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Abstract: The composite of a phase change material (PCM) and bitumen or asphalt as a matrix is
expected as a new, advanced material for road construction. The main motivation for this article
was to show the new possibilities and perspectives of developing the pavement with the usage of
PCMs. Incorporating PCMs into paving materials can improve their properties, including allowing
the regulation of the pavement temperature, enhancement of the pavement durability, and avoiding
the phenomenon of a heat-island on the road. The main purpose of this article was to evaluate
contemporary investigations in the area of the application of PCMs in pavement materials, especially
asphalt and bitumen; to summarize the advantages and disadvantages of the implementation of
PCM for road construction; and to discuss further trends in this area. This manuscript explored the
state of the art in this area based on research in the literature. It shows the possible material solutions,
presenting their composition and discussing their key properties and the manufacturing technologies
used. The possibilities for further implementations are considered, especially economic issues.

Keywords: PCM; phase change material; asphalt; bitumen; road construction; pavement; concrete

1. Introduction

A phase change material (PCM) can be defined as a substance that has the possibility to
store thermal energy by absorbing or releasing a large amount of latent heat in the process
of changing physical state, especially between a liquid and a solid [1,2]. These materials
react to environmental changes and their properties are modified depending on the external
conditions by absorbing, storing, or releasing heat without changing their temperature [3].
The first time this kind of material was discovered and successfully applied was in the
1970s [2,4]. The early applications were connected with different kinds of building materials
to improve their thermal efficiency through thermal energy storage [4–6]. Since then, these
materials have also found many other applications, including in cooling systems, heat
transfer, and thermal protection devices [7,8]. They also find an application in foamed
materials to enhance their thermal properties [9,10]. Nowadays, they also find applications
in thermoplastic materials, such as asphalt [3,11,12].

The wide range of applications for these materials is possible thanks to the many
advantages that PCMs have compared to traditional materials [7,13]. The most important
seems to be the simplicity of application and high reliability of this technology [7]. This led
to there being some commercial applications for PCMs today, including in the building,
electronic, and logistics industries [13]. In other applications, such as pavements, this
technology is still being developed. This group of materials is attractive because of its high
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energy storage density and low power use at the same time [7]. Nowadays, when the price
of energy is rising, it is an additional reason to develop PCMs. It is also worth stressing
that during the phase transition process, they have a nearly isothermal temperature, which
gives them high energy efficiency [7]. Due to their numerous advantages, PCMs are applied
in many areas, including developing energy efficiency in free cooling defrosting, thermal
management, and air-conditioning [7,13,14].

One of the promising areas of application for PCMs is pavements. The basic reason for
applying PCMs in this area is temperature regulation [15]. These materials can be used for
the reduction of consequences of low temperature (anti-ice and snow melting) as well as
high temperature (helps in avoiding heat islands). Beyond these most obvious uses, these
materials are also used for the improvement of functional properties, including the reduc-
tion of oxidative aging, rutting reduction, and the minimalization of creep [16]. However,
while the benefits of implementing this kind of solution are significant, implementing a
PCM into asphalt and bitumen mixtures as well as concrete for pavement applications is
a challenging task [15]. The main challenges in this area are connected with the material
properties’ deterioration as a consequence of the implementation of PCMs, including low-
ering the mechanical properties, increasing the cracking tendency, and others connected
with chemical changes [17].

The challenges and limitations in applying PCMs in practice are connected to the
temperature of the working and manufacturing technology. PCMs usually work within a
temperature range between −50 ◦C and 150 ◦C and only part of them is suitable for high-
temperature applications [18,19]. This is applicable in high temperatures, usually based on
metals and salts, and their applications are connected with a relatively high-cost comparison
with this one based on polymer materials. Therefore, it is a challenge to develop a new,
low-cost PCM dedicated to higher temperatures [20]. Another challenge is connected with
the application of PCMs in the manufacturing process. The usage of bulk PCMs usually
negatively influences matrix material properties. Because of that, PCM applications very
often require the usage of the technology of encapsulation and closed PCMs in the form of
macro- or microcapsules or the infiltration of different types of aggregates by PCMs [21]. It
is usually connected with additional technological operations and increasing the cost of the
composition. This problem also appears in the pavement applications.

