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Abstract: In this paper, we consider the anisotropic Lorentz space L; é(]lm) of periodic functions of m
variables. The Besov space B;Oéa’ﬂ of functions with logarithmic smoothness is defined. The aim of the

paper is to find an exact order of the best approximation of functions from the class Béo(’;a’T) by trigonometric
polynomials under different relations between the parameters p,6, and .
The paper consists of an introduction and two sections. In the first section, we establish a sufficient condition

for a function f € L; e (I"™) to belong to the space L* (I"™) in the case 1< 62 < 9;1), j=1,...,m,in terms

$,0(2)
of the best approximation and prove its unimprovability on the class E;‘g ={fe€ L o™ En(f)5,6 < An,
n=0,1,...}, where En(f); g is the best approximation of the function f € L; 5(I™) by trigonometric poly-

nomials of order n in each variable x;, j = 1,...,m, and A = {\,} is a sequence of positive numbers A, | 0

as n — +oo. In the second section, we establish order-exact estimates for the best approximation of functions

0,0,7)

from the class B;yg(l) in the space L;,e@) (Im).

Key words: Lorentz space, Nikol’skii—Besov class, Best approximation.
1. Introduction
Let 2 = (x1,...,2pm) € R™, I™ = [0,27]", p = (p1,..-,Pm), and 0 = (01,...,6,,), where

pj € (1,00) and §; € [1,00) for j = 1,2,...,m. Denote by L; é(]lm) the Lorentz space of real-valued
functions f(z) that are 27w-periodic in each variable and

2 Om _q 2 0 6—1—1 2—2 9:;—”11 1/
0= e e[ [ ) ] <o,
where f*1»»*m ig a nonincreasing rearrangement of the function |f(z1,...,2y)| in each of the
variables ; whereas the other variables are fixed (see [8, 18]).
In the case p1 = -+ = py, = 01 = --- = 0, = p, the Lorentz space L;é (I'™) coincides with the

Lebesgue space L, (I'") with the norm

27 2T 1/p
Hfupz[/o - rf<m1,...,xm>rpdx1...dmm} ,
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21.0006 of August 27, 2013).
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where p € [1, +00).

Instead of Lge—(ﬂm), we will write Ly ,(I"™) in the case p1 = -+- =py, =pand 0y = -+ =0, = 0
and L;e@) I™) if 5= (p1,...,pm) and O = --- = 6, = 6.

Given a natural number M, consider the set

Oum ={k=(k1,...,km) €Z™ :|kj| <M, j=1,...,m}.

Consider the multiple Dirichlet kernel

and its convolution with a function f € L; FIUGSE
7u(f.0) = [ 1@)Dos. @~ 5) = Do,y (@ 5)dy,
]Im

where s € Nyg = NU {0} and N is the set of positive integers.

Let M € Ny, and let Tas(Z) = 3. aze’®?) be a trigonometric polynomial of order M in each
EEDM
variable x;, j =1,...,m. Denote by §o,, the set of all such polynomials.

Let Enr,..nv(f)pg = Tejgé Ilf— T||;’§ be the best approximation of a function f € L;é(]lm) by
M

the set §0o,,. Sometimes, we will use the notation EM(f)ﬁg instead of EM,___7M(f)ﬁ,g. For a given
class F' C L;,é(ﬂm), let Ep(F);0 = Jsflglg Eyv(f)p0-
Let « > 0, v € (—00,400), and 0 < 7 < oo. Denote by Aj(j@;%ﬂ

fe L;ﬂ—(]lm) such that the quasi-norm (see [9, 20])

the space of all functions

o - 1/7
£l = [ n ™" (11 + log ) Bu(£)p5)"]
P n=1

is finite, where log a is the logarithm of the number a to the base 2.
If 7 = 0o, then
[fl|aear = supn®(1 +logn)? En(f);q < oo
2 n>1 ’

It is known that Aéaé%ﬂ is a quasi-Banach space (see [9, 10, 20]). It is called an approximate
space (see [11]).

—~

0,00,7)

61 "1 < 17 < oo, of all functions

In the anisotropic Lorentz space, we consider the space B

3

fe L; (I'™) representable in the form of series

D Qo (,2), Quen(f) € o (1.1)
n=0
and such that
s 11/7
[Z(QWHQQW (f)”;,(;) } < 400 (1.2)
n=0

for 1 <7 < oo and

sup 2" |[Qqn ()7 5 < 00
n€eNg ’
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for 7 = 0o. The infimum of expression (1.2) over all representations (1.1) defines a quasi-norm in
this space:
. % \T
11 ocrr = inf| 302" Quen ()15 5)]

n=0

The space Béoeia’ﬂ is called the Besov space with logarithmic smoothness. In B Eoela’T), we consider
the unit ball

07 b
BOS {f € Lg™) 1] o < 1}.

