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Using the Effective Field Theory (EFT) framework of single field inflation, we investigate the possibility 
of the formation of Primordial Black Holes (PBHs) in the Slow Roll (SR) to Ultra Slow Roll (USR) sharp
transition. We demonstrate that, due to one-loop correction to the power spectrum, causality is violated 
(cs > 1) for the mass range of PBHs, MPBH > 102gm created during the said transition. We find that non-
canonical features with cs < 1 worsen the predictions of the canonical framework of single-field inflation.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
In the framework under consideration, the basic idea is to be-
gin with an effective action that is model independent and valid 
below the Ultra Violet (UV) cut-off scale. Additionally, the struc-
ture of the Effective Field Theory (EFT) action is constrained by 
symmetry [1–3]. This framework allows us to provide a constraint 
in terms of the effective speed of sound cs , which can be ex-
pressed in terms EFT parameters. We adopt the unitary gauge 
while working with Stückelberg technique, which essentially in-
cludes scalar perturbation dubbed Goldstone modes. In this case, 
the corresponding scalar perturbation variable, δφ, is eaten up by 
the graviton (metric), which has then three physical degrees of 
freedom: spin-0 scalar perturbation itself and the other two are 
represented by two-component spin-2 tensor helicity modes. This 
phenomenon exactly mimics the spontaneous symmetry breaking 
in the SU (N) non-abelian gauge theory. To produce a massive spin 
1 degrees of freedom in the unitary gauge, the associated gauge 
boson eats up the non-linearly transformed goldstone mode under 
the implementation of the underlying gauge symmetry. Just like 
the Standard Model Higgs sector, one can think of embedding the 
Goldstone mode within the framework of non-linear sigma model 
which can further be interpreted as the UV completed version 
of the linearized gauge symmetry. In general, the framework un-
der consideration, might include several scalar degrees of freedom, 
however, we have limited our discussion to a single scalar field in 
EFT. The advantage of this formalism is that it deals with both the 
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canonical and non-canonical scalar fields and allows us to simul-
taneously investigate PBH formation in a general setting, see Refs 
[4–9] and [10–23].

Let us now consider the following diffeomorphic transforma-
tion,

t −→ t + ξ0(t,x), xi −→ xi ∀ i = 1,2,3

δφ −→ δφ + φ̇0(t)ξ
0(t,x). (1)

The temporal diffeomorphism parameter is given by, ξ0(t, x). In 
this case, we pick up the gravitational gauge so that φ(t, x) = φ0(t), 
where φ0(t) is the background time-dependent scalar field in ho-
mogeneous isotropic FLRW cosmic space-time. Additionally, this 
necessitates that in this gauge choice, δφ(t, x) = 0.

In the present context we start with the following abbreviated 
EFT action [2,3]:

S =
∫

d4x
√−g

[ M2
pl

2
R + M2

pl Ḣ g00 − M2
pl

(
3H2 + Ḣ

)

+ M4
2(t)

2!
(

g00 + 1
)2 + M4

3(t)

3!
(

g00 + 1
)3

− M̄3
1(t)

2

(
g00 + 1

)
δK μ

μ − M̄2
2(t)

2
(δK μ

μ)2

− M̄2
3(t)

2
δK μ

ν δK ν
μ

]
. (2)

Here δKμν = (
Kμν − a2 Hhμν

)
, where Kμν is the extrinsic curva-

ture at constant time, a the scale factor and H represents Hubble 
parameter in quasi de-Sitter space, hμν is the spin-2 field; M2(t), 
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M3(t), M̄1(t), M̄2(t) and M̄3(t) represent the Wilson coefficients 
which slowly changes with the time scale for this EFT set up.

The Goldstone mode (π(t, x)) transforms as follows under 
the time diffeomorphism symmetry, π(t, x) → π̃ (t, x) = π(t, x) −
ξ0(t, x), where the local parameter is represented by ξ0(t, x). 
These Goldstone modes serve as an analogue for the scalar mod-
es’ function in cosmic perturbation in this study. Next, the con-
dition for fixing the unitary gauge is given by, π(t, x) = 0 which 
implies π̃ (t, x) = −ξ0(t, x). We must now comprehend the decou-
pling limit in greater depth in order to build the EFT action. The 
gravity and Goldstone modes’ mixing contributions in this limit 
are easily disregarded. Let’s start with the EFT operator −Ḣ M2

pl g00, 
which is necessary for further computation to demonstrate the ve-
racity of this assertion. The temporal part of the metric can be 
expressed as follows, g00 = −1 + δg00, where δg00 denotes the 
perturbation. The remaining contributions are a kinetic contribu-
tion M2

pl Ḣπ̇2 ¯g00 and a mixing contribution M2
pl Ḣπ̇δg00. A canon-

ical normalised metric perturbation is also used, δg00
c = Mplδg00, 

and mixing contribution is given by, M2
pl Ḣπ̇δg00 =

√
Ḣπ̇cδg00

c . In 
the decoupling limit, one may conveniently ignore the mixing term 
above the energy scale Emix =

√
Ḣ . Another option is to combine 

contributions M2
pl Ḣπ̇2δg00 and π M2

pl Ḧπ̇ ḡ00, which may be rep-

resented as follows after canonical normalization, M2
pl Ḣπ̇2δg00 =

π̇2
c δg00

c /Mpl, π M2
pl Ḧπ̇ ḡ00 = Ḧπcπ̇c ḡ00/Ḣ . The contribution from 

the M2
pl Ḣπ̇δg00 term can be disregarded for E > Emix .

