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Abstract

In this paper, we investigate nonlinearly charged AdS black holes in four-dimensional critical gravity and 
study more exact black hole thermodynamics under the effect of small statistical fluctuations. We compute 
the correction to the thermodynamics of nonlinearly charged AdS black hole up to the leading order. We 
discuss the stability of black holes under the circumstances of fluctuation and find that fluctuation causes 
instability in the black holes. Moreover, both the isothermal and adiabatic compressibilities are also derived. 
Finally, we estimate the role of small fluctuations on the equation of states and study the P − v diagram of 
nonlinearly charged AdS black hole.
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1. Overview and motivation

The history of black hole thermodynamics is quite long. In 1972, Bekenstein conjectured that 
black holes possess an entropy [1]. Later, in 1973, a relationship between black hole entropy and 
horizon area is established by Bekenstein [2]. There it was found that the black hole entropy is 
proportional to the area of the event horizon. In 1973, Bardeen, Carter, and Hawking proposed the 
four-laws of black hole mechanics [3] following the analogy with the four-laws of thermodynam-
ics. In 1974, Hawking [4,5] proposed that black holes emit thermal radiation and the temperature 
of the radiation is inversely proportional to black hole mass. Hawking and Page found a black 
hole solution in asymptotically AdS space [6] which possesses the thermodynamics properties 
like entropy, temperature, etc.

Black hole physics has been a fascinating subject of study for several decades and their 
thermodynamics has been an active area of research. Jacob Bekenstein proposed the so-called 
“entropy-area” law, which suggested that the entropy of a black hole is proportional to the area 
of its event horizon. Subsequent research in the 1990s and 2000s focused on understanding the 
quantum corrections to black hole entropy that arise due to thermal fluctuations and other quan-
tum effects. The Cardy formula [7,8], introduced by John Cardy in 1986, stands out as one of 
the most significant breakthroughs in this domain. The Cardy formula provides a powerful tool 
for studying the connection between black hole thermodynamics and conformal field theory and 
has been used extensively to study black hole entropy. Another important development was the 
discovery of the AdS/CFT correspondence in 1997 by Maldacena. This correspondence provides 
a way to understand the behavior of quantum systems in curved space-time, such as that near a 
black hole, in terms of a dual quantum field theory living on the boundary of space-time. This 
has led to important insights into the nature of black hole entropy and the holographic principle, 
which suggests that the properties of a system can be understood in terms of its boundary degrees 
of freedom. Other interesting black hole solutions are also studied [9–12].

In 2002, Das computed [13] logarithmic corrections to the entropy. In recent years, there has 
been growing interest in studying the logarithmic corrections to the entropy of black holes due to 
small statistical fluctuations around black hole equilibrium. Assuming that a black hole behaves 
as a thermodynamic system and this system should follow the equilibrium with thermal radiation. 
However, the logarithmic corrections to thermodynamic entropy arise for all thermodynamic 
systems when small statistical fluctuations around equilibrium are taken into account [13]. A 
nontrivial multiplicative factor to the expression for the density of states arises due to the small 
statistical fluctuations and the logarithm of these multiplicative factors leads to the corrections 
to the entropy. Thus, Bekenstein-Hawking entropy can be modified by logarithmic corrections 
that result from thermal fluctuations of the black hole around its state of equilibrium. These 
logarithm corrections to the entropy of the black hole are universal and apply to all kinds of 
black hole spacetime irrespective of whether they arise in Einstein’s gravity or any higher-order 
theories of gravity. The inclusion of logarithmic corrections to the Bekenstein-Hawking entropy 
can be understood as the thermal fluctuations experienced by the black hole as it deviates from 
its stable state.

