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Abstract: Light qualities are considered to affect many plant physiological processes during growth
and development. To investigate how light qualities make an influence on tomato seedlings under
greenhouse conditions, the growth and morphological parameters of tomato seedlings (Fortizia FIRC
hybrid) were studied under three supplemental light irradiations such as light-emitting diodes with
nanoparticle coating (LED 1—Red light-emitting diodes); Blue, Green, Yellow, Red light-emitting
diodes (LED 2), and traditional high-pressure sodium (HPS) lamps with different photosynthetic
photon flux density and the same irradiation time for 33 days. Morphological appearances of three
groups of tomato seedlings were different between light treatments, that is, the plants under LED-
1 and LED-2 were shorter than those under HPS, while stem diameter, leaf area, dry and fresh
weights, and health indices of tomato seedlings grown under alternative light sources were higher
than of those cultivated under traditional HPS lights. However, the higher plant height was in
plants containing traditional high-pressure sodium lamps treatment. Photosynthetic pigments were
shown to have a significant difference under respective light irradiations of LEDs. The levels of
photosynthetic pigments were higher in the leaves of seedlings under LED 1 and LED 2, and lower
in those that underwent HPS control treatment. Based on the data of morphological and statistical
analysis, LEDs with nanoparticle coating proved to be beneficial factors for the growth of tomato
seedlings under greenhouse conditions.

Keywords: greenhouse; tomato seedlings; light-emitting diodes (LED); photosynthetic photon flux
density; morphological parameters

1. Introduction

Proper growing conditions in the greenhouse are crucial to providing high-quality
tomato seedlings and further tomato fruits yield. The development and physiology of
plants are highly influenced by the light spectrum of the greenhouse environment. Light is
known as the most important source of energy for plant photosynthesis and is an important
signal of its growth and development. Light, its intensity, quality, and duration are the
fundamental factors that affect the process of photosynthesis and plant growth. Light also
affects the content of primary and secondary metabolites in plants [1]. Under artificial grow-
ing conditions, a lighting system can determine the cost and nutrient quality of plants [2,3].
Light qualities are known to control morphogenesis, growth, and differentiation of plant
cells, tissue and organ cultures [4].
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In the northern and central regions of Kazakhstan and many other parts of cold regions
in the world are often cold, and winter is usually characterized by short daylights for about
six months a year. Such climate usually results in low daily light integral that causes the
reduction of seedling growth rate and extension of the transplant production period. The
best daily light integrals for tomato seedling growth ranges from 13 to 16 mol *m~2 *d ! [5].
However, in a seasonably light-limited climate, sunlight rarely provides sufficient daily
light integrals within greenhouses to produce high-quality seedlings when the propagation
season begins (November, December, or April). High-quality tomato seedlings should be
uniform in size with well-developed leaves and roots (straight and short (12 to 13 cm in
length)), thick stems, and deep-green leaves [6].

Plant responses to light sources or spectra have been examined largely for seedlings or
short-term crops using sole-source or supplemental lighting. There is a lack of information
regarding the long-term effects of light properties on plant growth and development and
its underlying mechanisms. The vast majority of studies on plant-biomass allocation have
focused on either the transition from the vegetative to the reproductive phase or allocation
among plant vegetative parts (leaves, stems, and roots) while excluding reproductive
parts (i.e., fruits). The effects of a light environment are often not considered in allocation
studies. Studies of whole-plant responses to the light environment are extremely limited
and cannot be extrapolated from short-term observations of seedlings or short-term crops.
A mechanistic understanding of these relationships not only has significant impacts on
plant science research but also has practical implications for efficient crop production.

Supplemental lighting promotes the growth of greenhouse-grown vegetable seedlings
by increasing total daily light integral. High-pressure sodium lamps (HPS) are the most
widely used electric light source for greenhouse supplemental lighting during transplant
production. In general, HPS lamps provide an orange-biased spectrum by primarily
emitting light in the range of 565 to 700 nm. And it is widely accepted that any wavelength
of light within the photosynthetically active radiation spectrum (400 to 700 nm) contributes
to photosynthesis and crop productivity. Over the past decades, interest has shifted toward
alternative supplemental lighting sources that can reduce production costs by decreasing
electrical energy consumption while maintaining transplant quality.