It is known that f € IB%;%VH/T’T) if and only if f € Al(joéﬂ’ﬂ (see [10]).

The main aim of the present paper is to obtain an exact order of the best approximation of the
(07777—) and 8(07777—)
ﬁyé(l) p,é(l)
In the one-dimensional case, sufficient conditions for a function f € L, (I 1) to belong to the space
Lq(Hl) for 1 < p < g < oo in terms of the best approximation and the modulus of continuity were
established by P.L. Ul'ynov [30]. This study was continued by V.I. Kolyada [15], V.A. Andrienko [5],
N. Temirgaliev [27, 28], E.A. Storozhenko [26], M.F. Timan, P. Oswald, L. Leindler, S.V. Lapin,

B.V. Simonov, and others (see the references in [16]).

function classes A in anisotropic Lorentz spaces.

N. Temirgaliev established [28] a necessary and sufficient condition for a univariate function
f € Ly(I') to belong to the Lorentz space L,o(I') in terms of the modulus of continuity for
1 <6 < p<oo. L.A. Sherstneva studied [22] this problem in terms of the best approximation of a
function. Such problems in the Lorentz space were investigated in [1, 4, 23].

Problems of estimating various approximative characteristics of function classes are well known
and a survey of the results on this topic is given in [12, 29]. In particular, in the Lebesgue
space L,(I™), exact estimates of the best approximation of functions of the Besov class B;’g—(l)

were established by A.S. Romanyuk [21]. In the case 9](.1) =p; =p, j =1,...,m, estimates of

approximative characteristics of the class Bg:gu) were obtained by S.A. Stasyuk [24, 25]. In [13],
the embedding and characterization problems of the Besov space with logarithmic smoothness in
the Lebesgue space L,(I™) were investigated.

Exact estimates of best approximations of functions from the Besov class in the Lorentz space
with a mixed norm were obtained in [2, 6, 7].

The present paper consists of the introduction and two sections. In Section 1, we establish
a sufficient condition for a function f € L;,é(}lm) to belong to the space L;’ (2 1), 6?2 < 9§1),
7 =1,...,m, and prove its accuracy on the class

B ={f €L 3 : En(f)yg < An, n=0,1,... 1},

where A = {\,} is a sequence of positive numbers A, | 0 as n — +o0.

In the case p; = 0; = p, j = 1,...,m, V.I. Kolyada proved [15] a necessary and sufficient
condition for the embedding of classes Ez); in the space Lq(]ll), 1<p<yg.
0,,7)
_ _ ﬁyé(l)
relations between coordinates of the parameters p,00), g, 0@ r (see Theorems 5 and 6).

In Section 2, we establish order-exact estimates of the value E, (B )q(;(z) under various

The notation A (y) < B (y) means that there exists positive constants C; and Cs such that
C1A(y) < B(y) < CoA(y). If B(y) < C2A(y) or A(y) > C1B(y), then we write B(y) << A(y)
and A(y) >> B(y), respectively.
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2. Conditions for embedding classes in the Lorentz space

Theorem 1 [19, Theorem 10]. Let 1 < pj < +ooand 1 <0; <q; <+oo forj=1,....m, let
=1, y0m) and ¢ = (q1,---,qm), and let 0 = (61,...,0r). Then a trigonometric polynomial

Z Z bkeliff
km=—nm

ki=-n1

satsfies the following inequality:

m
IT7 || €<Cp,q’ H In(1 + n;) 1/9 1/qJHT Hpq

Lemma 1. Letl <p; <ooandl < g < q](l) < 400 forj=1,...,m. Let {u,} be a sequence

of non-negative measurable functions on the cube I = [0, 2x|™ such that
(1)

Huan —(1) < En, En+1 S ﬂgru /8 € (07 1);
(2) there exists a sequence of positive numbers {A,} such that

> (1/0,-1/a)")
[unllye < CAW en, nm=123,...,

for any 6; € (O,QJ(-U), j=1,....m

Then the inequality
o S (1/a-1/g})

1/Q2
1l < {3 A0 =3
n=1
holds for every function of the form f(z) =17 un(Z).