In the decoupling limit, the second-order Goldstone EFT action 
(S(2)

π ) is given by:

S(2)
π =

∫
d4x a3

(−M2
pl Ḣ

c2
s

)(
π̇2 − c2

s
(∂iπ)2

a2

)
. (3)

where the effective sound speed for the present EFT set up is de-

fined as, cs ≡
[

1 − 2M4
2

Ḣ M2
p

]−1/2

. In the current context, the spatial 

components of the metric fluctuation is provided by:

gij ∼ a2(t)
[
(1 + 2ζ(t,x)) δi j

] ∀ i = 1,2,3, (4)

where the scalar fluctuation is denoted by ζ(t, x), where ζ(t, x) ≈
−Hπ(t, x). Further, in terms of comoving curvature perturbation 
the second-order EFT action (S(2)

ζ ) can be re-expressed as:

S(2)
ζ = M2

pl

∫
dτ d3x a2

(
ε

c2
s

)(
ζ ′2 − c2

s (∂iζ )2
)

. (5)

A new variable, v = a
√

2ε
cs

Mplζ with ε = 1 − H′/H2, also re-
ferred to as the Mukhanov Sasaki (MS) variable, is then introduced. 
Throughout the paper, we denote the derivative with respect to 
conformal time by a symbol ′ . After that, using the Fourier trans-
formation, and varying the action, the MS equation for the scalar 
modes can be expressed as:

v ′′
k +

(
c2

s k2 − 2

τ 2

)
vk = 0 . (6)

The following expression provides the solution of the Mukhanov 
Sasaki equation for the scalar mode during the SR period (τ < τs) 
using Bunch Davies initial condition:

ζk(τ ) =
(

ics H

2Mpl
√

ε

)
∗

(1 + ikcsτ )

(csk)3/2
e−ikcsτ . (7)

Here all the terms appearing in the parenthesis bracket are evalu-
ated at the pivot scale k∗ = 0.02Mpc−1. For this reason, we identify 
the conformal time-dependent effective sound speed at this point 
2

as, cs(τ∗) = cs , which will appear frequently in the rest of the com-
putations performed in this paper. In principle, cs can be less than, 
greater than, or equal to unity, depending upon the EFT setup of 
interest Let us note that, during the SR phase, the first slow-roll 
parameter, ε can be treated to be a constant. The another slow-
roll parameter in this discussion, η = ε′/εH, is extremely small 
and less than unity during the SR phase. In the rest of the compu-
tation of the paper both of these slow-roll parameters, particularly 
the behaviour of η plays a significant role.

In this work, we have considered a sharp transition from SR 
to an ultra-slow-roll (USR) phase. The USR phase persists for a 
very small span and at the end of the USR phase inflation ends. 
In terms of the conformal time scale, SR phase is valid just up to 
τs where the mentioned sharp transition occurs. The choice of the 
phases is based on our previous work [12], where we have found 
that to have a sufficient number of e-foldings, which is �NTotal =
�NSR + �NUSR ∼ O(55 − 60), it is justifiable to have only these 
mentioned two consecutive phases, SR and USR respectively. Such 
a choice is completely motivated to incorporate one-loop effects in 
the primordial power spectrum for scalar modes and to generate 
small mass PBHs, MPBH ∼ 102gm at the momentum scale kPBH =
ks ∼ 1021Mpc−1. We have also found from our analysis in ref. [13]
that due to strong constraints coming from renormalization and 
ressumation of the computed power spectrum, it is not a good 
option to push the PBH formation scale to kPBH = ks ∼ 105Mpc−1

corresponding to large mass PBHs, MPBH ∼ 1031kg ∼ M
 , where 
M
 represents the solar mass. We also found that adding an extra 
SR phase after the completion of the mentioned USR phase does 
not help. The prime reason for this conclusion is because of the 
fact that having the first slow-roll phase (SRI), then a sharp tran-
sition from SRI to short-lived USR, then another sharp transition 
from USR to second slow-roll phase (SRII) followed by successful 
inflation in the presence of renormalization and resummation can 
not be achieved. We did the analysis very carefully with canon-
ical single field inflationary paradigm in ref [12] and found that 
in this specific case, the total number of e-foldings is achieved, 
�NTotal ∼O(20 −25) with SRI, USR, and SRII to achieve large mass 
PBHs at kPBH = ks ∼ 105Mpc−1. Later to understand this situation 
from a more general perspective and to provide a more strong ar-
gument regarding the validity of the assumption of choosing the 
sequence of the mentioned phases, in ref. [13] we did the compar-
ison between cases: (1) SR to USR, and (2) SRI to USR and to SRII 
in the presence of EFT framework based on all classes of P (X, φ)

theories where sharp transition phenomena are implemented. In-
terestingly, we have found from the analysis performed in ref. [13]
that if renormalization and resummation of the power spectrum is 
done correctly then with the addition of a new SRII phase, success-
ful inflation can not be accomplished if we demand the generation 
of large mass PBHs at the scale kPBH = ks ∼ 105Mpc−1. On the 
other hand, if we demand the completely opposite i.e. the genera-
tion of extremely small mass PBHs from the EFT setup at the scale, 
kPBH = ks ∼ 1021Mpc−1, then from both the scenarios (SR+USR and 
SRI+USR+SRII with sharp transitions) we get the same result. In 
this case, the total number of e-foldings achieved from the setup 
will be, �NTotal ∼ O(55 − 60) from both the scenarios. For this 
reason, it is enough to consider the scenario having only SR and 
USR phases followed by the end of inflation. The main reason for 
the confusion regarding this issue comes from the tree-level com-
putation of the primordial power spectrum for the scalar modes. 
At the tree level, to generate large mass PBHs at the scale kPBH =
ks ∼ 105Mpc−1, an additional SRII phase is necessarily required to 
achieve a total number of e-foldings, �NTotal ∼O(55 −60). But the 
renormalization and ressumation on the one-loop corrected power 
spectrum spoils the tree level result; we have found that at least 
for the sharp transition it is not possible to generate large mass 
PBHs at the scale, kPBH = ks ∼ 105Mpc−1. Keeping the aforesaid in 
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mind, we have restricted our analysis to SR and USR phases, where 
the transition from the SR to USR phase is occurring sharply.