Light-emitting diodes (LEDs) represent a promising technology for the greenhouse
industry. LEDs have technical advantages over traditional lighting sources but are only
recently being tested for horticultural applications [7]. Light-emitting diodes are the
first source to have the capability of true spectral control, allowing wavelength to be
matched to plant photoreceptors to provide more optional production and to influence
plant morphology and composition [8,9].

The main advantage of LEDs over all other types of plant lighting lamps is that the
technology is rapidly advancing in terms of energy efficiency. LEDs do not generally “burn
out” like traditional lamps, and their lifetime is measured as the time of LED to dim to
70% of its original intensity. The lifetime of LEDs is about 100,000 h and still rising [9].
And its economic effect is achieved not only due to the high energy efficiency of LED
light sources, their high reliability (the lifetime is more than 10 times higher than that of
HPS lamps) but also, due to fundamentally new capabilities of agricultural technology to
increase cultivation productivity for by optimizing the growth and development of plants
by controlling the spectral composition and radiation intensity of LEDs at all stages of
ontogenesis. Thus, numerous studies have shown the effects of LEDs on plants, such as
elongation, axillary shoot formation, leaf anatomy, and rhizogenesis [10-12].

Along with LED energy savings and functionality, their safety for users and the
environment is worth to be mentioned. There is no fragile glass envelope to break, no
high touch temperatures; LEDs contain no hazardous materials, such as mercury [13]. The
selection of an appropriate material is an important process for a relatively high-productive
system and has been observed to be of a significant effect in many other scientific fields [14].

The objectives of this study were to examine how LEDs with nanoparticle coating
manufactured by LED System LLP affect plant growth and transplant quality and to find
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the suitable light intensity for the two cultivations of Fortizia FIRCtomato under local
greenhouse conditions. Morphological characters, stem diameter, leaf area, and dry weight
of plants have been determined after exposure to different supplemental light sources.

2. Materials and Methods
2.1. Plant Material and Growing Conditions

The experiment took place in the greenhouse of Led System Medial LLP located in Nur-
Sultan city, Kazakhstan. The tomato seedlings were subject to supplemental lighting of LED
with nanoparticle coating (Figure 1) and traditional high-pressure sodium lamps (HPS).
The experimental facility air temperature was automatically maintained at +23-24 °C with
the help of an air conditioning system, and the relative humidity was maintained at 60-70%.
The microclimate was controlled using a multifunctional meteorological station model
Terasea (Luxembourg, Germany).

]

Figure 1. Purpose designed experimental facilities for planting tomato seedlings (Nur-Sultan city).

Plant material: Fortizia FIRC hybrid tomato seedlings, in total 80 pieces.

The seeds were planted in seed starter trays on 15 February 2021. Only calibrated and
treated seeds were sewn. The quality of seeds corresponded to the 1st class seeds.

Seeds were planted in rock wool cubes moistened to 100%. Seeds were planted in
excess by 10% in the case of rejection or replacing the fallen ones. Seeds planting was
done by hand. Seeds were sprinkled on top with vermiculite. Before planting seeds,
rock wool cubes were saturated with the nutrient solution with 1.8 concentrations, pH—
5.5. For optimal vegetative growth, the nutrient solution with high calcium content and
ammonia-free fertilizers were used.

Germinated seeds (after 2-3 days) were transferred under a light source for 24 h
supplemental lighting (illuminance was 8 kilolux) for 3 days. The other 12 days the
treatment with supplemental lighting was carried out for 17 h a day. At the two and
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three-leave stage seedlings were pricked out into mineral wool cubes. The number of
seedlings transplanted per 1 m? was 25 pieces. After pricking out, the number of seedlings
per 1 m? was maintained at 20 pieces. The conductivity of the nutrient solution was
maintained at EC = 1.3-1.7 uS/cm. The growing of seedlings was completed by the 45th
day after germination. After the experiment, we examined the growth and quality of
tomato seedlings. Biometrical and phenological observations were taken according to the
State methodology of crop variety testing [15].