This lemma is proved by V.I. Kolyada’s method (see [15, Proof of Lemma 4]) as in [3].

Remark 1. Lemma 1 was proved by L.A. Sherstneva [22, Lemma 13] in the one-dimensional
case and by the author [3] in the multi-dimensional case for qgl) =... = q%).

Now, let us consider a condition for a function f € L;, o) (I"™) to belong to the space L;, o) (),

1<9(2)<9](»1)<+oo,j:1,...,m

Theorem 2. Let 1 < 02 < 9(1) < 400 and 1 < pj < oo for j = 1,...,m, and let 6 =
(99), e ,9,(”,13) Assume that f € L* 9(1)(]17”) and

. 02 $° (1/6 —1/0V)—1
Inn J=1 @)
> o) Ep - o(Ppam < +oo. (2.1)

n
n=2

Then f € L,G(Q) (I'"™) and

- 0 21(1/9(2>_1/9§1>)_1

. . (In(k +1)) 9= @) 1/6® 2.2
171 << {1700 + [30 0 B (Dgae] o 22

k=2

o
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5 (170 —1/00)

(g0 << { (n(n + 1)y~ B ) 900+
0 5 (1/6-1/6{") -1 " (23)
= (In(k+1 J=t @) 1/6
(5 ey o] )
k=n-+1

Proof. Since En,___7n(f)ﬁ’g(1) =¢e, | 0 as n — 4oo for every function f € L;,é(l)(ﬂm),

1 < pj, 0§1) < 400, j =1,...,m, there exists a numerical sequence {n, } such that (see [15, Sect. 2])

Enu+1 < 55711/7 gny+1_1 2 5877,”7 vV = 172, e

Let T,(f,z) be a trigonometric polynomial of the best approximation of a function

fe L;,g’(l) (rm), 1< pj,0§1) < 400, 7=1,...,m. Consider the series

Tnl(f’j) +Z(Tnu+1(f’f) _Tnu(f’f))' (24)
v=1

Let us prove the convergence of this series in the norm of the space L;; ) (I"™). Suppose that

uy(T) = [T, ., (f,2) = Ty, (f, )], v=0,1,....

Then
Huung,g(l) <2, v=01,...,

and, by Theorem 1,

. > (1/7-1/6)
w57 << (Inmpg1)’= Ev
for any 7; € (0,6?](-1)), j=1,...,m. Hence, by Lemma 1, we obtain
! * L *
| ¥ @i =T <) X w0 <<
v=k+1 ’ v=k+1 ’ (2 5)
! 9 3 (176 —1/61)) 1/6® .
e {3 Gy AT ey
v=k+1
Condition (2.1) implies that
o0 0 3 (1/0@-1/00)
> (nnyg) = el < +oo. (2.6)

v=1

It follows from (2.5) and (2.6) that series (2.4) converges to a function g € L; o2 (I') in the norm.
It is easy to see that g(z) = f(z) almost everywhere on I"™. Hence, f € L;,G(Q) (I™). Setting k=0
in (2.5), we get

l 02 52 (1/6@-1/00) o176
£ J 0(2)
T2 (DI g2 << [Hf\l;;gm + (nnye) o= &y <<

v=1
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2) ¢~ 2 (1)
02 3 (1/6@-1/67)—1

00 : (2)
. In(n+1 g=1 @) 1/0
<< {Hfup,em T [Z (In(n +1)) Ez,...,n<f>,,,em} }

n=2

3

By tending [ to +oo in this inequality, we obtain

2) I~ 2 (1)
02 3 (1/6®-1/6;)—1

00 (2)
. . (In(n+1)) = @ e
11300 << {1500+ | 3 B (Ppa| b

n
n=2

Thus, inequality (2.2) is proved.
Applying inequality (2.2) to the function f — T,,(f) € L; o2 (I'™), it is easy to prove inequal-
ity (2.3). The proof of Theorem 2 is complete. O

Let us prove that condition (2.1) is exact on the classes E 51) -
2

Theorem 3. Let 1 < p; < 00 and 1 < 6 < 0](1) < 400 for j = 1,...,m. The following
condition is necessary and sufficient for the inclusion E;gu) C L;ﬂ@) (Im):

2) 2 (1)
o >J§1(1/9( )—-1/657)-1

i (lnn) PUARIPRSS (2.7)

n n

n=2

P r oo f. The sufficiency of condition (2.7) follows from Theorem 2. Let us prove the necessity.