Before proceeding ahead, let us mention the findings from other 
studies that have been performed to address the same issue from 
a different perspective. For completeness, let’s compare our results 
with the findings of other authors. Very recently, in ref. [17–19]
the authors have pointed out that with the help of a smooth tran-
sition from SRI to USR and USR to SRII, it is possible to suppress 
the contribution from large amplitude fluctuation as appearing in 
the one-loop corrected expression for the primordial power spec-
trum for the scalar modes. In these studies, it is also pointed out 
that it is possible to generate large mass PBHs at the scale, kPBH =
ks ∼ 105Mpc−1 which can accommodate the sufficient number of 
e-foldings necessarily required to validate inflation. Some more 
studies have been done along the same subject line in the refs. 
[14,15,20–23]. In particular, a sudden or smooth transition drasti-
cally changes the final result on the estimated PBH mass and in the 
corresponding PBH abundance. For sharp transitions, the one-loop 
corrected power spectrum is almost unaffected without taking into 
account the renormalization [14,15,17–23], and with renormaliza-
tion and resummation extremely sensitive and not allowing large 
mass PBHs generation from the underlying setup [12,13]. On the 
other hand, for the smooth transition in refs. [17–19] the authors 
have explicitly shown that the final result of the one-loop cor-
rected power spectrum is strongly suppressed. However, none of 
the studies with smooth transition [17–19] and some of the stud-
ies with sharp transition [10,11,16,20,21,23] have addressed the 
crucial issue of renormalization and resummation to finally arrive 
at the conclusion regarding the suppression of one-loop contribu-
tions as well as the generation of large mass PBHs. In the next half 
of the paper, with the detailed computation, we will establish all 
of the presented arguments in support of our analysis.

The USR region, which is visible within the window τs ≤ τ ≤ τe , 
will be added to our discussion in the paragraphs to follow. Here, 
τs and τe are the conformal time scales of the sharp transition 
from the SR to the USR and at the end of inflation, respectively. 
The conformal time dependency of the first slow-roll parameter in 
the USR regime can be expressed as, ε(τ ) = ε (τ/τs)

6. Here ε is 
the slow-roll parameter in the SR region which is approximately 
constant and less than unity to validate slow-roll approximation.

The following is the formula for the curvature perturbation re-
sulting from the solution of the MS equation in the USR region:

ζk(τ ) =
(

ics H

2Mpl
√

ε

)(τs

τ

)3 1

(csk)3/2[
αk (1 + ikcsτ ) e−ikcsτ − βk (1 − ikcsτ ) eikcsτ

]
. (8)

Thus the solutions for the USR and SR regions are actually con-
nected by the Bogoliubov coefficients αk and βk . Since the initial 
vacuum is chosen to be Bunch Davies, these coefficients are fixed 
by using the continuity of the modes and its associated momenta 
at the SR to USR sharp transition at the time scale τ = τs . Utilizing 
these facts we found that:

αk = 1 − 3

2ik3c3
s τ

3
s

(
1 + k2c2

s τ
2
s

)
,

βk = − 3

2ik3c3
s τ

3
s

(1 + ikcsτs)
2 e−2ikcsτs . (9)

Here it is important to note that, we must explicitly quantize the 
appropriate scalar modes in order to compute the formula for the 
two-point correlation function and the related power spectrum in 
Fourier space, which is needed to calculate the cosmological cor-
relations.

Let’s now take our analysis a step further and directly com-
pute the impact of the power spectrum’s one-loop correction from 
3

the perturbation’s scalar modes using the curvature perturbation, 
which expands the typical EFT action in third order:

S(3)
ζ =

∫
dτ d3x M2

pla
2
((

3
(

c2
s − 1

)
ε + ε2 − 1

2
ε3

)
ζ ′2ζ

+ ε

c2
s

(
ε − 2s + 1 − c2

s

)
(∂iζ )2 ζ

−2ε

c2
s
ζ ′ (∂iζ )

(
∂i∂

−2
(

εζ ′

c2
s

))

− 1

aH

(
1 − 1

c2
s

)
ε

(
ζ ′3 + ζ ′(∂iζ )2

)

+1

2
εζ

(
∂i∂ j∂

−2
(

εζ ′

c2
s

))2

+ 1

2c2
s
ε∂τ

(
η

c2
s

)
ζ ′ζ 2 + · · ·

)
, (10)

Here η = ε′/εH, s = c′
s/aHcs and · · · represent contributions 

which are highly suppressed. Due to the appearance of the param-
eter s it is also clear that the effective sound speed parameter is 
not constant through the cosmological evolution. We will mention 
the underlying behaviour and the corresponding parametrization 
of the effective sound speed in the two consecutive phases, SR, 
USR, during SR to USR sharp transition and at the end of infla-
tion respectively. It is important to note that the above-mentioned 
third order action for the scalar perturbation can be derived by 
explicit use of the well-known ADM formalism. For the detailed 
computation of the above-mentioned action for cs �= 1, see refs. 
[24–26], where the authors have explicitly derived this in detail 
utilizing the ADM formalism. For the special case, where cs = 1
in the case of canonical single field models, the equivalent deriva-
tion of the third-order action can be found in refs. [27,28]. In what
follows, we shall utilize these values to extract the contribution 
from the one-loop effect. In the above-mentioned expressions, all 
the terms except the last one contributed as O(ε2) and O(ε3)

both in SR and USR phases. On the other hand, since the last 
term contains the conformal time derivative of the factor η/c2

s , 
the constraint regarding the sharp transition from the SR to USR 
phase has to be implemented on this particular contribution. Be-
fore the transition in the SR phase, contribution of the last term 
is insignificant. However, as the sharp transition is switched on, its 
immediate effect can be clearly seen in the USR phase, because its 
contribution is O(ε). This is primarily due to the second slow roll 
parameter changing from η ∼ 0 (in the SR phase) to η ∼ −6 (in the 
USR phase) along with having a dynamical feature in the effective 
sound speed parameter cs .

We are now explicitly computing the contribution of the third-
order expanded EFT action’s last term to the power spectrum 
of the scalar mode during PBH creation. Here, the last term of 
Eqn (10) is dominating over the other contributions in the USR 
phase. For this reason, in the one-loop result, the primordial scalar 
power spectrum contribution from this term is dominant over all 
the other terms. Such a dominant contribution is the only option 
which can accommodate large amplitude fluctuation in the USR 
regime, particularly during the formation of PBHs. However, for 
the sake of completeness during our computation, we have not ne-
glected any of them though other terms are small during USR. Our 
derived result will capture both small and large contributions to-
gether in the final expression, which we will explicitly compute 
in this paper. To accommodate large amplitude fluctuation and ex-
plain the generation of PBHs, one can equivalently think in terms 
of an inflationary potential. By inserting a phenomenological bump 
or a dip in the structure of inflationary potential, one can mimic 
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Fig. 1. Behaviour of the dimensionless power spectrum for scalar modes with re-
spect to the number of e-foldings. Plots show that cs � 1 is the allowed range of 
effective sound speed.