The study of the pigments of the leaf of tomato seedlings was carried out in accordance
with the generally accepted method for determining the content of the main pigments,
using spectrophotometric analysis [16].

2.2. Experimental Facility

The experiment was carried out in the specialized experimental facility designed and
manufactured for research of tomato seedlings” growth under supplemental lighting and
traditional HPS lights (control).

Experimental LED lights of domestic origin (hereinafter, LED lights) were used as a
photosynthetically active radiation source (PAR). Lights in the experimental facility were in
the form of closed shelves designed for tomato seedlings growing. Experimental facilities
for growing tomato seedlings consist of an LED irradiation system and a nutrient solution
supply system. The brightness of the irradiation system can be adjusted in the range of
50-100%. The LED lighting system of each shelf has its spectral compositions (Table 1).
LED lighting system turns on and turns off automatically. The photoperiod was 17 h a day.

Table 1. LED lighting system options used in the experiment.

Photon Flux Density (PPFD),

Treatments LED Lights ymolm 251 Wavelength (nm)
=
LED lighting 1 Red light-emitting 100 3 e
(LED-1) diodes (LEDs, R) B i e e
U Séﬂ ‘ -120 480 500 540 580 620 660 700 740 780
Wavelength {(nm)
Soom
E 4000
Blue, Green, H
LED lighting 2 Yellow, Red -
(LED-2) light-emitting 180 z
diodes (LEDs, B, G, § 1o
Y, R) 0
380 420 460 500 540 560 620 660 70O 740 78O
Wavelength (nin)
S .
High-pressure sodium Yellow £ 10000 : ) : :
arc lamp light-emitting 80 Aol S . “ i R
(HPS control) diodes (LEDs, Y) i S U g :

380 420 460 500 540 SBD 620 660 700 740 760
Wavelength (nm)

2.3. Analysis of Growth Parameters and Biomass of Plants

Biometrical and phenological observations of tomato seedlings were taken according
to the State methodology of crop variety testing. As a result of phenological measurements,
the following dates were recorded: planting date, single and mass germination dates. Once
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a week we carried the measurement of the following indicators, such as the height of
the main stem (cm), stem diameter (mm), and leaf area (cm?). The height of plants was
measured from the main stem base up to the plant’s top with the help of a ruler. The
measurement of stem diameter was performed with electronic Vernier calipers. Leaf area
of single leaves (cm?) was measured using the Image] leaf disc method [17].

The most significant indicator for cultivation is the biological productivity of plants
identified by the dry mass yield. The growth of a plant can be measured by its dry weight
and fresh weight. The increase in dry weight directly relates to the rate of photosynthe-
sis [18,19].

2.4. Statistical Analysis

Statistical analyses were conducted using Statistical Product and Service Solutions
(SPSS 21.0) for Windows as well as using the analysis of variance (ANOVA), while the
differences among the means were calculated using Duncan’s multiple range test (p < 0.05).

3. Results and Discussion
3.1. Environmental Conditions during the Experiment

One of the most important microclimate parameters affecting tomato production and
quality is air temperature [20]. Jun et al. [21] reported that the best temperature regime for
net photosynthesis on greenhouse-grown tomatoes is 28/20 °C (day/night), while higher
or lower temperatures can negatively affect fruit sets [22]. In this research, minimum
and maximum average air temperatures inside the greenhouse were maintained between
+20 °C and +22°C, and the relative humidity was maintained at 60-70%.

3.2. Morphological Analysis and Biometrical Parameters

The results revealed that light qualities had significant effects on tomato seedlings’
morphogenesis (Table 2). The morphology of tomato seedlings was significantly different
under different light intensities (Table 3). As can be seen in Table 2, HPS (control) light’s
effect was the lowest, particularly, stem diameter, dry weight, leaf area, and health index.
LED-1 demonstrated better results in such indices as dry weight (g), fresh weight (g), height
(cm), and health index, while LED-2 was more efficient in tomato seedlings’ stem diameter
(cm) and leaf area (cm?).

Table 2. Effects of different light intensities on the morphology of tomato seedlings. Error bars
represent the standard deviation (1 = 3). The letters mean a significant difference at p < 0.05.