Let Egé(l) C L;,G(Q) (I'"™). Assume that condition (2.7) is violated, i.e.,

02 S (170 _1/60)_1
2 (/6 -1/60)—

= (1 >
3 (nn) - UASRSTNG (2.8)

n=2

We choose a sequence of numbers {v} with the following properties (see [15]):

1

Vk:+1_1 2 5

1
V41 < 5)\’/k7 A A

A (2.9)

Vi *
Since the function (Inz)?/z with 8 € R decreases to 0 as x — +00, we have

6 3~ (1/0-1/6(")—1 0@ 32 (10 —1/6M)—1

n n— v
n=vg+1 n=vg+1

<<

02 3% (1/0@-1/0)
<< (ln(uk+1 — Vg + 1)) J=1 .

Thus, (2.8) implies that

S (e — v +1) MY = oo, (2.10)

2) I~ 2 (1)
i 0 3 (1/6)-1/6(")
k=1

Let us consider the function

00 - ff 1/
fo@) =Y A n(vppr — v +1)) =7 (),
k=0



22 Gabdolla Akishev

where
m Ve+1 14
T1(Z) = H (nj —vE)?  sinnjx;.
j=1lnj=vp+1
It is known that (see [22])
17515 g = (0 (Vg1 — v + 1))7= , 1<pj,0; <+o0, j=1,...,m. (2.11)

Using this relation and (2.9), we can verify that

s S oSV o0
1Follz 500 <D A (n(vegr — v +1)) = 17all? gy < C Y Ay < 0.
k=0 k=0

Hence, fp € L 1)(]Im) 1 <pj,0§1) <o, j=1,....,m.
Let a pomtlve integer n satisfy the inequalities v; < n < v;41. Then, by the best approximation

property and according to relation (2.11) and inequality (2.9), we have

[e’) — 1 0(.1)
: J
En(fo)pam < Bu(fo)pgn <D Am(mpsr —me + 1) =7 [|ml[ 50y <<
k=l

o
<< Y DAy, << Ay << 2X
k=l

_1 < CoAy,.

Vi41

Hence, f| = Cilfo € E)‘f
Let us show that f; gé L*0(2> (I'"™), 1 < #® < co. To this end, we consider the function

& 1-9(2)

oo 7
_ = o) @ _
90(Z) =Y (In(vpyr — v + 1)) %57 A1),
k=0
where
s Vi1 1 i
j=lnj=vi+1 P;
It is clear that (see (2.11))
. gﬁ 1/6; .
kaHp/,g = (In(vpy1 —vp +1))=1 , 1<pj<+4+o0, 1<bj<o0, j=1,...,m

Further, in view of the orthogonality of the trigonometric system, for any number N, we have

N 51 =
; @_ 5
By = /fl(x) S T s — v+ D) gu(@)dE =
N 02 z 1/6) plia
Z In(vpy1 — v + 1)] 0(2) H Z (212)
k—0 j= ln]—l/k+1

N 9 55 (176 —1/6)
> Z[ln(’/kJrl -y +1)] 7! J )\gfj)_
k=0
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Using the integral Holder inequality, we obtain

N § 1=
= (1 9(2) _
BN << ||f1||;;,9(2) kZO(lD(Vk+1 — Vg + 1))J 19 >\Vk lék‘ ﬁlﬂ@)/’ (213)
where
02 _ 9(2)
@ -1
i 1—0(2)

)

: (
We set ug(z) = (In(vpyr — vp + 1)) % )\‘322)*1\&6(@)\. Then (see (2.11))

@_
lugl* 0y << A0 =B,
79(2) _1

o1 e
gl(T_j— o) )
J

lully » << (k41 — vk + 1Y Br, k=0,1,....

Thus, all the conditions of Lemma 1 hold for the sequence of functions {uy(z)}. Therefore,

N - 1-0(2)
=10l e ¥
Hz(ln(’/kﬂ—’/wrl))’ CNTTG ) ey <S
k=0 ’
2.14
N 9<2)§(1/9<2>71/9§.”) (2] 1-1/6® —
<< { Yl —m 1) 7
k=0

Now, it follows from inequalities (2.12), (2.13), and (2.14) that

N 6 55 (176 -1/6)

2 /0 .
{ Y (v —w+1) = A } << [ f2ll3 pez -
k=0

By (2.10), we find that f; ¢ L; o2 (M), 1< 6 < 9§1) < 400, j =1,...,m. This contradicts the
inclusion Eg o C L;; 02) (I"). The proof of Theorem 3 is complete. O

Remark 2. The results of L.A. Sherstneva [22] follow from Theorems 2 and 3 in the case m = 1.