The main goal of this article was to evaluate the current research in the area of the ap-
plication of PCMs into pavement materials, especially asphalt and bitumen, to summarize
the advantages and disadvantages of the implementation of PCM for road construction,
and to discuss further trends in this area. This manuscript is based on the latest research
in the literature, especially over the last 5 years. This article shows the overall knowledge
in the area of PCM. It discusses the possibility of using compounds as a PCM and their
applications. Next, it presents possible material solutions, presenting compositions for
pavement applications in detail, including their key properties and the manufacturing
technologies used. The possibilities for further implementations are considered, especially
economic issues. Eventually, the challenges for further research are analyzed.

2. Methods

The Scopus (ScienceDirect) database was used as a main tool for the preparation of a
systematic review. Also, some supportive tools have been used, especially Google Scholar,
Wiley Online Library, ACS Publications, and IEEE Xplore Digital Library. In the first stage,
overall search in the databases was conducted using the combination of two keywords:
“pavement” and “PCM”. The 149 results were found in Scopus in this topic (Figure 1).

Single publications on the analyzed topic were published in 1990, 2005, and 2008.
However, only since 2011 have articles been regularly published that explore topics related
to the use of PCM in road applications (Figure 1a). The number of publications is changeable
year by year, but it is worth noting that the topic started to be popular after 2017. Thus, this
conception is very new.
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Figure 1. The results of searching in the Scopus database: (a) numbers of publications per year; (b) 
the information about the publications by type [22]. 

Single publications on the analyzed topic were published in 1990, 2005, and 2008. 
However, only since 2011 have articles been regularly published that explore topics re-
lated to the use of PCM in road applications (Figure 1a). The number of publications is 
changeable year by year, but it is worth noting that the topic started to be popular after 
2017. Thus, this conception is very new. 

Most of the scientific works were focused on research articles (approximately 62%) 
or conference papers (approximately 25%). In this area there was only a few review arti-
cles; this type of structure of the publication types is also typical for a new topic, where 
there is a lack of articles that can summarize the new achievement in the area. Taking this 
fact into consideration, this review article will be a precious supplementation to the state 
of the art in the application area of PCMs for pavement materials. 

3. Phase Change Materials 
PCMs can be divided into three main groups: organic, inorganic, and eutectic (Figure 
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Figure 1. The results of searching in the Scopus database: (a) numbers of publications per year; (b) the
information about the publications by type [22].

Most of the scientific works were focused on research articles (approximately 62%) or
conference papers (approximately 25%). In this area there was only a few review articles;
this type of structure of the publication types is also typical for a new topic, where there is
a lack of articles that can summarize the new achievement in the area. Taking this fact into
consideration, this review article will be a precious supplementation to the state of the art
in the application area of PCMs for pavement materials.

3. Phase Change Materials

PCMs can be divided into three main groups: organic, inorganic, and eutectic (Figure 2).
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Figure 2. PCM classification according to the type of material.

3.1. Organic

Organic PCMs can be divided into paraffin, fatty acids, and others [15]. The main
advantage of this group is that they do not cause corrosion problems [18]. They are usually
chemically and physically stable and available for a wide range of temperatures [15]. The
potential problem that touches this group is flammability [15].
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Paraffin is the most widely used PCM from this group. It finds a lot of applications,
especially as a component of building materials with improved thermal properties [23,24].
In the case of application in building materials, including pavements, paraffin is very
often encapsulated in other organic polymers, such as a polymer shell made of polymethyl
methacrylate [25]. In the case of paraffin materials, the melting point is usually between
1 and 6 ◦C; however, in the case of some materials it can be much higher, for example,
for n-Eicosane it is 36.5 ◦C [15]. This range of temperature is favorable for application in
construction where the temperature phase transition is near 0 ◦C as it is, for example, in
Kazakhstan or Poland. The latent heat for this group is usually approximately 200 kJ/kg
and the heat conductivity is between 0.15 and 0.45 W/mK [15]. An alternative method for
the effective application of paraffin in pavements is the incorporation of it in lightweight
porous aggregate [26,27].

Another wide group of organic PCMs is fatty acids. These compounds are character-
ized by a long aliphatic chain capped by a carboxyl group. They can have a straight or
branched structure and be saturated or unsaturated [15]. The exemplary substances that
are used as PCM are lauric acid, myristic acid, palmitic acid, and stearic acid [28].

