescence, we can track the emission wavelength/frequency
shift in spectral lines to obtain voltage information [2]. For example, photoluminescence
experiments are characterized by high sensitivity, but their significant drawback is the
limited number of transparent materials for which they can be applied, for example,
Al2O3:Cr (ruby), borosilicate glasses with Sm3+ impurities. To date, the most studied
are the piezospectroscopic properties of fluorescence due to Cr+3 ions in the structure
of Al2O3 single crystals [3,4], which is used to measure pressure in diamond anvils [5]
and in polycrystalline aluminum oxide [6]. In [7–10], the registration of the ion and
photoluminescence spectra of Cr+3 was used to obtain data on the mechanical stresses in
ruby during and after irradiation with high-energy heavy ions.

The PS effect that was based on the analysis of Raman spectra is characterized by a
lower intensity of spectral lines and, therefore, lower sensitivity compared to luminescence,
but it can provide information on the structure and mechanical stresses, and also allows
one to study radiation-resistant insulators, including ceramics, such as the object of this
work—polycrystalline silicon nitride Si3N4 [11].

It is known that Si3N4 is the only nitride ceramic in which latent tracks of fast heavy
ions have been found [12–21]. They are extended structural defects that are formed due to
high-density ionization that cannot be reproduced under other types of radiation exposure.
One of the consequences of the formation of latent tracks are local mechanical stresses in the
region of the ion trajectory. Therefore, the parameters of the stress field, the level, and the
spatial distribution will be determined by the density of such regions and their interference
during overlap (especially multiple), which occurs already at fluences ~1 × 1013 cm−2.
At present, such processes remain practically unexplored. The aim of this work is to
study the structural state and profiles of mechanical stresses over the depth of a layer of
polycrystalline silicon nitride β-Si3N4 that has been irradiated with high-energy xenon (Xe)
and bismuth (Bi) ions by Raman spectroscopy methods.

2. Experimental Details
Materials and Methods

The objects of study of this work were polycrystalline samples of silicon nitride
β-Si3N4, manufactured by MTI Corporation, with grain sizes that range from several
hundred nanometers to several microns. According to the data of energy-dispersive
analysis, an aluminum impurity was detected in the composition of Si3N4 in an amount
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of ~3 at. %, At the same time, the aluminum concentration in some grains was at an
undetectable level.

The samples were irradiated with 167 MeV 132Xe and with 710 MeV 209Bi ions with
at room temperature at the IC-100 and U-400 FLNR JINR cyclotrons (Dubna, Russia),
respectively. The irradiation parameters of energy, fluence and electronic stopping power
at the target surface (Se), and the projective range (Rp) were calculated using SRIM code [22]
are given in Table 1.

Table 1. The ion irradiation parameters.

Ion Energy,
MeV

Se,
keV/nm

Rp,
µm

Fluence,
cm−2

132Xe 167 20.8 13.4
6 × 1012, 8 × 1012, 1 × 1013,

2 × 1013, 3.2 × 1013, 4 × 1013,
4.87 × 1013

209Bi 710 33.6 29.8 1 × 1011, 6 × 1011, 1 × 1012, 2 × 1012, 1 × 1013

The Raman spectra from irradiated samples were measured a using Solver Specrtum,
NT-MDT laser confocal scanning microscope. The spectra were excited at a wavelength
λ = 473 nm and were recorded by scanning both the surface and the polishing edge of the
sample across the ion trajectory. The size of the laser spot and scanning step were 1 µm and
0.25 µm, respectively. The measurement time that was optimized for maximum intensity
and was 30 s. Usually, we began scanning at a distance of approximately 1 µm from the
surface. Scanning electron microscopy (SEM) analysis of samples was carried out using
Hitachi S-3400N SEM in secondary electrons at an accelerating voltage of 10 kV.