this feature. Recently, in ref [29] with the help of a phenomeno-
logically inserted Gaussian speed breaker, the authors have done 
the equivalent analysis within the framework of a canonical single 
field model of inflation to address this crucial issue at the tree level 
computation. But in this work our prime objective is to address the 
same issue from the perspective of EFT framework, where instead 
of a scalar field effective potential, we consider a more generalized 
version where the scalar perturbations are described in terms of 
Goldstone modes and at the starting point no scalar field kinetic 
term and its potential appear in the EFT action. All the features 
coming from bump or dip are clearly encoded in how we design 
4

the time dependent behaviour of the second slow-roll parameter η
and the effective sound speed cs during SR, USR, particularly to ex-
plain the SR to USR sharp transition. This also implies the fact that 
such insertions of bump or dip in the structure of the effective po-
tential for inflation can be completely translated in the language 
of η and cs . As a result, within the EFT setup, no such informa-
tion from the phenomenological structure of the inflation potential 
is actually required to describe the generation of PBHs from large 
amplitude fluctuations. There are only a few things we need to re-
member to visualize such mapping: (1) in our designed set up the 
PBHs formation scale kPBH is the sharp transition scale ks from SR 
to USR, which is the position of the starting point of the bump 
or dip in the equivalent description, (2) Peak amplitude, which is 
O(10−2) in our description, can be equivalently described by the 
height/depth of the bump/dip of the phenomenological potential; 
and (3) the end of inflation as well as the end of the USR phase ke
mimics the role of the finishing point of the bump or dip.

In order to achieve this goal, we further employ the well-known 
in-in formalism. The following is an example of the leading cu-
bic self-interaction Hamiltonian which plays the central role in our 
computation to generate the large amplitude fluctuation necessar-
ily required for the formation of PBHs:

H int(τ ) = − M2
pl

2

∫
d3x a2 1

c2
s
ε∂τ

(
η

c2
s

)
ζ ′ζ 2. (11)

To implement the feature of the sharp transition, we need to de-
sign the behaviour of the effective sound speed, cs , and the second 
slow roll parameter, η. In the SR and USR regimes, ∂τ

(
η/c2

s

) ≈ 0
and this approximation fails at the sharp transition points, τ = τs
and τ = τe . The only noteworthy contributions will thus occur at 
τ = τs and τ = τe , instead of the contribution from the complete 
time interval −∞ < τ < 0. During this construction, we also as-
sume that at these transition points, the effective sound speed is 
approximately the same, i.e. c(τs) ≈ c(τe) = c̃s �= cs , where cs is the 
magnitude of the effective sound speed at the pivot scale. For this 
reason, at τ = τs and τ = τe , we have, ∂τ

(
η/c2

s

) ≈ −�η(τs)/c̃2
s

and ∂τ

(
η/c2

s

) ≈ �η(τe)/c̃2
s , respectively. In this description, the 

effective sound speed at the transition scales has the structure, 
c̃s = 1 ± δ, where δ is a fine-tuning factor. Consequently, due to 
having a non-uniform behaviour of the sound speed, at the sharp 
transition scales, one can accommodate the enhancement in the 
factor ∂τ

(
η/c2

s

)
which is necessarily required to provide an ex-

ternal kick to amplify the scalar perturbations to generate correct 
amplitude for the production of PBHs.

The tree level contribution to the total power spectrum from 
scalar perturbation considering both the SR and USR regime to-
gether can be further written as:[
�2

ζ,EFT(p)

]
Tree

=
[
�2

ζ,Tree(p)

]
SR

+
[
�2

ζ,Tree(p)

]
USR

=
[
�2

ζ,Tree(p)

]
SR

×
{

1 + �(p − ks)

(
ke

ks

)6

|αk − βk|2
}
, (12)

where �(p − ks) is the Heaviside theta function inserted to imple-
ment the sharp transition from SR to USR regime. Here the scalar 
power spectrum’s slow-roll (SR) contribution can be written as:[
�2

ζ,Tree(p)

]
SR

=
(

H2

8π2M2
plεcs

)
∗

(
1 +

(
p

ks

)2
)

, (13)

where in the SR regime p < ks restriction is maintained. Here the 
term appearing at the parenthesis bracket is the amplitude of the 
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scalar power spectrum in the SR region which is evaluated at the 
pivot scale k∗ = 0.02Mpc−1.

Further, in the presence of the previously mentioned third-
order action for the comoving curvature perturbation and consid-
ering all the small and large contributions, we use the well-known 
in-in formalism in the present context along with all possible 
physically viable Wick contraction to generate one-loop Feynman 
diagrams. This further gives rise to the following simplified expres-
sions for the one-loop contributions appearing from both the SR 
and USR regime:[

�2
ζ,One−loop(p)

]
SR

=
[
�2

ζ,Tree(p)

]2

SR

×
(

1 − 2

15π2

1

c2
s p2∗

(
1 − 1

c2
s

)
ε

)(
cSR − 4

3
ISR(τs)

)
, (14)

[
�2

ζ,One−loop(p)

]
USR

= 1

4

[
�2

ζ,Tree(p)

]2

SR

×
{(

(�η(τe))
2

c̃8
s

IUSR(τe) − (�η(τs))
2

c̃8
s

IUSR(τs)

)
− cUSR

}
. (15)

In the above-mentioned one-loop contributions written for SR and 
USR region, the newly introduced factors ISR(τs), IUSR(τs) and 
IUSR(τe) represents the contributions from the loop integrals in 
the region τ ≤ τs , at the sharp transition scales, τ = τs and τ = τe

respectively. In the above-mentioned result the two factors cSR and 
cUSR represent the regularization scheme dependent parameters 
which one needs to fix during performing the renormalization in 
the present context of the discussion. These factors can be com-
puted in the late time scale, τ → 0 in the presence of UV and IR 
regulators of the underlying theory as:

ISR(τs) := lim
τ→0

ks∫
p∗

dk

k

(
1 + k2c2

s τ
2
)

≈ ln

(
ks

p∗

)
, (16)

IUSR(τs)

:= lim
τ→0

ke∫
ks

dk

k

∣∣∣∣αk (1 + ikcsτ ) e−ikcsτ − βk (1 − ikcsτ ) eikcsτ

∣∣∣∣
2

≈ ln

(
ke

ks

)
, (17)

IUSR(τe)