Other popular organic PCMs are different kinds of polymers, especially polyethy-
lene glycol (PEG). This substance has a lot of advantages: among others, it can be easily
tunable to phase change temperatures, is characterized by a lack of toxicity, and has high
melting/freezing enthalpies [29]. It is worth stressing that PEG as PCM is mostly used in
asphalt mixtures [30]. Nevertheless, it has also some disadvantages, including low thermal
conductivity [29].

Also, another organic PCM has been tested for pavement solutions, including eicosane,
tetradecane and organic mixes [28,31]. Organic PCMs, such as PEG and tetradecane, are
often applied to regulate the high and low temperatures of asphalt pavement [15].

3.2. Inorganic

The next group is inorganic PCMs. They can be divided into hydrated salts, molten
salts, metals, and others. This group is characterized by high heat fusion, high thermal
conductivity, and low volume changes [15]. For example, fatty salts have a more diverse
melting point from 0.5 ◦C for RTM up to 64 ◦C for palmitic acid [15]. The latent heat is also in
the wider range of 46–196.9 kJ/kg [15]. Another advantage is the lack of flammability. They
are also relatively easily available [15]. The main problem is their sensitivity to corrosion
problems [18]. Among this group, the most popular are salt hydrates and metals [32].

This group of materials was investigated for thermal energy storage applications [33].
In the area of building applications, some of them, such as hydrated salt, were also tested as
a part of the composition for roof applications [1,34]. In the case of pavement applications,
this group of PCMs is rarely used, although an investigation was conducted by adding
NiTi alloy to asphalt mixtures [35].

3.3. Eutectic

The popular classification of this group is based on the organic and inorganic character
of the compounds. It can be divided into organic–organic, inorganic–organic, and inorganic–
inorganic [15]. This group is a combination of two or more components with different
chemical and physical characteristics [36].

The group of eutectic PCMs is characterized by sharp melting points, and high vol-
umetric thermal storage. The main advantage of eutectic PCM is the possibility of the
customization of the desired melting temperature [36]. Compared to the two previous
groups the properties of these materials are not fully investigated and still require re-
search [15].

The eutectic PCM is also a subject for applications in the building industry. Haily
et al. [37] tried to apply a eutectic mixture of lauric acid and capric acid into geopolymer
materials to improve the energy efficiency of buildings [37]. They obtained satisfactory
results and assessed the material possible to apply for sustainable and energy-efficient
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buildings. Another study was conducted by Baskar et al. [38] with the addition of lauric
and palmitic as PCMs to the paints. The results showed the efficiency of the created paints
for thermal regulation, especially in reducing the surface temperature of the concrete that
was covered by it [38]. In the last few years, eutectic PCMs also started to be investigated
as a potential additive to pavement applications [16,36].

3.4. Current Application of PCM

Nowadays, PCM materials find a wide area of applications (Figure 3). They are used
in different kinds of industries for many applications; among the most popular are as
follows [15,39]:

• Thermal energy storage, primarily in solar thermal applications [15,39];
• Cooling and heating applications, especially in the building industry and logistics [15,39];
• Heat dissipation of electric circuits in electronic applications and transportation ar-

eas [15,39];
• Energy-absorbing clothes (textile industry) [15,39];
• Temperature regulation in pharmaceutical and food preservation [15,39];
• Others, including energy management [15,39].
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Among others, an important application is in the area of energy management, in which
a PCM was also investigated as an element of Li-ion battery thermal management system
to improve energy efficiency [40]. Another application in this area is a reduction of heating
loads for rooms with air-conditioners [18]. It is also worth mentioning modern applications
for these materials such as thermo-responsive dielectric switching/pulsing materials and
temperature-sensitive electrical switching materials [41,42]. This kind of solution has
potential in applications of next-generation smart electronic/electrical technology, including
temperature sensors, smart switches, phase shifters, and varactors [41,42].

Among the mentioned applications, it is worth paying attention to the building
industry. Li et al. [7] also explored some applications in the building industry, including
the usage of PCMs for roofs, ceilings, and walls in residential houses. They showed that
thanks to the application of PCM it is possible to reduce heating demand, enhance thermal
comfort, and better utilize solar energy through effective storage [7]. The investigation in
this area supports the development of PCMs in pavement applications [43].
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4. Pavement Application of Phase Change Materials
4.1. Main Area of Investigations

There are many criteria for selection for PCMs for pavement applications. Different
authors have different preferences and criteria that decide about the selection of particular
substances [44–46]. The two main criteria seem to be latent heat and thermal conductiv-
ity [15]. However, in the literature there are a lot of other factors that should be taken into
consideration [15]. The key properties of PCMs are connected with the following [39]:

• Thermal properties: latent heat of fusion, thermal conductivity, specific heat capacity,
and phase change temperature.