LED Lights D_ry Fresh Plfmt .Stem Leaf Area  Health
Treatments Weight Weight () Height Diameter (em?) Index
(molm~2s-1) (g ghtis (cm) (mm)
LED-1 6.03 a 4413 a 32.69b 8.29 a 151.34 a 153 a
LED-2 498 ab 3721b 30.25b 8.52a 163.38 a l4a
HPS control 422b 36.45b 39.69 a 725b 93.57b 0.77b

Table 3. Effects of different light intensities of photosynthetic pigments in leaves of tomato seedlings.
Error bars represent the standard deviation (1 = 3). The same letters mean a significant difference at
p <0.05.

LED Lights

Treaments Chlil Ch"il Chl(a + 1b) Chla/b Caroterl(;ld
(molm-2 s-1) (mg-g~1) (mg-g~1) (mg-g~1) (mg-g~1)
LED-1 0.739 a 0.447 a 1.186 a 1.653 a 0.148 a
LED-2 0.665 a 0.388 a 1.015 ab 1917 a 0.128 b

HPS control 0.564 b 0.285b 0.849Db 1.989 a 0.111c
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To analyze the growth dynamics, we measured the height of tomato seedlings. Plant
height is one of the most important indices. As shown in Figure 2A during the first 12 days
under all treatments were statistically at par, while the measurements on the 26th and 33rd
days after planting in HPS control were higher, than in LED 1 and LED 2.

_507 A EZZLED 1 XY LED 2 [__] HPS control|
a0 . T
= T |
5 %0 . % \x !
[} I .
220 =~ e
g 0 N . / \ .
S ~~wel// \ERR N\ SRR .
EIZ 5 SR
E I SN % N
B % \R:.f:. .
2 O
- = e
g, _ ==
877\ | | .
180
~1603 © T T
140 =
T %// X
3120
5 100 / I
= 80 +
< 60
§ 40
20 . .
03 - IVARIW.WI N\ P |
12 19 26 33
Day after planting (d)

Figure 2. Effects of different light intensities on the growth of tomato seedlings (A—plant height,
B—diameter, C—leaf area). Error bars represent the standard deviation (1 = 3).

[lumination of plants in the HPS variant (control) led to the elongation of the stem,
thereby leading to the elongation of the stem of the control plants. Such plants become
less resistant to adverse external influences (Table 3). When the organs of plants are
pulled out, their cells from a horizontal position take a vertical one. They become larger,
with thin shells, but their number remains the same. Such cells become less resistant
to adverse external influences, are more often affected by diseases, and are damaged by
pests. The reason that gives rise to the phenomenon of stretching can be a significant lack
of illumination.

The stem diameter is an important parameter describing the growth of the tomato
plant during the vegetative period [23]. The stem plays a key role in the transportation
of water and the translocation of carbohydrates [24]. The stem diameter is an important
parameter describing the growth of crop plants under abiotic stress during the vegetative
growth stage. Therefore, it is important to improve the stem diameter growth model to
predict the response of stem diameter variations (SDV) to environmental changes and
plant growth under different conditions. Figure 2B demonstrates the effect of experimental
LED lights and HPS lighting on the tomato seedlings’ stem diameter. Supplemental
lighting increased hypocotyl diameter, epicotyl length, shoot dry weight, leaf number,
and leaf expansion relative to the control, whereas hypocotyl elongation decreased when
SL was applied. For all cultivars tested, the combination of red and blue in SL typically
increased the growth of tomato seedlings [25]. Morphological appearances of seedlings
were significantly different between light treatments, that is, the plants under RB and RBG
were shorter and stronger than those under C, while those under O, G, and R were higher
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and weaker [26]. Light irradiations with LEDs had significant effects on the morphological
appearances of cherry tomato seedlings (Table 2 and Figure 2). Compared with the C
treatment, the plants of R, O, and G treatment were significantly weaker and higher, while
the plants of B, RB, and RBG treatments were stronger and lower. Stem diameter did not
show significant differences among all light treatments. Leaf area of plants irradiated with
C was significantly larger than those under the other LEDs and there was shown to be no
significant difference among those under the irradiations of the other LEDs. The dry weight
and fresh weight of the plants with B were significantly higher than that with respective
irradiations of the R, O, G LED and that with RB, and RBG followed. The content of water
in plants had no significant difference among all light treatments. Specific leaf area (SLA)
under O and G treatments was greater than that under the other respective irradiations of
LEDs, while that of RB treatment showed the lowest SLA [27].