:=
(

ke

ks

)6

lim
τ→0

ke∫
ks

dk

k

∣∣∣∣αk (1 + ikcsτ ) e−ikcsτ

− βk (1 − ikcsτ ) eikcsτ

∣∣∣∣
2

≈
(

ke

ks

)6

IUSR(τs). (18)

In the above-mentioned loop integrals, the upper limit corresponds 
to the UV cut-off and the lower one represents the IR cut-off of 
the underlying EFT setup in the corresponding SR and USR regime 
and the derived results represent the cut-off regularized contribu-
tions. Further, it is important to note that due to the late time 
limit, τ → 0, one can clearly observe that the above-mentioned 
results are completely free from quadratic UV divergences and can 
be expressed only in terms of the IR divergent logarithmic depen-
dent factors in the final results. In the language of Quantum Field 
5

Theory of de Sitter space, such a limit actually serves the purpose 
of renormalization through which one can easily get rid of the 
quadratic divergences. These results can be rigorously obtained by 
applying an equivalent approach, known as wave function renor-
malization or adiabatic renormalization scheme which we have 
recently discussed in ref. [12].

However, apart from the complete removal of the quadratic 
UV divergence contribution in the final result, IR logarithmic di-
vergences appear which we need to soften by implementing the 
power spectrum renormalization method. In this paper, we have 
performed our analysis in a completely model-independent fash-
ion in the language of EFT, see also refs. [13] where we did the 
rigorous analysis with a sharp transition from SR to USR region 
for canonical and P (X, φ) single field slow-roll models of inflation. 
Additionally, it is important to note that during performing the 
one-loop momentum integrals we have introduced constant fac-
tors, cSR and cUSR , which are represent the renormalization scheme 
dependent parameters for the SR and USR regions respectively. The 
total contribution to the one-loop corrected power spectrum for 
the scalar perturbation can be further written in a renormalization 
scheme independent fashion as:

�2
ζ,EFT(p) =

[
�2

ζ,Tree(p)

]
SR

{
1 + U + V

}
, (19)

where U and V are defined as:

U = −4

3

[
�2

ζ,Tree(p)

]
SR

×
(

1 − 2

15π2

1

c2
s p2∗

(
1 − 1

c2
s

)
ε

)
ln

(
ks

p∗

)
, (20)

V = 1

4

[
�2

ζ,Tree(p)

]
SR

×
(

(�η(τe))
2

c̃8
s

(
ke

ks

)6

− (�η(τs))
2

c̃8
s

)
ln

(
ke

ks

)
. (21)

The wave numbers ke (UV cut-off) and ks (IR cut-off) that cor-
respond to the time scales, τe , and τs should also be taken into 
consideration.

Now, in order to soften the impacts of one-loop logarithmic 
divergences from SR as well as the USR region, we additionally de-
fine the renormalized power spectrum for the scalar perturbation 
for the prescribed EFT setup as,

�2
ζ,EFT(p) = Zζ,EFT�

2
ζ,EFT(p), (22)

where the explicit renormalization condition determines the renor-
malization factor, often known as the counter-term, which is repre-
sented by the equation Zζ,EFT . In the current framework, the pivot 
scale p∗, which is supplied by the formula, is fixed as the equiva-
lent renormalization condition,

�2
ζ,EFT(p∗) =

[
�2

ζ,Tree(p∗)
]

SR
, (23)

using which the counter term, Zζ,EFT can be computed as,

Zζ,EFT ≈ (1 − U∗ − V∗) . (24)

Then using this counter term the corresponding one-loop corrected 
renormalized power spectrum for the scalar modes can be ex-
pressed as:

�2
ζ,EFT(p) =

[
�2

ζ,Tree(p)

] {
1 +QEFT

}
, (25)
SR
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where we define QEFT as:

QEFT = −

[
�2

ζ,Tree(p)

]
SR[

�2
ζ,Tree(p∗)

]
SR

{
U 2∗ + V 2∗ + · · ·

}
. (26)

Before we go into the technical parts of the calculation, let us state 
unequivocally that the current calculation is not dependent on the 
explicit mathematical structure of the contributions from one-loop 
correction. To conduct the resummation and finally deliver a finite 
output, the perturbative approximations are maintained through-
out. We provide the results in a way that demonstrates how well 
this strategy works within the present framework.

We finally briefly describe the Dynamical Renormalization 
Group (DRG) approach [12,30–38], which enables us to resume
over all of the contributions that are logarithmically divergent. 
Technically speaking, this is feasible as long as the related re-
summation infinite series is strictly convergent at late time scales. 
Actually, every term in this series is a direct outcome of the per-
turbative expansion in every feasible loop order. In summary, DRG 
is seen as the natural technique via which the validity of secular 
time-dependent contributions will be justified in the cosmological 
perturbative expansion. Using this technique one can absorb the 
secular contributions to the running coupling parameters of the 
theory, which is further referred to as the Renormalization Group 
resummation method in the present context of discussion. Within 
the framework of Cosmology, such running coupling parameters 
can be easily identified with the spectral tilt, running, and running 
of the running of the spectral tilt of the scalar power spectrum, 
which in the language of Quantum Field Theory are physically in-
terpreted as the Beta functions. This has a deeper connection with 
the previously discussed renormalization procedure discussed in 
this paper. One has to renormalize and resume the scalar power 
spectrum in such a fashion that at the CMB pivot scale all of these 
beta functions computed from the SR phase and USR phase give 
the same result. This is very crucial information and in the present 
computation, one can think of this as a matching condition that 
needs to be maintained throughout the computation. One can 
easily verify the viability of this statement from Eq. (23), which 
further helps us fix the structure of the counterterm for the power 
spectrum renormalization, hence the DRG resumed result of the 
power spectrum.