• Chemical properties: corrosive, toxicity, flammability, chemical stability.
• Physical properties: volume changes, density, durability against multiple freeze and

thaw cycles.
• Kinetic: nucleation rate, speed of crystal growth, and supercooling.
• Economic factors: availability and price.

Moreover, the selection of a PCM will also be dependent on the matrix material and
the purpose of the pavement modification and technology of the implementation of the
PCM into the material [47,48]. In Table 1, the most important research in the area of the
application of PCMs in pavements is summarized based on selected literature.

Table 1. Application of PCMs in pavements.

No Type of
Application Matrix PCM Main Findings Reference

1

Snow removal
system with solar

thermal energy
collector

Lack of typical
matrix. Liquid was

delivered to
concrete material

by the system
of pipes.

Organic:
n-octadecanol

(agglomerated in
cylindrical can

made of
aluminum)

PCM was used for storing thermal
energy from solar collectors; it was

possible to store 58 MJ.
Thanks to the discharge of solar

energy, the temperature of pavement
rose by 30 ◦C.

The test confirmed the possibility of
effective snow removal: the

pavement temperature was above
2 ◦C during a snowfall.

[47]

2

Reduction of the
pavement surface

temperature to
avoid the thermal

stress in high
temperatures

Concrete
Organic (OM35

and OM42)
encapsulated.

The most important for effective
cooling are the latent heat and phase

change temperature of PCM.
In the night, the pavement surface
temperature rose by approximately
half of the reduction in temperature

during the daytime. It was caused by
the slower solidification rate of

the PCMs.

[49]

3 Road temperature
regulation

SBS-modified
asphalt

HDPE, expanded
graphite, and

paraffin
(directly mixed)

PCM addition influenced reduction
consistency and temperature
sensitivity. It also enhanced

low-temperature performance.
The deformation resistance of

modified material decreased but the
fatigue performance increased.
The asphalt had good rutting

resistance and elastic recovery ability
at 64 ◦C.

[50]
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Table 1. Cont.

No Type of
Application Matrix PCM Main Findings Reference

4

Capacity to store
thermal energy;
slow down the

cooling rate;
improve of the

thermomechanical
characteristics

Bitumen

D-Mannitol
(high-speed

shearing with
bitumen)

The melting point of the modified
material was without
significant changes.

PCM improved the physical
characteristics of the basic material.

The specific heat capacity rose
gradually with the PCM content.

[51]

5
Improving

rheological and
thermal properties

Gilsonite-modified
asphalt binder

PEG (directly
mixed)

PCM balances the impacts
of gilsonite.

The binder PCM and gilsonite have
good rutting resistance and are
possible for application in low

temperatures (cracking resistance).

[52]

6

Temperature
control

(high-temperature
reduction)

Cement
(1) paraffin wax
(2) myristic acid
(encapsulated)

Composites had low crushing ratios
during rut-forming tests.

PCMs were thermally and chemically
stable (minimal mass loss at 180 ◦C,

lack of PCM leakage).

[53]

7 Cooling asphalt
pavement Asphalt

Eutectic mixture of
fatty acid (palmitic

acid and stearic
acid), incorporated

in coarse steel
slags aggregate

The composition had sufficient
cooling performance and durability.

Additions of PCM increased the
high-temperature rutting resistance

of pavement by 30.7%.

[28]

8
Temperature

regulation and
ice-melting effects

Asphalt

PEG 800, a phase
change energy

storage material
and

polyacrylamide
backbone structure

(directly mixed)

Investigated composites were in line
with the specification requirements.

The addition of PCM enhanced
mechanical properties and moisture

resistance.
PCM positively influenced thermal

insulation performance and heat
storage efficiency.

PCM reduced the long-term
high-temperature performance and

low-temperature strength.