3. Results and Discussion
3.1. Amorphization

Before discussing the experimental results, let us briefly consider the literature data on
the Raman spectra in silicon nitride. Currently, there are 12 peaks that are associated with
β-Si3N4: five of them are Ag, two are E1g, and five are E2g symmetry. The authors of [23]
observed 11 peaks in their work, 10 of which confirmed the previous experimental data
and agree well with theoretical calculations [24]. They predict the unobservable Ag mode at
457 cm−1 and estimate its cross section to be many times smaller than that of the E2g mode
at 444 cm−1, thus explaining why this peak remained unrecorded in this region. In their
study, the authors of [25] also observed 11 peaks for β-Si3N4, including a peak at 144 cm−1.
Sergo V. et al. [11] gives 10 peaks for β-Si3N4, excluding the lines at 144 and 457 cm−1. The
Raman spectra of β-Si3N4 were also studied by Honda et al. [26], who recorded vibrational
modes by analyzing polarized spectra that was performed with a change in the direction
of incidence of the laser beam and the angle of reflected scattered light. The most intense
Raman bands at 183, 204, and 227 cm−1 were attributed to the vibrational modes of the
lattice, and the remaining bands in the region from 300 to 1200 cm−1 assigned to internal
modes were attributed to the internal modes [25,27].

In this work, the Raman spectra of the initial silicon nitride sample has 10 peaks, as
can be seen from Table 2, which also presents the literature data [11,23–26,28].

Figure 1 shows the dose dependence of the Raman spectra that was measured from
the surface of Si3N4 samples that were irradiated with xenon and bismuth ions. As can
be seen from the figure, with increasing ion fluence, a broadening of the lines of all of
the crystalline vibrational modes is detected, as well as a reduction in their intensity to
an undetectable level. This was registered at fluences of 4 × 1013 cm−2 for Xe ions and
1 × 1013 cm−2 for Bi ions. Such behavior was observed in many swift heavy ion (SHI)
bombarded solids, particularly in oxides and was attributed to lattice disorder up to the
transition to amorphous state, and the strain-induced distortion of the bonds that were
associated with the corresponding radiation damage formation (for example, [29–31]).



Crystals 2021, 11, 1313 4 of 10

Table 2. Theoretical and experimental parameters of the Raman spectra in β-Si3N4.

Theory Experiment

[24] [25] [28] [11] [26] [23] This work
144 (145) Ag Ag

183 E2g 186 181 183 185 E2g 182 E2g 183.33 E2g
201 Ag 210 200 206 208 Ag 204 Ag 203.61 Ag
228 E1g 229 225 227 230 E1g 225 E1g 226.71 E1g
444 E2g 451 444 449 452 E2g 447 E2g 449.38 E2g
457 Ag 456 Ag 457 Ag/E2g(?)
603 E2g 619 610 617 620 E2g 613 E2g 614.24 E2g
715 Ag 732 725 730 733 Ag 727 Ag 729.82 Ag
836 E1g 865 859 863 866 E1g 856 E1g 862.70 E1g
897 E2g 928 921 927 730 E2g 921 E2g 927.22 E2g
908 Ag 939 930 937 940 Ag 932 Ag 938.78 Ag
1012 E2g 1047 1021 1045 1048 E2g 1039 E2g 1045.47 E2g
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Figure 1. The dose dependence of Raman spectra of Si3N4 irradiated with (a) Xe (167 MeV) and (b) Bi (710 MeV) ions. The
dashed lines indicate positions of 862 cm−1 and 1045 cm−1 lines.

As was found earlier, 167 MeV xenon ion irradiation results in the formation of dis-
continuous tracks in polycrystalline silicon nitride [14] and a complete loss of crystallinity
can be ascribed to multiple overlapping of ion track regions. The process of amorphization
starts from the sub-surface layer, where the ionization energy losses are maximal for the
given irradiation conditions, with a gradual propagation in depth as the fluence of the
bombarding ions increases. Such evolution of defect structure was revealed in single
crystalline Al2O3 that was irradiated by Xe ions with energies from 70 to 160 MeV [32].
At 710 MeV bismuth ions induce continuous amorphous tracks and the amorphous fraction
increases with irradiation fluence as is predicted by a direct impact model [33].