Recent studies have demonstrated that thermal fluctuations play a crucial role in understanding 
the behavior of charged anti-de Sitter black holes [14], leading to corrections in their thermo-
dynamic properties. In fact, a thorough analysis of black holes has revealed that the quantum 
approach to their thermodynamics at small scales is essential, resulting in a variety of corrections 
to thermodynamic quantities. Investigations into the effects of such corrections have been con-
ducted for a range of black holes, including the Godel black hole [15], quasitopological black 
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holes [16] and the Schwarzschild–Beltrami–de Sitter black hole [17], charged rotating black 
holes in AdS space [18], Horava-Lifshitz black holes [19,20], charged black holes in gravity 
rainbow [21], black holes in f (R) gravity [22], rotating and charged BTZ black hole [23] and 
Schwarzschild black hole immersed in holographic quintessence [24] etc. The pioneering re-
search of Frolov [25] has provided significant insights into the quantum corrections to black hole 
thermodynamics. The logarithmic corrections to the entropy of black holes have important con-
sequences. One of the most significant is that they violate the area law of black hole entropy. 
The area law states that the entropy of a black hole is proportional to the area of its event hori-
zon. However, the logarithmic corrections introduce additional terms in the entropy that are not 
proportional to the area of the event horizon.

The theory of nonlinear electrodynamics was first proposed [26–30] by Born and Infeld to 
remove the singularity of electromagnetic fields due to point particle. After Born-Infeld electro-
dynamics, a new model of nonlinear electrodynamics was proposed by Plebanski using antisym-
metric conjugate tensor P μν (known as Plebanski tensor) and a structure-function H = H(P, Q), 
where P and Q are the invariants formed with the antisymmetric conjugate Plebanski tensor. The 
structure-function H(P, Q) is related to the Lagrangian L(F, G) by the relation

H(P,Q) = 2FLF (F,G) −L, (1)

and the Lagrangian is dependent on the invariant formed with the Maxwell tensor Fμν . Plebanski 
nonlinear electrodynamics has been used to study nonlinear optics and condensed matter physics. 
Plebanski theory has been studied extensively in the context of gravitational theories and regular 
nonrotating black hole solution has been obtained [31–35]. Very recently, a charged rotating 
black hole solution using Plebanski the theory is also obtained in Refs. [36–38]. Using Plebanski 
nonlinear electrodynamics formalism is an interesting model of nonlinearly charged AdS black 
hole was obtained in 4D critical gravity [39] and its logarithmic corrections to thermodynamics 
are not studied. This provides us with an opportunity to fill this gap.

This work considers an AdS black hole in four-dimensional critical gravity coupled with non-
linear electrodynamics and discusses their thermal properties. Furthermore, we study the effects 
of thermal fluctuations on the thermodynamics of this black hole. In this regard, we compute first-
order correction to the entropy of nonlinearly charged AdS black holes. Next, we plot the entropy 
as a function of horizon radius for both cases with and without considering thermal fluctuations. 
Here, we find that the thermal fluctuations affect the entropy of small black holes significantly 
and for large black holes their impacts are negligible. Moreover, we compute the corrected mass 
(enthalpy) of the system using the Hawking temperature and corrected entropy. The pressure can 
be expressed in terms of the cosmological constant. So, the conjugate (corrected) thermodynamic 
volume of a black hole is calculated using the expression of corrected mass. This can be done 
based on the fact that the system must satisfy the first-law of thermodynamics. Once we have 
expressions of the corrected mass, volume, and entropy, it is a matter of calculation to compute 
corrected Helmholtz and Gibbs free energy. Here, we find that the Helmholtz free energy de-
creases with horizon radius and the thermal fluctuations do not change the nature of Helmholtz 
free energy. Thermal fluctuation decreases the Helmholtz free energy a bit. In the case of Gibbs 
free energy, we find that for large black holes, Gibbs free energy takes a negative value. Also, we 
notice that the effects of thermal fluctuation are significant for small black holes.

The stability of this black hole system is also studied. For this, we calculate the specific heat. 
The positive value of specific heat suggests that the black hole is the stable state for the system 
in equilibrium. However, due to small statistical fluctuation, the system undergoes to an unstable 
state for the small black holes. The thermal fluctuations do not affect the stability of large black 
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holes. Next, we compute the effects of thermal fluctuations on specific heat. The effects of ther-
mal fluctuations on isothermal compressibility are also computed. A phase transition occurs for 
the corrected isothermal compressibility from a positive to a negative value at a critical horizon 
radius. We also compute the speed of sound for this black hole whose value ranges from zero to 
one. Finally, we consider the system as a Van der Waals fluid and it is observed that the pressure 
is discontinuous with respect to a specific volume of the black hole.