[54]

9

Temperature
regulation;

reducing the urban
heat island effect

High-viscosity
modified asphalt

(HVMA)

(1) Paraf-
fin/expanded
graphite/high-

density
polyethylene

composite
(2) polyethylene

glycol (PEG)
(mixed, not

explained in detail)

PCMs were uniformly distributed in
HVMA.

PCMs did not affect the softening
points of asphalt.

Composites had excellent
high-temperature rutting resistance

regardless of PCM addition.
The effect of the regulation of
temperature was visible for

both PCMs.

[55]

10 Temperature
regulation Asphalt

PCM based on
polyurethane

(included in fine
aggregate)

The viscoelastic properties of
composites were related to the curing

temperature, loading frequency,
PCMs content, and particle sizes.

[56]
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Table 1. Cont.

No Type of
Application Matrix PCM Main Findings Reference

11 Cooling pavement Concrete

Organic (OM42),
incorporated in
expanded clay

aggregate

PCM effectively decreased pavement
surface temperature (2.24 ◦C was the

annual average).
[57]

12 Cooling pavement Concrete
Organic (OM35

and OM42),
encapsulation

The cooling potential of pavements
PCM improved by more than 80%.

The thermal conductivity of the
material increased.

[58]

13

Preventing the
low-temperature

impact on
pavements

Asphalt
PCM based on
polyurethane

(directly mixed)

PCM slightly affected the high- and
low-temperature performance.
PCM improved the anti-aging

properties.
The energy storage properties of

composition were found to be
satisfactory.

[59]

14 Road temperature
regulation Hot-mix asphalt Paraffin (microen-

capsulation)

PCM could withstand asphalt mixing
and placement conditions.

PCM reduced the dynamic modulus.
[60]

15

Increasing the
functionality of

pavements made
from waste
materials

OPC + waste
materials (bricks)

PEG 400
Tetradecane

(incorporated in
recycled

aggregate)

The study proved the possibility of
using the waste materials as a matrix
for PCMs for pavement applications.

[61]

16 Cooling pavement Asphalt
Paraffin (mixed,
not explained in

detail)

PCM decreased the frequency of
pavement high-temperature

rutting damage.
With the amount of PCM the cooling

effect increased.

[62]

17
Preventing the

temperature
impact

Asphalt
Eutectic

(solid-solid),
directly mixed

PCM increased the physical
properties of asphalt.

PCM increased the high-temperature
rutting resistance.

PCM improved the low-temperature
creep behavior.

[16]

18 Cooling pavement Asphalt

Eutectic (stearic
acid/palmitic
acid), directly

mixed

PCM application improved the
rutting resistance.

The structure of PCM inside the
composite was stable and had a

layered form.
The distinguished temperature
regulating property was clearly

visible (more than 11 ◦C difference).
The temperature peak was delayed

40 min.

[63]

19 Thermal stress
reduction Asphalt

Melamine–
formaldehyde

resin with
graphene (microen-

capsulation)

PCM increased thermal conductivity
and volume-specific heat capacity.

The investigation confirmed reducing
the temperature

variation-induced cracking.

[64]
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Table 1. Cont.

No Type of
Application Matrix PCM Main Findings Reference

20

Temperature
regulation;

avoiding urban
heat island

Concrete

Organic (OM35
and OM42)

incorporation in
expanded clay

aggregates

PCM stored latent heat at different
temperatures. The material is stable

up to 196.6 ◦C.
PCM reduced the maximum

pavement surface temperature by
approximately 2 ◦C.

[65]

21 Temperature
regulation Asphalt

PEG 800, a phase
change energy

storage material
and

polyacrylamide
backbone structure

(directly mixed)

PCM enhanced the moisture and
low-temperature cracking resistance

PCM increased the thermal
conductivity.

PCM improved the heat
preservation capacity.

[66]

22 Temperature
regulation Asphalt

PEG 800, a phase
change energy

storage material
and

polyacrylamide
backbone structure

(directly mixed)

PCM improved the Marshall stability
and flexural–tensile strain as well as
other parameters such as moisture
resistance, low-temperature crack

resistance, and thermal
insulation properties.

PCM reduced the mechanical
strength and long-term

high-temperature stability
performance.

[67]

23 Cooling pavement Asphalt

Eutectic (stearic
acid/palmitic
acid)-directly

mixed

Between PCM and asphalt, no
chemical reaction was detected.
PCM has to be applied at higher

temperatures than traditional PCM,
especially organic.