Using the DRG method, the final form of the resummed dimen-
sionless power spectrum can be expressed as follows:

�2
ζ,EFT(p) =

[
�2

ζ,Tree(p)

]
SR

exp

(
QEFT

)

×
{

1 +
[
�2

ζ,Tree(p∗)
]

SR

}
. (27)

Here, |QEFT| � 1, the rigorous convergence criteria for the DRG re-
summed infinite series as seen in the elucidation, is met. In the 
above-mentioned result, the first term in the parenthesis bracket 
corresponds to the leading order result which appears as a direct 
outcome of the DRG exponentiation. On the other hand, the second 
term mimics the role of a correction term which in the language 
of perturbation theory can be translated as the sub-leading contri-
bution activated only at the pivot scale of the computation. Thus, 
when all the possible terms from the previously mentioned sec-
ular components are combined together, it really finally depicts 
the behaviour on a large scale, which from the perspective of cos-
mological perturbation theory is extremely important information. 
We found that after DRG resummation the overall signature in 
front of the factor QEFT is negative which appears in the expo-
nent, which further implies a sharp fall of the spectrum at the end 
6

of USR phase and at the end of inflation. This is a unique finding 
of this present work which is directly reflected in the behaviour 
of the spectrum and from this obtained result it is obvious that 
the resumed spectrum severely constrains the appearance of PBH 
formation scale (which coincides with the sharp transition scale) 
and hence constraint the generated PBH mass to be small. Proper 
estimations are provided in the later half of this paper (see refs. 
[12,13] where we have performed the DRG resummation in the 
context of canonical and P (X, φ) models of single-field inflation.)

Our result is depicted in Fig. 1(a)-1(c), we have shown the be-
haviour of the dimensionless power spectrum for scalar modes 
with respect to the number of e-foldings for the effective sound 
speed cs = 0.6 with M4

2/Ḣ M2
p ∼ −0.89 (non-canonical and causal), 

cs = 1 with M4
2/Ḣ M2

p ∼ 0 (canonical and causal) and cs = 1.17

with M4
2/Ḣ M2

p ∼ 0.13 (non-canonical and a-causal) respectively. 
Here we fix ks = 1021 Mpc−1, ke = 1022 Mpc−1, p∗ = 0.02 Mpc−1, 
cSR = 0, 0 � M4

2/Ḣ M2
p � 0.13 for our analysis. From this plot we 

have found that, �NUSR = ln(ke/ks) ≈ ln(10) ≈ 2, which implies 
around 2 e-folds are allowed in the USR period for the PBH forma-
tion. We discovered that among the canonical (cs = 1, see Fig. 1(b)) 
and a-causal (cs > 1, see Fig. 1(c)) frameworks, cs > 1 is preferred 
because the peak of the spectrum precisely reaches the value 10−2

for cs = 1.17 (see Fig. 1(c)), which is the desired amplitude of the 
spectrum for PBH formation.1

If we further increase the sound speed, cs > 1.17,2 the pertur-
bation would break down during PBH production. The field excur-
sion also suggests that the EFT prescription is valid during the USR 
period when the PBH formation takes place and one can consider 
sub-Planckian EFT of single field inflation for PBH formation.

Since we are working within the framework of EFT, we will no-
tice a few changes due to the involvement of the effective sound 
speed cs in the formula for the mass of PBH. Following the deriva-
tion in ref. [29] for the PBH mass, we arrive at a similar result 
but with the mentioned changes as shown below. We start with 
the fact that due to the EFT framework, we have the modifica-
tion cs(τ )ks,e = (aH)s,e for time τ = τs and τ = τe where we have 
sharp transitions. This means that the horizon crossing condition 
gets modified due to having effective sound speed. Now, as dis-
cussed earlier, the sound speed parameter has the parametriza-
tion, cs(τs) = cs(τe) = c̃s = 1 ± δ where δ � 1. Thus, we observe 
that c̃sks,e = (aH)s,e. Now, for the pivot scale k = p∗ we also have 
cs(τ∗) = cs,∗ = cs , and hence we get cs p∗ = (aH)∗ . With these use-
ful facts in mind, we proceed toward the derivation for the PBH 
mass as follows. The Hubble scale value when concerned with the 
radiation-dominated (RD) era follows the relation:

H2 = ρr

3M2
p

= �0
r H2

0
ρr

ρ0
r

= �0
r h2 ×

(
100km

s Mpc

)2 (
g∗
g0∗

)(
T

T 0

)4

, (28)

where the relation between energy densities and temperature is 
used and the notation “0” denotes the respective quantity eval-
uated at the present time scale. Now, using the conservation of 
entropy and the assumption that the effective number of relative 
degrees of freedom of the energy and entropy densities, evalu-
ated during the Radiation Dominated (RD) era, are almost equal 

1 Bringing in the non-canonical features with cs < 1 worsens the chances for 
PBHs formation.

2 We found that for cs = 3/2 with the coupling M4
2/Ḣ M2

p ∼ 0.28, the amplitude 
of the scalar power spectrum reaches at the maximum value O(1), where the per-
turbation theory strictly break down.
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g∗ ∼ g∗,s , we get the following expression for the Hubble scale in 
the RD era:

H2 = �0
r h2

(
100km

s Mpc

)2 (
g∗
g0∗

)−1/3
(

g0∗,s

g0∗

)4/3

(1 + z)4, (29)

where the redshift factor comes in the present computation due to 
entropy conservation. Now the mass of the PBHs generated due to 
the large fluctuations entering during the RD era depends on the 
respective Horizon mass as follows:

MPBH = γ MH = γ

(
4π M2

p

H

)
, (30)

where γ (∼ 0.2) is the critical collapse factor. From the expression 
for the Hubble scale derived above and the values for the degrees 
of freedom g0∗ = 3.38, g0∗,s = 3.94, and �0

r h2 = 4.18 × 10−5, we get 
the following relation for the mass of PBH:

MPBH

M

= 1.55 × 1024

×
( γ

0.2

)( g∗
106.75

)1/6
(1 + z)−1/2. (31)

Further utilizing the fact that the Hubble scale during inflation 
is almost a constant, we use the known relation (aH)∗ = cs p∗ for 
the wavenumber p∗ which at the time exits the Hubble radius and, 
as a result of this assumption, for the wavenumber which exits at 
the time of the PBH formation we also have the relation (aH)PBH ∼
aPBH H∗ . From this, we get a result for the amount of expansion in 
terms of the number of e-foldings:

�N = ln

(
aPBH

a∗

)
= ln

(
(aH)PBH

(aH)∗

)
= ln

(
c̃skPBH

cs p∗

)
, (32)

where we have used the fact that PBH formation occurs at the 
scale kPBH = ks and also have used the effective sound speed at 
that time τ = τs is c̃s . Using aPBH = 1/(1 + z), the second equality 
in the above equation, when combined with the use of Hubble 
scale at PBH formation from eqn. (28), and the relation between 
redshift and mass from eqn. (31), gives us the relation:

