International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

## Comparison of Sputter-deposited Single and Multilayer Electrolytes based on Gadolinia-doped Ceria and Yttriastabilized Zirconia for Solid Oxide Fuel Cells

Andrey A. Solovyev<sup>1,\*</sup>, Sergey V. Rabotkin<sup>1</sup>, Kairat A. Kuterbekov<sup>2</sup>, Temirgaly A. Koketay<sup>2</sup>, Serik A. Nurkenov<sup>2</sup>, Serikzhan Opakhai<sup>2</sup>, Anna V. Shipilova<sup>1</sup>, Igor V. Ionov<sup>1</sup>, Galina M. Eliseeva<sup>3</sup>

\*E-mail: andrewsol@mail.ru

doi: 10.20964/2020.01.43

Received: 6 September 2019 / Accepted: 21 October 2019 / Published: 30 November 2019

Single and multilayer electrolytes for anode-supported solid-oxide fuel cells (SOFCs) have been prepared by reactive magnetron sputtering and their electrochemical properties have been investigated. Electrolyte layers based on gadolinia-doped ceria (GDC) and yttria-stabilized zirconia (YSZ) were formed on NiO/YSZ substrates. The cells with single (YSZ), double (YSZ-GDC) and triple-layer (GDC-YSZ-GDC) electrolytes were tested, with the thickness of each electrolyte layer from 1 to 5  $\mu m$ . The maximum cell performances of 460 and 2580 mW/cm² were obtained for the SOFC with triple-layer electrolyte at the operating temperature of 600°C and 800°C respectively. The thickness of each electrolyte layer was about 3, 1 and 1  $\mu m$  respectively. The advantages of multilayer over single-layer electrolytes are discussed.

**Keywords:** SOFC, Thin-film electrolyte, Magnetron sputtering, Gadolinia-doped ceria, Yttria-stabilized zirconia.

## **FULL TEXT**

© 2020 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

<sup>&</sup>lt;sup>1</sup> Laboratory of Applied Electronics, Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia

<sup>&</sup>lt;sup>2</sup> Faculty of Physics and Technical Sciences, Gumilev Eurasian National University, Nur-Sultan (Astana), Kazakhstan

<sup>&</sup>lt;sup>3</sup> Laboratory of spectroscopy of defective structures, Institute of Solid State Physics Russian Academy of Sciences, Chernogolovka, Russia