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Abstract: Timely detection and elimination of damage in areas with excessive
vehicle loading can reduce the risk of road accidents. Currently, various
methods of photo and video surveillance are used to monitor the condition
of the road surface. The manual approach to evaluation and analysis of the
received data can take a protracted period of time. Thus, it is necessary to
improve the procedures for inspection and assessment of the condition of
control objects with the help of computer vision and deep learning techniques.
In this paper, we propose a model based on Mask Region-based Convolutional
Neural Network (Mask R-CNN) architecture for identifying defects of the
road surface in the real-time mode. It shows the process of collecting and
the features of the training samples and the deep neural network (DNN)
training process, taking into account the specifics of the problems posed.
For the software implementation of the proposed architecture, the Python
programming language and the TensorFlow framework were utilized. The use
of the proposed model is effective even in conditions of a limited amount of
source data. Also as a result of experiments, a high degree of repeatability
of the results was noted. According to the metrics, Mask R-CNN gave
the high detection and segmentation results showing 0.9214, 0.9876, 0.9571
precision, recall, and F1-score respectively in road damage detection, and
Intersection over Union (IoU)-0.3488 and Dice similarity coefficient-0.7381
in segmentation of road damages.
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1 Introduction

Nowadays, the progress in computer vision is largely due to the appearance of a huge amount of
labeled data. Autonomous driving systems related to the analysis of environmental images, detection
and tracking of moving objects are being actively developed. Semantic segmentation datasets such as
Citades [1], Wild duck [2] and Karlsruhe Institute of Technology in Technological Institute (KITTI)
dataset [3] are used for training. Marking up such samples is carried out manually and costs a great
deal of money and labor. The samples mainly contain instances of classes such as roadbed, pedestrian,
vehicle, sky, road sign and other characteristic, common elements of the highway.

Due to the increasing demand of the road industry for computer processing of high-quality video
data of highways, there is a call for development of an algorithm for automatic detection of defects of
the roadway by image. The development of an effective algorithm for detecting defects of the roadway
in images is an urgent task, since its results can be used both in road organizations and in unmanned
vehicles.

The wearing of the road surface requires regular monitoring. Effective monitoring strategies
allow timely detection of problem areas. This approach significantly increases the efficiency of road
maintenance, reduces maintenance costs and ensures continuous operation. Technologies for detecting
critical signs of the condition of the road surface have evolved from manual methods of photofixation
to the use of high-speed digital technology [4].

The authors of this paper propose a new technological solution in the field of machine learning. Its
implementation makes it possible to automate the process of assessing the quality of the road surface.
For this purpose, a convolutional neural network is trained on data that marked up manually. Thus,
the system learns to recognize and evaluate the main types of damage to control objects.

Reminder of this paper as follows: The following section provides an overview of the literature and
related works, including the methods and datasets used. Section 3 explains methodology of this study
that includes four subsections as data collection and preparation, the proposed model, computation
resources, evaluation metrics. Section 4 demonstrates experiment results where we present road
damage detection results, data markup, evaluation of the proposed method by classes. In Section 5,
we conclude the paper by giving an accent to the proposed model and obtained results.

2 Related Works
2.1 Methods

Artificial neural networks (ANN) of the third generation with a special architecture as deep
convolutional neural networks (CNN), are one of the most promising approaches for solving the
problem of automated quality control of road surfaces [5,6]. The architecture of the convolutional
neural network is based on the principles of the architecture of a multilevel neocognitron: based on low-
level features within the same class, high-level ones are formed through the use of small-sized synaptic
convolution nuclei. In contrast to the connection of neurons of two adjacent layers on the principle
of “each with each”, the speed characteristics of the detection process are improved. Convolutional
neural networks are widely used in the automatic analysis of large volumes of images to accurately
identify the distinctive features of both individual products and the system as a whole [7,8].