�N = 17.33 + 1

2
ln

( γ

0.2

)

− 1

12
ln

( g∗
106.75

)
− 1

2
ln

(
MPBH

M


)
. (33)

Exponentiation of this above-mentioned expression gives us the 
desired result:(

MPBH

M


)
cs

= 1.13 × 1015

×
( γ

0.2

)( g∗
106.75

)−1/6
(

cs p∗
c̃sks

)2

, (34)

where the final mass is quantified in terms of the formation scale 
kPBH = ks , which coincides with the sharp transition scale in our 
present computation. Here M
 ∼ 2 × 1030kg is the solar mass, 
γ ∼ 0.2 is the efficiency factor and g∗ is the relativistic d.o.f.. Also, 
the pivot scale is fixed at, p∗ = 0.02 Mpc−1. We know that from 
the previously mentioned behaviour of the sound seed, cs �= c̃s and 
both the possibilities c̃s > cs and c̃s < cs can be accommodated. 
Consequently, the above-mentioned formula can be further simpli-
fied as:
7

(
MPBH

M


)
cs

= 1.13 × 1015 ×
(

γ

0.2

)(
g∗

106.75

)−1/6

×
(

p∗
ks

)2

× c2
s (1 ∓ 2δ)

≈
(

MPBH

M


)
cs=1

× c2
s , (35)

where the contribution from the small fine-tuning factor δ is ne-
glected for the sake of simplicity. It is important to note that, for 
the canonical single field cs = 1 case we have [12]:(

MPBH

M


)
cs=1

= 1.13 × 1015

×
(

γ

0.2

)(
g∗

106.75

)−1/6 (
p∗
ks

)2

. (36)

Here the prime motivation is to express the PBH mass for the EFT 
setup in terms of the contribution obtained from the canonical 
single-field (cs = 1) setup. It further helps us to clearly visualize 
that due to having the EFT setup only modification appears in this 
expression in terms of the effective sound speed, and within a 
very small preferred window the contribution is small. However, 
we have explicitly pointed out this contribution to quantify the 
change in the presence of the EFT setup.

For further numerical estimation, we fix γ ∼ 0.2, g∗ ∼ 106.75, 
p∗ = 0.02 Mpc−1, and ks = 1021Mpc−1:(

MPBH

M


)
cs=1

= 4.52 × 10−31, (37)

which finally gives the following result:(
MPBH

M


)
cs

≈ 4.52 × 10−31 × c2
s . (38)

In ref. [39,40], instead of using pivot scale, the authors have 
used the wavenumber at radiation-matter equality keq for the PBH 
mass estimation. Also, this computation was performed for the 
canonical single field slow-roll inflation model where cs = 1. Since 
we are doing the analysis in the presence of EFT, it is expected to 
have a dependence on the sound speed throughout the derivation 
in the subsequent steps, as already discussed above. By following 
the normalization scale of keq as in ref. [39,40], if we repeat the 
analysis as done in the above-mentioned steps, then we can write 
down the final expression as:

MPBH

M

= 3.6

( γ

0.2

)( g∗
106.75

)−1/6
(

c̃skPBH

cs106Mpc−1

)−2

(39)

where the scale dependent effective sound speed c̃s and cs are in-
cluded. Now, writing this expression using the scale keq, and its 
corresponding sound speed denoted as ˜̃cs , we get the following:

MPBH

M

= 3.6

( γ

0.2

)( g∗
106.75

)−1/6

×
(

c̃skPBH

˜̃cskeq

)−2 ( ˜̃cskeq

106Mpc−1

)−2

(40)

substituting the values of the parameters keq = 0.07�0
mh2Mpc−1, 

where h ∼ 0.674 and �0
m ∼ 0.315 gives us the relation:

MPBH

M

= 0.36 × 1015 ×

( γ

0.2

)

×
( g∗

106.75

)−1/6
(

c̃skPBH

˜̃c k

)−2

(41)

s eq
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from this result, we make use of the fact that since the wavenum-
ber at the radiation-matter equality scale is very near to the 
wavenumber at pivot scale, the effective sound speed remains al-
most constant within this short interval and as a result, we can 
assume ˜̃cs � cs in this case. Hence, when we plug in the values 
for γ ∼ 0.2, g∗ = 106.75, and kPBH = ks ∼ 1021Mpc−1 and use the 
value for c̃s = 1 + δ, such that δ � 1, we arrive at the following 
result for the expression for PBH mass:(

MPBH

M


)
cs

≈ 10−31 × c2
s . (42)

From the above results, we make an assertion about the al-
lowed PBH mass produced from the framework of EFT of single-
field inflation, by working out a calculation of the fractional abun-
dance of the PBH produced when the contribution from the one-
loop corrected power spectrum is taken into account. This requires 
knowing about the mass fraction of the PBHs at formation which 
is given as:

fPBH = 1.68 × 108 ×
( γ

0.2

)1/2

×
( g∗

106.75

)−1/4
(

MPBH

M


)−1/2

β(MPBH). (43)

Now, due to the requirement of an over-dense region to allow 
for the formation of PBH as the large density perturbations enter 
the Horizon at a certain scale after inflation, if the density con-
trast increases to a certain threshold value δth > δc = 1/3, then the 
probability of that event calculated using the Press-Schechter for-
malism gives:

β(MPBH) ≈ γ

(
σMPBH√
2πδth

)
exp

(
− δ2

th

2σ 2
MPBH

)
. (44)

Here the quantity δth is coarse-grained over the scale of PBH 
formation R = 1/(c̃skPBH) = 1/(aH)PBH. Also σMPBH represents the 
variance of the coarse-grained density fluctuations at the mass 
scale MPBH. The appearance of the effective sound speed parame-
ter is an outcome of present EFT framework, where cs = 1 reduces 
to the canonical single-field inflation [29,39,40].