[68]

24

Improvement of
thermomechanical

characteristics;
mitigation of

thermal curling.

Concrete

Paraffin
incorporated in

porous lightweight
aggregate

The element made from composite
containing PCM had lower linear

strain because of the lower coefficient
of thermal expansion.

[69]

25
Regulating

temperature and
resisting UV aging

Bitumen

PEG–PCM
ZnMgAl-mixed

metal oxides
support (directly

mixed)

ZnMgAl mixed-metal oxides as a
carrier can include up to 65% of PEG.

This mix has good thermal and
chemical stability, sufficient phase
change enthalpy, and excellent UV

absorption properties.

[70]

26
Low-temperature

behavior, avoiding
cracking

Bitumen Tetradecane
(directly mixed)

PCM raised penetration and lowered
the conventional characteristics of

bitumen such as softening
temperature.

Direct addition of PCM also
significantly influenced the

rheological properties of bitumen;
because of that, encapsulation is

recommended.

[3]
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Table 1. Cont.

No Type of
Application Matrix PCM Main Findings Reference

27 Temperature
regulation Asphalt

NiTi alloy (directly
mixed;

replacement for
fine aggregate)

PCM was used as a replacement for
aggregate (partially).

PCM slightly reduced the
water stability.

PCM significantly reduced the
heating rate.

[35]

28 Temperature
regulation Asphalt Tetradecane (mi-

croencapsulation)

Different PCMs can have different
thermoregulation ranges.

PCM significantly improved its
thermal behavior.

[71]

29
Improvement of
thermophysical

parameters
Asphalt Pentadecane (mi-

croencapsulation)

The composition had good thermal
stability, thermal storage

performance, and
mechanical properties

[72]

30 Aging Asphalt Tetradecane (mi-
croencapsulation)

PCM reduced temperature influence
during seasonal and diurnal cycles.

PCM gives only benefits in
encapsulated form.

The melting enthalpy decreases
upon aging.

PCM increased rheological
properties.

[73]

31 Temperature
regulation Bitumen Tetradecane (mi-

croencapsulation)

PCM did not affect rheological
properties; it effectively regulated

temperature variations.
[74]

32 Cooling pavement Asphalt PEG (directly
mixed)

PCM complicated effect on the
rheological properties.

PCM harms the shear strength.
[75]

33

Temperature
regulation,

avoiding thermal
distresses

Asphalt PEG (microencap-
sulation)

Confirmation of thermal storage
capacity.

PCM positively influences
rheological properties.

[76]

34 Freeze–thaw
performance Asphalt

Paraffin (pure and
microencapsu-

lated)

PCM helps in controlling freeze–thaw
impact on subgrade soil [77]

35 Freeze–thaw
performance Concrete

Paraffin (pure and
microencapsu-

lated)

PCM decreased the magnitude of the
temperature drop.

PCM deteriorated the mechanical
properties.

[78]

36
Mechanical and

thermal
performance

Pavement (not
specified)

Paraffin (macro
encapsulation)

Anti-ice properties.
PCM increased thermal stability and

heat storage capacity.
[79]

37

Anti-freezing,
temperature

regulation bridge
decks

Concrete

Composite organic
polyol

(seamless steel
pipe layer
with PCM)

Good effect on melting ice and snow. [80]

The experiments in the last few years were connected with various matrices of asphalt
as well as concrete. They also involve other kinds of PCMs—organic, inorganic, and eutectic.
Also, different techniques of implementation were used such as encapsulation, infiltration
of aggregates by PCMs, joining with backbone structure, and direct implementation. All
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the provided research shows a high potential of PCMs for delaying peak temperatures and
accumulating heat (regulating the temperature). Depending on the application, the applied
PCMs’ distinguished temperature regulating was between a few and a dozen degrees
Celsius. The experimental works outside the laboratory also confirmed the effectiveness of
regulation between day and night. The regulation of temperature influence also affects the
durability and long-term properties of the investigated materials, especially by increasing
the rutting resistance. The influence of the additives on other mechanical and physical
properties was not always the same and was dependent on the used material and tech-
nology. Selected research also shows that the application of PCMs has the potential for
defrosting pavements, thereby increasing the safety for traffic. It is worth noticing that the
effectiveness of the material, especially the latent heat effect, can influence external factors
such as the solar radiation and airflow conditions [81–83].