The growth of computing power of graphics processing units (GPU) allows the use of deeper
architectures of machine learning models [9]. Thus, it has been made possible to avoid retraining
[10], which has been facilitated by the development of such modern techniques as data augmentation,
regularization, etc. The improvement of convolutional neural networks opens up the possibility of



CMC, 2022, vol.73, no.2 3405

more effective study and generalization of image features (for example, image classification [11], object
search [12], vehicle detection [13]).

The flexibility and prospects of deep learning for the tasks of automatic detection of cracks in
the pavement are shown in [14,15]. In [16], the use of neural networks for automatic detection and
classification of cracks in asphalt is considered. The authors suggest using the average value and the
variance of the values of shades of gray. Taking into account these indicators, the image is divided
into fragments, after which each cell is classified as a crack. The expediency of using full weight
deflectometers (FWD) to assess asphalt cracks is demonstrated. In 98% of cases, the system effectively
detects a crack in the image.

In [17], the use of a neural network for detecting defects is investigated. The advantages of the
method of clustering pixels as objects were found out. It allows you to increase the accuracy of
identification and reduce noise. In [18], the authors used a deep learning architecture that includes the
Visual Geometry Group-16 (VGG-16) model. It was previously trained to identify features that make
it possible to distinguish between classes of images. The model demonstrated excellent recognition
quality even during the work with images from areas unknown to it. Visual Geometric Group-16
Convolutional Neural Network (VGG-16 CNN) is used as a deep feature generator of road surface
images. The authors trained only the last layer of the classifier. They conducted experiments with
various machine learning models, showed their strengths and weaknesses.

Studies [19] have illustrated the success of using the described architecture in conditions of a
limited amount of source data in various segmentation tasks due to a high degree of repeatability.
A fragment of the image of the object of control is fed to the input of the neural network, and a map
of the probabilities of the presence of a defect is compiled at the output. When the roadway is damaged,
a large amount of noise and foreign objects appear in the images with a small gray range and a small
difference between the background and the target object. Due to the allocation of appropriate classes,
a trained and finely tuned CNN model allows the identification and evaluation of the main types of
defects of different shapes and sizes in the images of the road surface. Tab. | demonstrates related
work on the road surface damage detection problem, including the proposed approaches, features and
results obtained.

Table 1: Related works in road damage detection

Reference Year Method Feature Result
[5] 2017  Convolutional neural network is built on Mean value and variance -
the principles of the architecture of a of grayscale values
multilevel neocognitron
[6] 2021 CNN-based road-surface crack detection Lighting conditions of the 85%
model road surface F1-score
(7 2019  Sample and Structure-Guided Network  Color and texture 87.92%
(SGN) accuracy
[%] 2021 Deep learning-based visual crack Shapes of road images 90%
detection accuracy
[11] 2018  Convolutional Neural Networks Visual features 90.45%
accuracy

(Continued)
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Table 1: Continued

Reference Year Method Feature Result

[15]

[16]

2019 Encoder—decoder network for pixel-level Width, shape, and length  71.98%
road crack detection recall,

77.68%
precision,
59.65%
intersec-
tion of
union

2021 Deep Neural Network Visual featues 89.1%
accuracy in
crack
detection

2021 Neural Networks Clustering pixels as objects-

2017  VGG-16 - -

2019 Artificial Neural Network - -

2.2 Datasets

The most well-known available datasets related to road defects are considered:

1.

German Asphalt Pavement Distress Dataset (GAPs dataset) [20]: 1969 grayscale coverage
images from three German cities with a resolution of 1920 x 1080 pixels, divided into 64x64
pixel fragments that have a binary sign of cracks.

Crack500 dataset [21]: 500 red-green-blue (RGB) images of cracked asphalt pavement, with a
resolution of approximately 2000 x 1500 pixels, obtained using a smartphone on the campus
of Temple University. Each image is provided with a pixel-by-pixel binary mask belonging to
the crack.

The Crack True 200 dataset [22]: 206 800 x 600 pixel coating images with various types of
cracks, containing not only a uniform background texture, but also shadows. Each image is
provided with pixel-by-pixel markup.