The main aim of this paper is to study correction on various thermodynamics parameters of 
nonlinearly charged AdS black holes in 4D critical gravity when small statistical fluctuations 
around its equilibrium are taken into account. In section 2, we study the black hole solution in 
critical gravity coupled with nonlinear electrodynamics. Within this section, we study uncor-
rected electric charge, electric potential, Hawking temperature, Wald entropy, the mass of the 
black hole, the thermodynamic volume of the black hole, free energy, and specific heat. In sec-
tion 3, we compute the effects of thermal fluctuations on various thermodynamic parameters. In 
section 4, we study the charged AdS black hole in nonlinear electrodynamics as a Van der Waals 
fluid. Finally, in section 5, we summarize our results.

2. The metric and thermodynamics

In this section, we recapitulate some of the known facts about nonlinear electrodynamics in 
critical gravity. Let us begin by writing an action describing the theory of critical gravity coupled 
with nonlinear electrodynamics [39]

S[gμν,Aμ,P μν] =
∫

d4x
√−g[LCG +LNLE], (2)

where LCG and LNLE are the Lagrangian of the critical gravity and nonlinear electrodynamics, 
respectively. Here, LCG has the following form:

LCG = 1

2κ

(
R − 2� + β1R

2 + β2RμνR
μν

)
, (3)

where κ is the surface gravity, R and Rμν are the Ricci scalar and Ricci tensor, � is the cos-
mological constant, β1 and β2 are the coupling constants. Critical gravity allows for the massive 
spin-zero fields to vanish if the coupling constants β1 and β2 are restricted to obey the relations 
[39]

β2 = −2β1,

β1 = − 1

2�
.

(4)

The expression for the Lagrangian describing the nonlinear electrodynamics is given by

LNLE = −1

2
P μνFμν +H(P,Q), (5)

where P μν is conjugate antisymmetric tensor known as Plebanski tensor and structure-function 
H(P, Q), where P and Q are the invariants formed with the antisymmetric conjugate Ple-
banski tensor. The field strength tensor Fμν is defined in terms of vector field Aμ as: Fμν =
∂μAν − ∂νAμ. H(P ) is a structure-function depending on the invariant formed with the conju-
gated antisymmetric tensor.
4
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Variation of the action (2) gives the following field equations:

Gμν + �gμν + χCG
μν = κT NLE

μν ,

∇μP μν = 0,
(6)

where

χCG
μν = 2β2

(
RμρRρ

ν − 1

4
Rρσ Rρσ gμν

)
+2β1R

(
Rμν − 1

4
Rgμν

)
+β2

(�Rμν

+ 1

2
�gμν − 2∇ρ∇(μR

ρ

ν)

)
+2β1

(
gμν�R − ∇μ∇νR

)
, (7)

T NLE
μν = HpPμλP

λ
ν − gμν

(
2PHp −H

)
, (8)

where β1 and β2 are given in equation (4) and HP = ∂H
∂P

. The asymptotically AdS black hole 
metric is given by [39]

ds2 = − r2

l2 f (r)dt2 + l2

r2

dr2

f (r)
+ r2

l2 d�2
2, (9)

where cosmological constant � = − 3
l2

, with the asymptotic condition

lim
r→∞f (r) = 1. (10)

The nonlinear source is described by the structure-function H is real. Here we choose the 
structure-function depends only P , because we are interested in static configurations and H =
H(P ) [39]

H(P ) = (α2
2 − 3α1α3)l

2P

3κ
− 2α2(−2P)

1
4

lκ
+ α2

√−2P

κ
, (11)

where α1, α2, and α3 are coupling constant. From second equation of (6) one can obtain

P = −M2

2r4 , (12)

where M is an integration constant. Therefore, the structure-function H in equation (11) is real. 
Finally, using field equation (6) one can obtain the function f (r) as

f (r) = 1 − α1
√

M
l

r
+ α2M

l2

r2 − α3M
3
2
l3

r3 . (13)

It is shown in Ref. [39] that the structural coupling constants have a significant role in the char-
acterization of the solutions.