4.2. Technologies of Manufacturing Pavement Composite

There are three main technologies used for incorporating PCM materials into pave-
ment: immersion, impregnation, and encapsulation (macro- and microencapsulation) [32].
The other methods, such as the distribution of a PCM through a pipe system, are used quite
rarely [47,80,84]. The direct addition of a PCM has a negative impact on the mechanical
strength of concrete because this additive hinders the cement hydration and has a negative
impact on aggregate bonding. It also affects the physical and rheological characteristics of
bitumen [32,49]. Because of that, in most technologies the material is applied in the form of
an encapsulated material or through impregnation into a lightweight material which is next
encapsulated in the cementitious material [49]. In this case, it is also important to properly
select the encapsulation medium. It has to be resistant to the stresses generated due to
traffic loads. Destruction of the incorporated capsules under the influence of mechanical
loads will cause PCM leakage and a loss of the material’s properties [49,85].

Nowadays, the most common technology for manufacturing this kind of composite is
filling the pores in the material with PCM liquid. In the first step, the matrix material is
produced and the water is incorporated into the material pores. A porous matrix for filling
is commonly used, such as expanded shale, clay, perlite, diatomite, and others [32,85,86].
Previous research shows that the selection of the carrier material is important for the
effectiveness of the whole system [87]. In the next step, the material is drying and the
usual parameters are a temperature above 100 ◦C and a time of approximately 24 h [49].
After this time the material is immersed in PCM liquid. To be effective, the PCM is usually
heated above the melting point and the time of exposition is approximately 24 h [49]. This
step caused the PCM to infiltrate the material pores. The capsules prepared this way are
covered by cementitious material and the composite is eventually encapsulated [49,88].

The technologies of incorporation and encapsulation for PCMs in pavement applica-
tions are still being developed to increase the efficiency of the system and avoid potential
negative influences on the matrix material [89]. The authors stressed the benefits connected
with these technologies, such as preventing leakage, improving heat transfer by raising spe-
cific surface area, and protecting the PCM from the external environment [21]. Among the
technologies of encapsulation, the microencapsulation of PCMs plays a special role. In the
case of pavement applications, it allows for the avoidance of a huge agglomeration of the
phase of the PCM in one place, which reduces the negative impact on mechanical properties.

It is also worth mentioning a new perspective for the application of PCM materials,
such as fiber-based PCMs by solution spinning [90]. This method was developed over
several years and involves a joint fiber reinforcement with PCMs. This kind of combination
in pavement materials, besides the enhancing properties typical of a PCM application, can
simultaneously improve the flexural strength and reduce brittle behavior. However, this
kind of solution has not been tested in pavement applications yet.
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4.3. Key Advantages

There are several reasons for incorporating PCMs in pavement materials. The most
important is preventing rapid changes in the temperature by properly regulating them.
Proper temperature regulation helps to improve the pavement durability, and mitigate the
cracks in the material and minimize the heat island effect [32]. The unwanted phenomena
in the pavement material, such as cracking and rutting, are very often connected with
temperature-related distress [15]. These are caused by high solar radiation and thermal
convection between the pavement surface and the air [91]. The application of a PCM
helps to avoid this process by lowering the thermal conductivity of the composition and
increasing heat capacity [92].

The advantages of applying this technology have also been reflected in socio-economical
indicators. Avoiding the urban heat island (UHI) effect has also influenced the minimiza-
tion of air pollution and greenhouse gas emissions [93,94]. The usage of PCMs helps in
lowering peak energy demand and decreasing air conditioning costs [93,94].

Additionally, Sharifi et al. [95] proved the positive influence of PCMs on the reduction
of fatigue-fracture damage. The implementation of a PCM reduces the stresses that have a
periodic nature. This mixture reduces the cyclic flexural curling stresses that lead to the
cracking of the concrete slab and are connected with a changeable temperature [95]. They
modified Paris’ Law and adopted it to calculate the cumulative fatigue-fracture damage of
the PCM-rich concrete slab under the cyclic thermally induced curling stresses. The results
showed higher resistance to the surface modified by PCM in terms of fatigue-fracture
performance [95].