Computational Fluid Dynamics (CFD) dataset [23]: 118 480 x 320 crack images, semantically
segmented, taken from above on Beijing city roads. They have shadows, oil stains and water
stains.

The RoadDamageDataset dataset [8]: 9053 images from a smartphone mounted at the wind-
shield of the car and aimed at shooting the general view ahead of the car. This set has eight
types of destruction of the road surface, highlighted by rectangular bounding boxes. 15457
instances of destruction have been allocated, and the data set itself has the PASCAL Visual
Object Classes (PASCAL VOC) structure.

The RoadDamageDataset dataset was recorded in seven cities in Japan, and includes eight types of
pavement damage: five classes for cracks, two classes for marking wear and one class for potholes and
subsidence. The data set has a PASCAL VOC structure and was presented at the Institute of Electrical
and Electronics Engineers (IEEE) Big Data Cup forum in 2018.
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The data set of Japanese scientists has revived an interest in solving the problem of automatic
detection of defects using machine learning methods and, in particular, the use of convolutional neural
networks. The advantage of the sample is its solid size, as well as the presence of other types of coating
damage, not just cracks. The flipside is that it operates using the method of highlighting defects or the
limiting frame, since due to the variety of shapes and sizes of defects with the help of the limiting frame,
it is only possible to judge its presence in the image. For the purposes of assessing the quality of the
highway, the best option is a pixel-by-pixel selection using a mask, which allows not only to accurately
localize the defect, but also to estimate its area. Tab. 2 demonstrates datasets for road damage detection
including damage types and features of the images to train neural networks.

Table 2: Comparison of datasets in road damage detection

Dataset Feature Damage type

Crack Images [16] 3704 x 10,000 sized 1000 images Crack

GAPs [20] 1920 x 1080 sized 1969 images  Crack

Crack500 [21] 2000 x 1500 sized 500 images  Crack

CrackTree200 [22 800 x 600 sized 206 images Crack

CFD [23] 4480 x 320 sized 118 images Crack

RoadDamageDataset [24] 9053 images Eight types of pavement damages as

DO00: Linear crack, longitudinal,
wheel mark part; DO1: Linear crack,
longitudinal, construction joint
part; D10: Linear crack, lateral,
equal interval; D11: Linear crack,
lateral, construction joint part; D20:
Alligator crack D40: Rutting, bump,
pothole, separation; D43: Cross
walk blur; D44: White line blur

3 Methodology

The analysis of the given thematic literature clearly demonstrated the exceptional advantages of
deep convolutional neural networks and the validity of their use in the ongoing research. For starters,
it is necessary to carry out segmentation of the roadway image with the allocation of appropriate
classes, which will enable to detect a defect. For these purposes, specially designed CNN architectures
like segmentation network (SegNet) [25] and U-Net [26] are currently being effectively used. The
complexity of the task lies in the limited range of shades of gray in the images of the road surface,
as well as in the slight difference between the target object and the background, the presence of noise
and extraneous details. Due to the specificity of the processed images, segmentation is carried out using
a fully convolutional neural network (FCNN) with an “en-encoder-decoder” structure, which allows
to obtain a binary image at the output [27]. FCNN is formed by two parts — convolutional, which
converts the input image into a multidimensional representation of features, and non-convolutional,
which produces a segmented image based on these features. The first part is constructed by sequentially
arranged five convolutional layers with sets of filters, followed by layers of sub discretization. Layers
of increasing sampling together with convolutional layers allow you to restore the image size to the
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original one after passing through these layers and form a probability map. The CrackForest dataset
consists of 117 images, divided into training, test and validation (evaluating the quality) samples.
64 x 64 fragments are randomly selected from the training and test samples for each image. Gamma
image correction improves the quality of the neural network. The optimal ratio of fragments with and
without a defect was established at the level of 95% to 5%, taking into account defects occupying at
least 5% of the image area. The ratio of the sample size of 15,200 fragments of the training and 3,968
test samples is optimal for the learning process and the operation of a deep neural network. Training
and evaluation of the neural network takes place using metrics of intersection between two detections
and an equivalent binary measure of similarity. Initialization of weights in FCNN layers is carried
out by the Glorot method. When the input distributions of each layer are normalized, the internal
covariance shift decreases, thereby achieving normalization of the batch. Stochastic optimization
training is carried out using the Adam algorithm. It is established that the optimal number of epochs
of neural network training is at the level of 25 (5 at the first stage and 20 at the second). The
implementation of the built FCNN architecture is achieved by virtue of the Keras and Tensor-Flow
frameworks. After training the ANN, it is checked and validated on test data. Each fragment of the
image is fed to the input of the network, and a map of the probabilities of the presence of a defect is
generated at the output.