3. Estimates of best approximations of functions with logarithmic smoothness

Now, let us prove estimates of the value E;(F )pﬂ’(z) for the classes F' = Bé%?l’;) and F' = Aé?é?{;).
Theorem 4. Let 1 < p; < oo and 1 <2 <9§1) <o forj=1,....m,andletl <1 <oo. If

a> > (1/62) —1/6), then BOAD < L* , (I™) and
j=1

P00 P02

£ << 1l 000
p,
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(07&,7—)
Proof. Letf¢€ Bﬁ,gu) .

in the form of the series

Then, by the definition of the class, this function can be represented

ZQQQV(f,j)a QQQV(f,j) € 3’[]22717
v=0

in the sense of convergence in the quasi-norm of the space L* e (I'") and

[e.9]

Vo . \T 1/7
> @@ (Nlz) 7| < +oo.
v=0
If 0@ <7< oo, then, using the Holder inequality and taking into account that
m
a> S (1/6@ — 1/(9](.1))7 we obtain
j=1

1/6(®

0y 55 (1/0 17670 5@
(Y27 L Qe (Nlp)” T <

v=0
w0 (35 (1/0D-1/0")-a) 1
= }

< {2 (e ()} {32 O . (3

v=0 v=0

00 r /T
<O X2 (1w (Dl 0) W

where

If 7 = 00, then

1 5 (1/62)-1/6M ) 62

{325 2 1@ (0" )

i ) (3.2)
0o V9(2)(Z(1/9(2)_1/651))—04) 1/6()

< sup 200 Que (Nllz g { d2
v=0

1/6?

vENp
If 7 < #®), then, using the Jensen inequality (see [17, p. 125]), we obtain

{ % u§(1/9<2)—1/9§1>)0<2)

Zz (1Qu (f >Hpgm>“”} {zzvm Qe (D)} - (33

Thus, (3.1)—(3.3) imply that the series

<, i”: (1/9(2)71/9]{1))9(2) . 9(2)
9 i=1 (HQzQ” (f)||ﬁ,§(1)) (3.4)

v=0

(0,a,7)
is convergent for every function f € B> YO

Taking into account the monotomclty of the best approximation and the properties of the norm,
it is easy to verify that
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o Z (1/6(® — 1/0(1)) 1 o iﬂ: (1760 — 1/0(1))
Inn (2) e (2)
Z ( y= - Ee o << ZQ g=1 ggu,...722u (f)ﬂg(l) <<
n=2

v (1/6@-1/0)@
<Y :
V=

(ISt

0(2)
Y (3.5)
B,0(1)
oo, Z (1/9(2) 1/9(1)) (2) o0
<< 22 i=1

N 9(2)
(1@ (Pl500)
I=v

Since 02 < 9](.1), j=1,..

.,m, we have

n

Z v 35 (16 —1/0D)p( n 3 (1/62-1/6)0@
9 i1

<< 2 9=t , n € Np.
v=0
Therefore, according to [14, Lemma 2.2], we find from (3.5) that
S (1/62)—1/00))0> —1 m
.- (lnn)g( ey o) N N
> . B (pa << 32 5 (1@ (D)™ (3.6)
n=2 v=0
Since the series (3.4) converges, it follows from (3.6) that
- S (1/6) — 1/6)6 —1
Z (ll’l TL)J ! 9(2)
n
n=2

n,...,n(f)p,g’(l) < Q.
Hence, by Theorem 3, we have f € L*6(2) (I™)

Let us estimate the quasi-norm || f ||p s+ By the quasi-norm property and the Holder inequality,
we obtain ’

115 gy << ZHQW

0 u2(1/0<2>71/0“))9(2) (2 1/6? &0
2 J * 0
<< ( g 2 =1 (HQzQ” (f)”,;,g’(l)) > :
v=0

Therefore, according to relations (2.2), (3.6), and (

Hp gy <<

3.7), we have
o0 uz<1/0<2> 1/657)0() o7 1/6®
Il << {322 (19 (NIl )" }

(3.8)
Taking into account (3.1)—(3.3) and (3.8), we obtain
11000 << { 3270 (1@ (1) 0) "} (3.9)
v=0
for every function f € BO«m),