The smoothening of these density fluctuations over the scale R
is done through the use of a Gaussian window function W (p, R) =
exp (−p2 R2/2), and the corresponding variance is computed as:

σ 2
MPBH

=
∞∫

0

d ln p �2
δ (p)W 2(p, R), (45)

where the power spectrum of the density contrast can be ex-
pressed in the RD era as:

�2
δ (p) = 16

81

(
p

c̃skPBH

)4

�2
ζ,EFT(p). (46)

While calculating the PBH abundance produced from the 
present EFT framework, we must consider the value for the density 
contrast threshold within the interval 2/5 ≤ δth ≤ 2/3, see [41], 
since this is the regime were linearities in the density contrast 
dominate. Recently, there have been important discussions regard-
ing the case of non-linear features in the density contrast and its 
effects on the final threshold range, see refs. [42,43] for details. For 
the values lying in the regions 1/3 < δth < 2/5 and 2/3 < δth < 1, 
8

Fig. 2. Behaviour of the abundance of PBHs when plotted against their mass. The 
effective sound speed is taken to be as cs = 1 and 1.17. The gray shaded region sug-
gests the allowed mass region of the PBH produced for the corresponding density 
contrast threshold where the abundance falls in between 0.001 ≤ f ≤ 0.5. Based on 
the constraint for the threshold of collapse necessary to neglect the non-linearities 
in the density contrast, the interval 2/5 ≤ δth ≤ 2/3 is considered and the range of 
PBH mass, for both the cases of cs values, lies in between 102gm < MPBH � 103gm.

the non-linearities in the density contrast come into play and in-
volves the study of non-Gaussian features3 which is beyond the 
scope of our present analysis. To this end, having the density 

3 The underlying connecting relationship between the density contrast and the 
comoving curvature perturbation in the coordinate space is given by the following 
expression [44]:

δ(x, t) = − 4

9

1

a2 H2
exp (−2ζ(x))

(
∇2ζ(x) + 1

2
∂iζ(x)∂ iζ(x)

)
, (47)

where from this expression, the leading order term in the quantity ζ(x) results in 
the expression:

δ(x, t) = − 4

9a2 H2
∇2ζ(x). (48)

This expression when transformed into the Fourier space results in the exact re-
lation between the power spectrum for the density contrast and the curvature 
perturbation in eqn. (46) within the EFT framework. The same sort of linear ap-
proximation is also taken initially when writing the scalar fluctuation component in 
the metric.
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contrast profile obey Gaussian statistics and with the Gaussian 
window function chosen as before, it is sufficient to smoothen the 
density contrast which helps us to calculate the PBH abundance 
factor. Ultimately, an intrinsic non-linear relation exists between 
the density contrast and the curvature perturbation, which when 
considered is able to provide a more robust understanding of the 
PBH production related issues. The following refs. [45,46], have 
their discussions centred around this non-linear relation being 
present, where the authors find that it is much more challenging 
to generate PBHs by relying on perturbation theory and require 
the use of different methods, like peak theory and other methods 
of statistics for the non-Gaussian threshold, to deal with these in-
trinsic non-Gaussian features and the resulting probability of PBH 
formation.

We now present the outcomes of the study in terms of the 
abundance plots when the effective sound speed is cs = 1 and 
cs = 1.17 and from the representative plots we determine the al-
lowed range of the resulting PBH mass. We find the allowed range 
of PBHs masses, namely, 102gm � MPBH � 103gm corresponding to 
2/5 ≤ δth < 2/3.

From the figures (2(a)-2(b)), we infer that there exists a range 
of masses of PBH generated within the framework of EFT of single-
field inflation which accounts for a significant contribution to the 
dark matter density when measured today. This analysis is carried 
out based on the numerically allowed region for the density con-
trast, δth, where the non-linearities present in this quantity can 
be ignored within the constraint 2/5 � δth � 2/3. The mass val-
ues are highly sensitive to its particular threshold value as seen 
in the plots above from their shaded regions in each of the plots 
drawn for effective sound speeds cs = 1 and cs = 1.17 respectively. 
The analysed set of values for the threshold also has a clear ad-
vantage to maintain the perturbativity approximation in our com-
putation. For values closer to the upper bound δth ∼ 2/3, we found 
it leads to the generation of PBHs with MPBH ∼ 102gm while for 
the values near the threshold lower bound δth ∼ 2/5 gives us 
PBH with MPBH ∼ 103gm. It is challenging to produce PBH with 
MPBH � 102gm as it requires us to increase the threshold value 
beyond the mentioned upper bound, which brings in the non-
linearities into the picture and even to consider the region δth > 1
which directly corresponds to the breakdown of perturbation the-
ory and strictly not allowed in the present computation. Also, we 
observe that for the range of PBH masses shown in the plot the al-
lowed band of values, for a specific threshold of density contrast, is 
very small when considering a significant abundance region which 
implies that there exists a limited range of PBH masses that can 
contribute to the dark matter density where the smaller mass PBHs 
are produced above a higher threshold value.

The non-Gaussianities in the density contrast are critical for 
the better understanding of the PBH production scenario and ul-
timately provide more realistic values for the PBH abundance from 
theory. We have recently made some progress in this direction, see 
refs. [14,15], after studying the non-Gaussianities in Galileon the-
ory through the use of the in-in formalism. We have found that 
the large non-Gaussianities can be generated in a controlled fash-
ion and within this theory, it is further possible to evade the no-go 
theorem. The problem regarding the non-Gaussian features in the 
density contrast can also be tackled through more rigorous analy-
sis [45,46]; we defer these investigations to our future work.

In conclusion, we have found that within the framework of EFT 
of single field inflation, the allowed span for PBH formation in 
terms of the number of e-foldings is approximately 2, the esti-
mated PBH mass is extremely small and lies within the interval 
102gm � MPBH � 103gm for the threshold value within the in-
terval 2/5 ≤ δth ≤ 2/3 which leads to the PBH abundance in the 
physically significant region of 0.001 � f � 0.5. In this computa-
tion, the allowed window for the effective sound speed is given by, 
9

1 < cs < 1.17, for the gravitational coupling, 0 � M4
2/Ḣ M2

p � 0.13. 
Additionally, we have seen from our analysis that both canonical 
and a-causal frameworks, (cs ≥ 1) are allowed, out of which the a-
causal one is most favoured due to having maximum enhancement 
of the PBH power spectrum. We should note that our findings are 
strictly valid for the sharp transition from SR to USR. In this case, 
the possibility of generating large masses of PBHs in models of 
single-field inflation (canonical and non-canonical) is ruled out.
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