In our case, an improved technique was used to train pre-trained Mask R-CNN models in
TensorFlow Object Detection API to increase road damage detection performance. Afterwards the
models are put to the test with the usage of sorted annotation data.

3.1 Data Collection and Preparation

Until now, images of the detection of damage on the road surface were either taken above the
road surface or using on-Board cameras on vehicles. When models train with images that taken from
above, the situations that can be applied in practice are limited considering the complexity of capturing
such images. In contrast, when a model is built from images taken from the vehicle’s onboard camera,
these images can be easily applied to train the model for practical situations. For example, using an
easily accessible camera, such as on smartphones and cars, anyone can easily detect road damage by
running a model on a smartphone or transferring images to an external server and processing it on
the server. Therefore, we created our own data set that includes six types of road damage. All images
were annotated manually.

Fig. 1 gives samples of the various types of damage and their definition. In this project, each
type of damage is represented by a class name, such as D20. Each type of damage is illustrated in
the examples in the figures below. As you can see from the table, damage types are divided into six
categories. First, the damage is classified as cracks or other damage. The cracks are then divided into
linear cracks and alligator cracks. Other distortions include not only potholes and ruts, but also other
road damage such as blurring of white lines. As far as we know, no previous study has covered such
a wide variety of road injuries, especially in the case of image processing. For example, the method
proposed by [28] detects only potholes in D40, and in Jana et al. [29] classifies damage types exclusively
as longitudinal and lateral. In addition, previous research with the usage of deep learning [30—-33] only
detects the presence or absence of damage.
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(a) Damage class “D00” (b) Damage class “D01”
Open hatches Construction of the connecting part
' R | e .

(a) Damage class “D20” (b) Damage class “D40”
Partial asphalt pavement Potholes, broken concrete, road cracks

(a) Damage class “D43” (b) Damage class “D44”
Blurring a road crossing Blurring the dividing lines

Figure 1: Road damage photos and classes for a model training

3409

To distinguish such damages from others, the annotation data provides 12 classifications of road
damages and cognitive items in the road photos. The Microsoft Visual Object Tagging Tool (VoTT)
was used to annotate road color photos. In the bottom two-thirds of each picture, all visible items of

the preset classes were segmented and labeled. Tab. 3 demonstrates the annotation data.
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Table 3: Road images annotation data

Class ID Classes Training  Validation Testing  Total
1 Linear crack 3080 660 660 4400
2 Grid crack 658 141 141 940

3 Pavement joins 854 183 183 1220
4 Patchings 448 96 96 640

5 Fillings 1344 288 288 1920
6 Pot-holes 406 87 87 580

7 Manholes 336 72 72 480

8 Stains 266 57 57 380

9 Shadow 1190 255 255 1700
10 Pavement markings 1414 303 303 2020
11 Scratches on markings 3360 720 720 4800
12 Grid crack in patchings 252 54 54 360

0 Total 13608 2916 2916 19440

The most segments were in the “Scratches on Markings” class, which had 3,360 in total. At 3,080
segments, “Linear Cracks” comes next. “Grid Cracks in Patchings” had the fewest segments (252),
followed by “Stains”, “Manholes” and “Pot-holes”. At a ratio of 0.6:0.2:0.2, the segments of each
class were separated into datasets for training, validating, validation, and testing.