Since the Raman signal intensity is highly dependent on the surface roughness, the
FWHM of dominant 204 cm−1 Raman line was chosen as a possible parameter for com-
paring the spectra across the irradiated layer as a function of ion fluence. As already
mentioned, an increase in the ion fluence leads to broadening of all of the spectral lines and,
consequently, leads to an increase in the FWHM values. It should be noted that FWHM is
not used as a quantitative measure of general lattice disorder. Figure 2 shows the change in
the FWHM of 204 cm−1 Raman line over the thickness of the Si3N4 layer that was irradiated
with xenon and bismuth ions.
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Figure 2. Nuclear (Sn) and ionization (Se) energy loss profiles and variation of the FWHM of 204 cm−1 line depth profiles
with Xe and Bi ion fluence.

As can be seen from the figure, the FWHM values are maximal near the surface for
both types of ions, which also confirms the relationship between the structural changes
and the electronic stopping power. The increase of FWHM for xenon ions at depths above
9 µm is most likely associated with the increasing contribution of defects that are formed
via elastic collisions. As known, their concentration has maximum in the end of ion range.

Considering the data that are presented in Figure 2, one can see that FWHM was not
determined in the layers with a thickness ~8 µm for Xe ion fluences that were higher than
2 × 1013 cm−2 and ~21 µm for Bi ion fluence 1013 cm−2 due to the low level of Raman signal.
Referring to the TEM data [14,16,17] it is seems reasonable to suggest that the irradiated
samples were amorphized to corresponding depth (marked by red dashed lines in Figure 2).
Depths of 8 and 21 µm correspond to 10.6 keV/nm and 20 keV/nm in energy loss profiles
for Xe and Bi ions, respectively. It should be noted that these electronic stopping powers
cannot be taken as the threshold values that are needed for amorphization of the material.
It is reasonable to suggest that reason for such differences is the different track size and
morphology. The production of continuous amorphous tracks by Bi ions, as mentioned
above, leads to conclusion that the amorphization process obeys direct impact mechanisms
and that the thickness of the amorphized layer is defined by the track radius and fluence,
when single tracks start to overlap. Since the track size is Se dependent, there is a direct
connection between the track radius and thickness of the amorphized layer, in which the
complete loss of crystallinity starts from the surface where the track radius is maximal.

Amorphization by Xe ions requires multiple overlapping of track regions, that is,
the passage of at least several ions through the same area. Therefore, the total energy
deposition per unit length is summarized from the energy loss of single ions. This can
explain why the Se value that designates the amorphization depth for Xe ions is less than
that for Bi ions.

Another estimate of size of the amorphized layer was done using SEM imaging of
the edge of silicon nitride specimens that were irradiated with Xe ions. An example of
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the images for the initial and irradiated samples to a fluence of 3.2 × 1013 cm−2 is shown
in Figure 3. As can be seen, the thickness of the possibly amorphized layer is ~8 µm (ion
projected range Rp = 13.4 µm), which practically coincides with the data that were deduced
from the Raman spectra by measuring the depth profiles of FWHM of the 204 cm−1 line.
At the same time, we note that both the Raman spectroscopy as well as SEM technique
cannot be used for quantitative evaluation of amorphized layer thickness.
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Figure 3. SEM images of the edge of (a) initial and (b) 167 MeV Xe ion irradiated (3.2 × 1013 cm−2) silicon nitride samples.
The direction of the ion beam incidence is indicated by an arrow. The border of the amorphized layer is marked with a
dashed line.

3.2. Mechanical Stress

The registration of shifts in the position of peaks in the Raman spectra at different
depths of ion penetration make it possible to find the profiles of mechanical stresses that
are caused by irradiation with high-energy xenon and bismuth ions. This is done using
the known relationships between frequency shifts in the Raman spectra and the level of
applied or residual mechanical stresses (for example, [1,34]). It should be noted that the
parameters of stress fields in silicon nitride that have been irradiated with heavy ions with
fission fragment energies have not been studied previously.

Figure 4 shows the changes in the spectral position of the 862 cm−1 line over the
depth of the irradiated layer. This line was chosen to estimate the stress level, since it is
characterized by the highest piezospectroscopic coefficient, 2.22 GPa/cm−1 [34].