5.0 The proof of Theorem 4 is complete
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Theorem 5. Let 1 <p; < oo and 1 <6 <9§»1) <ooforj=1,....m,andletl <1 <oo. If
a> > (1/6® —1/6\Y), then
j=1

—(a— 35 (1/0®—-1/6{Y))

En (Iaaf;lj)),,g@)x(log(MH)) = , MeN.

m

Proof. Let f € IBB(,OGO‘UT). We have a > 21(1/9(2) - 1/6?](.1) therefore, f € L 2)(]Im)
]:

by Theorem 4. Take a positive integer [ such that 22 < M o< 227 Then, using the best

approximation property and inequality (3.9), we have

0y 3 (1/0—-1/6(D)0

1/6)
EM(f)@Q@) < E221 a2 << { Z 2 I=

(I (Nlge)” 1 (310)

=

m
If 62 < 7, then by the Hélder inequality and in view of the fact that o > S (1/6(?) — 1/9](.1)),
j=1
(3.10) implies that (see formula (3.1))

= vTQ * T 1/
Exi(f), 000 s{22 (12 (£l 500) 7}
3.11
> v0(2)6(2(1/9(2) 1/6$7)~0) ) 525 G 2(1/6<2> 1/65)) (3.1)
{ 2 J= } << 2 J=1

v=l

for every function f € IB%(O(;J) in the case 8 < 7.

If 7 < 0@, then, arguing as in the proof of formula (3.3), by means of the Jensen inequality,
we find from (3.10) that

a= 3 (1/0-1/6(Y))
i=1 )

> T =
Eu(Dgae < { 227 (1Qa (Nl 50)7} 2 (3.12)

v=0

Now, taking into account that 22' < M < 22" by formulas (3.11) and (3.12), we obtain

(=32 (1/0-1/6())
En(f)p oo << (log(M +1)) =t

for every function f € IBB(,OG?I)T ) Thus, the upper estimates are proved.

Let us prove the lower estimates. Consider the function

—(n41)(at 30 1/0(D) 22 -
fo(@) =2 Z SR | (R )

=271 +1 kelps \Oye—1 J=1
where z € I and n € Ny. It is well known that

\ ~(nt)) (ot 3 100y 2 .
S0 s H Z Z H kj—2° ) 5 githa) _
p7

s=2n+1 =2"t141 keOys \Oys—1 J=1
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—(nt1)(at 35 176D 5~ 1760
<<z EY gt g BT gt

Thus,

u+1 2n+2

{ 2ym<‘ Z os(f2)|| - ) } VT _ o(n+1)a

Hence, Cy 1t e IB%,OG?I)T) for 1 < 6® < oo and 1 < 7 < oco. Next, by the definition of the best

approximation and the estimate

2n+2

Z Z Hk_251 ) (i(k.)

s=2nH141 kelys \Oys—1 =1

* m
n—
(

>>2 02
P02

we have
By (f2)500 = Cr i fall% g =
(n+1>(a+z 60y, X ol
ot IS ¥ [e-ztepsatal s
5=2nF1 41 k€0ss \Oys—1 J=1 b
— (1) (a— 35 (1/02) -1/0)))
>> 2 J=1 .
Taking into account that 22" < M < 22n+1, we obtain
(a= 3> (1/0—1/6{Y))
En(f2)p 90 >> (log(M +1)) 7=
for 1 <0®? < 0 and 1 <7 < . Thus, the proof of Theorem 5 is compete. ]

Theorem 6. Let 1 < p; < 00 and 1 < 62 <6?J(-1) <ooforj=1,...,m, and let 1 < 71 < 0.

Ify> Y (1/6@ —1/00) ~ 1/r, then
j=1

(0,7,7) —(y+1/7— % (1/9(2)71/%1)))
EM(Aﬁ,éd) )pa < (log(M +1)) = .

Proof Since Al é?l)T) nd B 0?;; 1/mm) coincide, the statement of Theorem 6 follows from

Theorem 5. 0

4. Conclusion
The best approximations of functions of the classes IB%;O(’;?{) ) and A(,O(;(q)) in the space L* 5002 (™)
have logarithmic order.

Note that estimates of the quantities EM(B(, (;’(Yl’)))@g(g) and EM(Aéoé?{;))ﬁ,g(g) are unknown in

the case 9§ ) =0 j=1,...,m
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