3.2 The Proposed Model

To simultaneously solve the problem of crack detection and their pixel-by-pixel separation, it was
decided to use the modern architecture of the Mask R-CNN convolutional network. Let’s consider its
structure and principle of operation. The Mask R-CNN architecture historically has the following
number of predecessors based on the idea of processing small areas: Region-based Convolutional
Neural Network (R-CNN), Fast R-CNN, Faster R-CNN.

Fig. 2 illustrates our Mask R-CNN architecture for road surface damage detection problem. The
Mask R-CNN architecture has a complex block structure. Initially, the image is fed to the input of the
neural network to highlight the feature map, which is often used as VGG-16, residual neural network
with 50 layers (ResNet50) and residual neural network with 101 layers (ResNet101) with excluded
layers responsible for classification. One of the improvements of this architecture compared to its
predecessors is the use of the Feature Pyramid Network (FPN) approach, which extracts multi-scale
feature maps. Successive layers of the SNA with decreasing dimension are considered as a hierarchical
“pyramid” in which the maps of the lower levels have high resolution, and the maps of the upper levels
have high generalizing, semantic ability.
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Figure 2: Architecture of mask R-CNN

The obtained feature maps are processed in the Region Proposals Network (RBN) block that has a
task to generate the assumed regions in the image which contain objects. To do this, a neural network
with a 3x3 window is slid along the feature map and an output is formed based on k anchors-the
framework of a given dimension and position. For each anchor, RPN generates a prediction of the
presence of an object, and a refinement of the coordinates of the bounding box of the object, if it has
been detected. The purpose of this stage is to highlight regions of interest that may contain objects. At
the end, duplicate regions are discarded due to the operation of non-maximum suppression.

Then, using the Region of Interest (ROI) Align operation, the values corresponding to the regions
are selected from the feature maps and reduced to the same size. According to them, the final
operations of classification, refinement of the coordinates of the bounding box and prediction of the
mask are carried out. The mask at the output has a greatly reduced size, but contains real values. When
the mask is scaled to the size of the selected object, it is possible to obtain sufficient accuracy.

3.3 Computation Resources

The tests were conducted on a machine with Intel Core 19-9900KF (8 cores/16 threads/3.60 GHz)
central processing unit (CPU), 32GB CPU memory, Nvidia GeForce (Giga Texel Shader eXtreme)
GTX 1080 GPU with with 8GB of graphics double data rate type 5SX (GDDRS5X) memory, with
a 10Gbps memory speed, 256-bit memory interface and a memory bandwidth of 320GB/sec, 2560
compute unified device architecture (CUDA) cores, GPU clocks of 1607/1733 MHz. The language for
programming is Python 3.6.9 using libraries from object detection application programming interface
(API) version 1 on top of TensorFlow 1.15.0.

3.4 Evaluation Metrics

The various metrics used to evaluate the proposed model are the mean average precision (MaP)
and average recall (AR) at various levels of intersection over union (IoU). In classification problems
with localization and object detection, the ratio of the areas of the bounding boxes is most often used
as a metric to determine the reliability of the location of the bounding box.
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The Mask RCNN has a region proposal network layer that makes multiple inferences simultane-
ously on the class classification, the segmentation and the mask areas resulting six loss metrics. Besides
above model-wise metrics, the average precisions and the average recalls at IoU = 0.5 are used for all
twelve road object classes [34].

S(ANB)
IoU = —— 1
°Y T 5(4UB) M
where A and B are the predicted bounding box and the current bounding box, respectively. IoU is zero
in the case of disjoint bounding boxes and is equal to one in the case of a perfect overlap.