Another advantage of using this line is that it is separated from the other lines (see
Figure 1), which greatly simplifies the procedure for accurately determining the position of
the peak. Honda et al. [26] in their study showed that the E1g mode, corresponding to the
Raman band at about 866 cm−1, is relatively sensitive to stress, which justifies its use in the
stress level estimates. In [11], the band shifts of 183, 205, 226, 862, 925, and 937 cm−1 were
analyzed. It was found that the corresponding PS coefficients for β-Si3N4 were positive for
the triplet mode at approximately 200 cm−1, which additionally confirms the hypothesis
that these bands are due to external vibrational modes [25,27]. Unfortunately, despite
the high signal–noise ratio, these three peaks show a rather weak dependence on the
stresses [11,34], which reduces the measurement accuracy.

The data that are presented in Figure 4, demonstrate the mechanical stress profiles in
the irradiated silicon nitride samples. The scheme, illustrating the structure of the layer that
is affected by SHI is given in Figure 5 together with the energy loss profiles. Due to the that
fact that the density of the amorphous phase is less than the density of the crystalline phase,
the formation of amorphous tracks results in volume expansion (swelling) that induces the
hydrostatic compressive stresses that were detected. This was evidenced by the shift to
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lower frequencies, starting from the surface to a depth that determines the size of the layer
that was amorphized at high fluences. At higher depths, the sign of the stresses changes to
the opposite (tensile) to compensate for compressive stresses. The stress level gradually
decreases to the initial level, at a depth that significantly exceeds the ion projected range
Rp. Since the Raman tensorial formalism of stress analysis is irrelevant in polycrystalline
or amorphous materials, no information about the strain anisotropy can be deduced and
we detect strain that was averaged for x-, y-, and z-directions.
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The maximum positive shifts of the 862 cm−1 line were approximately 6 cm−1 for
xenon ions and 4 cm−1 for bismuth ions, that, taking into account the above PS coefficient,
corresponds to 13.2 GPa and 8.8 GPa, respectively. This significantly exceeds the maximum
tensile strength values that are known from the literature, 2.5 GPa. We have noted that the
maximal tensile stresses are registered at depth that is less than maximum of the nuclear
stopping power and that role of the defects that are formed in elastic collisions in this effect
remains unclear.

The accumulation of compressive mechanical stresses that are due to the formation of
latent tracks was observed in a number of ceramics that were irradiated with swift heavy
ions, in particular in Al2O3 [10] and ZrO2:Y2O3 [35–37]. Therefore, the compressive stress
that was detected in silicon nitride can be considered as a universal phenomenon that is
typical for SHI amorphizable solids. In our case, it can be argued that the compressive
mechanical stresses are accumulated in the zone of formation of latent tracks, regardless
of their morphology, whether that be amorphous continuous (Bi), or amorphous discon-
tinuous (Xe). At the same time, the amplitude of the tensile stresses that were beyond
the boundary of this region can exceed the amplitude of the compressive stresses in the
subsurface region (Figure 4), which is a peculiarity that is found so far only for silicon
nitride. For example, the measurements of the stress profiles in Al2O3 single crystals that
were irradiated with Xe and Bi ions with the same energies as in this work also showed a
correlation between the electronic stopping power and the level of stresses in the region of
latent track formation [10]. However, the amplitude of the compressive stresses at a higher
depth was within the accuracy of the measurements, in contrast to Si3N4. The reason for
the observed differences could be both the different morphology of the tracks (ion track
regions in Al2O3 remain crystalline) and the properties of the materials themselves, which
requires further research.
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4. Conclusions

The depth profiles of the residual mechanical stresses that were induced by high-
energy xenon and bismuth ions in polycrystalline silicon nitride were measured using
Raman spectroscopy. The stresses were determined from the shift of the 862 cm−1 line in
the Raman spectra using the known piezospectroscopic coefficient. It was found that both
the compressive and tensile mechanical stresses are accumulated in the irradiated layer. It
is assumed that the compressive stresses are registered in the region where the latent tracks
are produced. Beyond this zone, the tensile stresses are detected up to depths that exceed
the projective range of xenon and bismuth ions.

The dose dependence of the FWHM of the main line at 204 cm−1 was used for
rough estimates of the size of the region that was amorphized due to multiple ion tracks
overlapping. The data that were obtained are consistent with those that were deduced
from scanning electron microscopy.
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