4.4. Main Challenges

The main challenges with the wider application of PCMs in pavements are connected
with the technology of implementing it into the pavement matrix [36]. Most of the problems
are connected with potential PCM leakage and the influence of the physical and rheological
properties of the concrete or asphalt binder [96,97]. The effects of PCM leakage have been
categorized into two categories [17,39]: the reaction with the matrix and the influence on
the process of material preparation, for example, cement hydration or lubricant effect in
the matrix material. Also, the PCM content could cause other problems with the material’s
strength, especially the soft inclusion effect, which increases the material porosity and shell
material reactions [17,39]. To avoid these problems, new research needs to be conducted.

Other important points connected with PCM applications are related to the proper
PCM selection, not only to ensure proper efficiency but also to avoid potential problems.
A lot of PCMs are sensitive to temperature, and because of that to avoid overheating the
material the proper heat transfer should be designed [94,98]. It is only one among a number
of design questions such as the proper selection of the copolymerization method, problems
with in situ polymerization, and the appropriate preparation of mineral-supported effective
absorption into the carrier [30,99]. Last, but not least, is the problem with the high cost of
investment. This kind of technology requires a high initial cost and complex construction
procedures, and the effects are visible only after a longer period of time [94].

5. Further Perspectives

Today, the usage of PCM in the road industry can seem to be not economically jus-
tified, because the road industry is focused on cost minimization. However, taking into
consideration wider perspectives, including the cost of maintenance and the reduction in
the number of potential accidents in the long term, this investment can be beneficial [43].

The further perspective of the development of PCMs in pavements is connected
with thermal conductivity investigations, increasing the efficiency of the heat transfer
speed as well as the energy consumption [32]. Technological developments will also play
an important role, and these may include better methods of avoiding PCM leakage in
encapsulation, the improvement of pavement fatigue, and the effective limitation of the
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UHI effect [32]. New methods for PCM application can also play an important role in
further applications, for example, polymer fiber-based PCM by solution spinning [90].

The further perspectives seem to be especially promising for nano-PCM additives [100].
Using nanoparticles and nanofibers as shells is still a very new topic in the area of applica-
tion PCMs in pavement [39]. Some early-stage research suggests that binders containing
nanoparticles of PCM show lower mass during mixing and compaction [49]. This topic
is additionally supported by the previous research connected with the application of mi-
croencapsulated PCM that reported a wide range of applications, not only in the building
industry, but also in other branches [21].

Also, incorporating other materials, for example, mixing in carbon fibers for the
further improvement of material properties, seems to be a promising topic [101]. In this
area, the possibility of using waste materials or by-products to support this process has
to be mentioned. They can be used especially as carriers for PCM. Some previous trials
have been performed in this area, including mixing PCMs with used bricks [61] or steel
slag [102], as well as their usage as a carrier for industrial by-products such as fly ash [103].

Other environmental aspects worth mentioning are recyclability issues and life-cycle
assessments for this kind of composition [104]. There is a lack of work in this area in the
literature. The information in the area of the social and environmental effects is focused
mainly on the UHI effect [30].

Another interesting area of research work is using PCM materials as an element of
the system of harvesting energy from pavements. Tahami et al. [105] tested a heat storage
system using renewable energy from solar radiation generated by thermal gradients and
heat flow in the pavement layers [105]. This research confirmed the possibility of harvesting
heat energy from roadway pavements with the usage of PCMs [94,105]. The development
of this technology is one of the interesting points for the usage of this material for an
efficient supplementation of green energy [106,107].

It is also worth noticing the development of modeling methods connected with PCM
applications [108,109]. In many cases the traditional methods are not sufficient for provid-
ing a full insight into the topic and the development of more advanced models is required,
including 3D simulation for the particular compositions and more detailed physical mod-
eling [110,111]. Another challenge for simulations is taking into account real conditions,
including data from existing roads [112–114].

6. Conclusions

The application of PCMs in pavement materials is a new trend and a promising area
for research. The provided research shows the application of PCMs in pavement as a
dynamically developed area with a lot of possibilities for innovative investigations. The
development of this technology to application on a full scale requires interdisciplinary
knowledge from the areas of numerical modeling, technology material science, civil engi-
neering, and environmental engineering.

The analysis of further perspectives allows us to formulate the most important areas
for the nearest period:

• Improvement numerical modeling for complex problems;
• Development of modern PCM materials with wider possibilities;
• Development carriers, also with usage waste materials;
• Improvement of the technology of encapsulation and impregnation;
• Implementation of complex methods for environmental assessment.
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