The goal of assessment is to identify as many instances as possible from a population for a
screening method, hence false negatives should be kept to a minimum at the cost of increasing false
positives. As a result, three primary metrics must be determined: true positive rate (TPR), false positive
rate (FPR), and accuracy (ACC). In medical language, the first parameter is referred to as sensitivity
(SEN) and is written as Eq. (2) [35]:

TP
TPR=SEN = — )

where the number of true positive is TP, and the number of positive instances is P.
The estimation of the second term, false positive rate, expressed as Eq. (3) [36]:

FP
FPR = — (3)
N

The population’s cumulative number of negative occurrences is N, while the proportion of false
positives is FP, and number of true negative samples is N. This statistic, on the other hand, is better
understood as the ratio of genuine negatives to real negatives, known in medical language as the
specificity (SPEC), which is given as Eq. (4) [37]:

TN
TNR = SPEC = ~ = 1 — FPR 4

Finally, accuracy determines the balance between real positives and true negatives. This may be
a highly useful statistic when the number of positive and negative occurrences is not equal. This is
expressed as Eq. (5) [38]:
TP+ TN

ACC = —— 5
P+ N ©®)

4 Results

In this section, we divided the experimental results into two subsections. In the first subsection,
we demonstrate results of road damage detection. In the further subsections, we present road damage
segmentation results. In the second section, we demonstrate how the proposed model works in real time
and show visual presentation. In addition, we indicate source images and marked up road images. In
Subsection 3, we illustrate evaluation results of the proposed model by showing different evaluation
parameters as precision, recall, f-score for each classified classes of road surface damages.

4.1 Road Damage Detection Results

The road damage detections system was developed using Mask R-CNN model. The proposed
method might hide various sorts of cracks as well as spall within few moments from the photos
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acquired using the camcorder in order to obtain the right form and amount of the damages. Tab. 4
shows the comparison of the results of road surface damage detection process by indicating precision,
recall, F1-score as evaluation parameters.

Table 4: Evaluation of the proposed method by classes

Model Precision Recall Fl-score
Proposed model 0.9214 0.9876 0.9571
Fully convolutional encoder—decoder network [39] 0.9130 0.9410 0.9270
Deep learning-based semantic segmentation [40] 0.8340 0.6855 0.7524
UNet-based concrete crack detection CrackUnet19 [41]  0.9145 0.8867 0.9004
Two-step light gradient boosting machine [42] 0.6801 0.7578 0.6950
Semantic segmentation using deep learning [43] 0.4044 0.7847 0.4994
Automated vision-based detection [44] 0.9236 0.8928 0.9079

4.2 Data Markup

To determine the part of the image corresponding to the roadway, all pixels of the road mask
are highlighted. Then, an algorithm for searching 8 connected regions is applied to the resulting
binary mask. As a result, the area with the maximum number of pixels is taken as the coverage mask
(highlighted in gray in Fig. 3).

Figure 3: Marked up road images

To evaluate the effectiveness of the developed approach to the identification of defects, a small
data set of 50 real images with cracks on the road was manually prepared. Fig. 4 shows the results of
human selection of cracks and segmentation process using the proposed neural network pixel-by-pixel
selection in a real image.
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Figure 4: Road surface damage segmentation process

Fig. 5 demonstrates results of the model testing on 100 epochs. Fig. 5a shows accuracy and
validation accuracy of the proposed model. From there, we can conclude that our model can gate
approximately 90% accuracy in about 60 epochs. This shows the stability and acceptability of the
proposed model in real life. Fig. 5b illustrates training and validation loss of the proposed method.

As we can see from the figure, we have a minimum loss, and it means the proposed model can get
minimum errors in practice.