The dry weight of the plant under LED-1 and LED-2 supplemental lightings increased
Table 2 in comparison with HPS lights. This increase in plant dry weight was mainly
related to differences in light absorption, which in turn were mainly due to differences in
leaf area Figure 2C rather than other morphological parameters. The combination of B and
R LED lighting increased total dry matter [27], photosynthetic pigment content, stomata
number, and reasonable photosynthate distribution in cherry tomato seedlings [28].

The results support the finding that decreased photosynthesis in infected tissues is
in part due to decreased levels of chlorophyll [29]. The contents of Chl and carotenoid in
leaves of plants under different irradiations of LEDs were shown to have no significant
differences (Table 3). Compared with HPS control treatment, the contents of Chla, Chlb,
Chl (a + b), and carotenoids in leaves of plants with LED-1 and LED-2 treatments showed
a tendency to be barely higher than those with the other irradiations of LEDs (Figure 3).
The contents in the leaves of the HPS control treatment were shown to be lower. Chla/b
showed a tendency to have no significant difference in the order of the light irradiations of
all treatments. Carotenoid contents statistically differ between the treatments. The leaf color
of the plants grown under the irradiations of LED-1 and LED-2 was dark green, while that
grown under the irradiations of HPS control was bright green (Figure 3). In experiments
with fodder cabbage and sugar beet, the influences were tested which restrict the finding of
a uniform linear dependence between the chlorophyll content and photosynthetic rate [30].
The results of our experiment also confirm the above conclusions. Not significantly, but still,
a higher content of Chla and Chl b was found in the leaves of tomato seedlings irradiated
with LED-1 and LED-2 (Table 3). The contents of Chl and carotenoid in leaves of plants
under different irradiations of LEDs were shown to have no significant differences (Table 2).
Compared with C treatment, the contents of Chla, Chlb, Chl (a + b), and carotenoids in
leaves of plants with RBG showed a tendency to be barely higher than those with the other
irradiations of LEDs. The contents in the leaves of R and O treatments were shown to
be lower. Chla/b showed a tendency to have a significant difference in the order of the
light irradiations of RB, R, G, B, C, RBG and O. Leaf color of the plants grown under the
irradiations of C, B, RB, and RBG was dark green, while that grown under the irradiations
of R, O and G was yellowish-green [31].

Carotenoid is the auxiliary pigment of antenna Chls in chloroplasts and can help Chl to
receive light energy [32]. The carotenoid content in leaves of lettuce plants under different
light irradiations showed to be high in the order of white, yellow, blue, and red [33]. In the
present study, the carotenoid content of cherry tomato leaves under RBG was the highest,
and that under RB, B, G and C showed no significant difference, while that under O and
R was the lowest (Table 3). The difference between the result and Table 3 may be due to
qualitative and quantitative differences between various spectral irradiations and plant
species [34].

Many experiments have been carried out in recent years. Scientists from different
countries have studied the effect of light spectra on the growth, productivity, and physiol-
ogy of tomato plants. The results were conflicting, but all researchers confirm that tomatoes
need a combination of R and B light [35].
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Figure 3. Effects of LED light irradiations on leaf appearances of tomato seedlings (LED-1, LED-2, and HPS control).

Light qualities regulate plant growth and development via various photoreceptors
that stimulate signal transduction systems to change plant morphology. In this study,
the morphological and photosynthetic characteristics of tomato seedlings grown in the
greenhouse were significantly affected by light qualities. The results showed that plants
grown under LED lights with nanoparticle coating had better characteristics and improved
plant growth parameters.