Accuracy Loss
—— Accuracy . . TR | R
—— Validation Ac A AT A% Validation Loss.
i of ACCUracy ‘__#__‘_ﬂ__,_— — v P |
S \ |
/ 0.1%0 |
08 1] |
.’ |
/ 0125 l',
g o f 8 \
g £ o000 W
06
0075
[ W
05 | 0.050 . .
- J 0,025 . B A L LAWLVAN
o 20 % 60 B0 100 o 20 40 60 80 100
Epochs Epochs
(a) (b)

Figure 5: Model testing on 100 epochs. (a) Accuracy (b) Testing and validation loss

There are different approaches that uses deep learning techniques for safety in the roads.
Recent literatures proposes interesting solutions for this problem [45]. For example, [46] Vehicle Re-
Identification method to solve the problem of attributable to the large intra-class differences caused
by different views of vehicles in the traveling process and obvious inter-class similarities caused by
similar appearances. Our model directed to detect road surface damages using smartphone cameras
or any other equipment that can fix real-time road videos. In the result of the provided experiments,

we can conclude that deep learning methods can be successfully applied in the problems for safety and
security in the roads.
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4.3 Evaluation of the Proposed Model

On the bounding boxes and segmentation masks, Tab 5 displays several model metrics. On
bounding boxes, the values of mAP (IoU = 50:.05:.95), mAP (IoU = 50), and mAP (IoU =75) are
0.2432, 0.4382, and 0.2482, respectively, while on segmentation masks, they are 0.1600, 0.3257, and
0.1279, with a significant drop in those metrics. When compared to the Precision mAP (big) of
large objects and medium objects, the Precision mAP (small) for tiny objects =0.0365 and 0.0133
on bounding boxes and segmentation masks, respectively, are noticeably smaller. On boundary boxes,
the Average Recall for small, medium, and big objects is 0.1166, 0.3132, and 0.4717, respectively, while
on segmentation masks, it is 0.1021, 0.2528, and 0.2732. Our target damage classes of linear cracks
(Crackl), grid cracks (Crack?2), potholes, scratches on markings, and grid cracks in patchings have
detection precisions of 0.4085, 0.4958, 0.5714, 0.5934, and 0.4000 at IoU = 50, respectively.

Table 5: Evaluation of the proposed method by classes

Classes Precision @ 0.5 IoU Recall @ 0.5 ToU Recall @ 0.5 ToU Recall @ 0.5 ToU
(Bounding box) (Bounding box) (Segmentation)  (Segmentation)

Linear crack 0.5383 0.3847 0.3583 0.2639

Grid crack 0.6256 0.7140 0.5920 0.6744
Pavement joins 0.4900 0.5179 0.2498 0.2531
Patchings 0.7644 0.5584 0.8161 0.5843

Fillings 0.6071 0.4667 0.3040 0.2528
Pot-holes 0.7012 0.4155 0.7012 0.4155
Manbholes 0.9596 0.8798 0.9596 0.8798

Stains 0.1798 0.1484 0.1191 0.1282

Shadow 0.5273 0.4317 0.3285 0.2713
Pavement markings 0.7522 0.7460 0.5065 0.5002
Scratches on 0.7232 0.7531 0.4863 0.4944
markings

Grid crack in 0.5298 0.2474 0.7298 0.3063
patchings

5 Conclusion

As part of the task of automatic detection of roadway defects, Mask R-CNN was introduced to
detect cracks and their segmentation at the pixel level. The completed work has shown that the use of
such architectures can be successful with a small amount of source data.

An analytical review of this area has shown that crack detection studies are limited, since
automatic crack detection at the pixel level remains a difficult task due to the heterogeneous pixel
intensity, complex crack topology, different lighting and noisy coating texture.

The contribution of this work consists of three parts. Initially, we reviewed and analyzed previous
work and identified the advantages and disadvantages of existing approaches. Secondly, data was
collected that contains 12 classes of road damage. Thirdly, we have developed a deep learning model
based on the RCN Mask architecture for detecting and segmenting road damage. The results obtained
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allow us to judge the applicability of the training approach on a synthetic sample, which enables us to
get better results compared to using a small data set marked up manually. The proposed model showed
T1oU-0.3488, Dice-0.7381, which demonstrates applicability in practice.
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