In this study, we also found that plant height reached a maximum under LED lights
irradiation than under HPS lamps. This might account for a certain level of decline in the
tomato leaf photosynthetic rate, which resulted in a reduced accumulation of photosyn-
thetic products. The difference in orientation of illumination used in previous studies and
the present study should also be considered, and it would require further detailed research.

The larger and wider leaf allowed more light interception, which may have led to a
significant increase in biomass. The results showed that plants are grown under LED-1 and
LED-2 irradiation had a higher photosynthetic rate and improved plant growth parameters.
We also assume that responses of plant growth to light qualities might not only be related
to species of tomato but also the growth period and light intensity. This needs to be further
studied. The larger leaf allowed greater light interception, which may have led to a certain
increase in biomass.

Starch is the basic carbohydrate reserve that accumulates in the chloroplasts of pho-
tosynthesizing leaves. Thus, further study of starch content in tomato seedlings grown
under LEDs irradiation is required. Due to the limitations in special laboratory equipment,
we couldn’t determine the sucrose cleavage of samples. Further studies are needed to
describe the effects of selected LED light qualities in tomato fruit qualities during storage
and transportation, and they are under progress.

4. Conclusions

Current greenhouse crop-production systems rely heavily on supplemental electric
lighting to improve the light environment and to promote plant growth, especially at
northern latitudes. High-pressure sodium (HPS) lamps have been widely used to provide
supplemental photosynthetic lighting in greenhouses. HPS lamps emit primarily a yellow-
to-orange-biased emission spectrum and are typically positioned high above the canopy to
reduce the impact of radiant heat emission.

Light quality is known to be an important factor that regulates the morphogenesis
and photosynthetic characteristics of plants. In greenhouse tomato production, supple-
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mental lighting can be used to provide sufficient light energy for plants. In greenhouse
tomato production, the quantity of light reaching the lower canopy is less than the top
with the permeation of light, and the lower canopy of tomato plantsis often shaded by the
neighbouring plants. It is therefore not surprising that light is becoming a main limiting
environmental factor in greenhouse tomato production, as it affects photosynthesis, yield,
and quality of plants. Light-emitting diodes (LEDs) are considered suitable supplementary
lighting to improve the yield and quality of plants. In our study, tomato seedlings grown
under greenhouse conditions demonstrated strong morphological plasticity when exposed
to different LED light qualities. We studied the effect of LED lights with nanoparticle
coating, which consists of an LED irradiation system and nutrient solution supply system
on the growth and quality of tomato seedlings cultivated in the greenhouse. The results of
our study suggested that proper light quality effectively regulated photosynthetic capacity
and plant growth. Tomato seedlings grown under the experimental supplemental lighting
were shorter than those of traditional HPS lights. Although stem diameters of plants
cultivated under three different supplemental lightings were at the same level on the 12th
day, but from the 19th day till the end of the experiment (33rd day) LED-1 and LED-2
demonstrated a better effect on stem diameter than HPS light. Morphological parameters
such as dry weight, fresh weight, leaf area, and health index of tomato seedlings grown
under the experimental alternative light sources (LED-1 and LED-2) were also higher than
that of those cultivated under the traditional HPS lights. The interactive effects of light
quality and temperature on plant morphology and growth are hardly known. Further
study is needed to identify the dependence of thermo-sensitivity of plant height on light
quality. However, the study indicated that stem elongation is related to root growth and
photosynthetic pigments. The energy of a photon depends on light wavelength, and blue
photons have more energy but drive the photosynthetic reaction less efficiently than red
photons because their high energy is not fully utilized [33]. The current results suggested
that higher temperature combined with LED-1 and LED-2 creates indisputable optimal
regimes for tomato seedling growth, but a combination of lower temperature and LED light
regime requires further attention in plant production. Light-induced biomass allocation
changed between vegetative and reproductive structures during plant growth and devel-
opment. Based on the data obtained as a result of the comparative and statistical analysis,
we can conclude that LED lights with nanoparticle coating can be applied in greenhouses
as a source of supplemental lighting: leaf area can improve light absorption, and stem
diameter can improve the growth of tomato seedling and further crop productivity. We
conclude that light spectral properties affect biomass allocation, and such responses involve
morphological and physiological changes in tomato plants.
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