3. Thermodynamics

In this section, we study the thermodynamics of nonlinearly charged AdS black holes in crit-
ical gravity. The metric of such a black hole is given in equation (13). The electric charge of the 
black hole is calculated by [39]

Q = �2r
2
h

2 4 , (14)

ζ l

5
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where rh is the position of the horizon and can be expressed as rh = ζ
√

Ml, where ζ is the roots 
of the polynomial ζ 3 − α1ζ

2 + α2ζ − α3 = 0. The electric potential is

� = rh

κ

(
α2 + α2

1 − 3

2
α1ζ − α1α2

ζ
+ α2

2

3ζ 2

)
. (15)

The Hawking temperature due to surface gravity is calculated by

TH = rh

4πl2

(
3 − 2α1

ζ
+ α2

ζ 2

)
. (16)

The Wald entropy is given by [40,39]

S0 = 2�2π

κ

( rh

l

)2
(

α1

ζ
− 2α2

3ζ 2

)
, (17)

where �2 refers to the finite volume of the compact planar manifold. The mass of the black hole 
in central gravity with nonlinear electrodynamics has the following expression [39]:

M = α1α2�2r
3
h

9κζ 3l4 = 64α1α2�2π
2P 2r3

h

81κζ 3 . (18)

This is equivalent to the enthalpy of the system. It is well known that the cosmological constant 
is responsible for pressure in AdS space, P = −�/8π = 3/8πl2. Now, the mass of the black 
hole in terms of Wald entropy and charge written by

M(S0,Q) =
√

6κS
3/2
0

(
3ζ 2 − 2α1ζ + α2

)
12

√
�2π3/2

√
3α1ζ − 2α2lζ

+ Q3/2l2ζ�

9
√

�2κ
, (19)

where � is given by

� = 6α2 + 6α2
1 − 9α1ζ − 6α1α2

ζ
+ 2α2

2

ζ
. (20)

The conjugate volume of the black hole is [41]

V = ∂M

∂P
= 128α1α2�2π

2Pr3
h

81κζ 3 . (21)

With the above-mentioned thermodynamical quantities, we can compute further properties of the 
black hole such as internal energy (U), Helmholtz free energy (F ), and Gibbs free energy (G). 
The internal energy is calculated as

U = M− PV = −α1α1�2r
3
h

9κζ 3l4 . (22)

Using the standard definition of Helmholtz free energy, we obtain

F = U − TH S0 = −�2r
3
h(27ζ 3α1 − 18ζ 2α2

1 − 18ζ 2α2 + 23α1α2ζ − 6α2
2)

18ζ 4κl4 . (23)

Now, it is a matter of calculation to obtain the expression of the Gibbs free energy G = M −
TH S0 − �Q. This reads
6
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Fig. 1. �1 denoted by red line, �2 denoted by blue line and � denoted by black line with ζ = 1.

G = − 3�2r
2
h

2κζ 4l4

(
α1(rh − 1)ζ 3 − 2(α2

1 + α2)(rh − 1)ζ 2

3
+ 19(rh − 18

19 )α1α2ζ

27

− 2α2
2(rh + 1)

9

)
. (24)

The specific heat of a black hole plays an important role in the stability of the system. Now, we 
calculate the specific heat at constant electric potential as

C� = TH

(
∂S0

∂T

)
�

, (25)

C� = 4�2πr2
h(3α1ζ − 2α2)

3κζ 2l2 . (26)

The temperature and specific heat will be positive if and only if

�1 = (3ζ 2 − 2α1ζ + α2) ≥ 0

�2 = (3α1ζ − 2α2) ≥ 0. (27)

If TH , � ≥ 0, then above equation and � = α1α2
ζ

− �1�2
ζ 2 ≥ 0, hold, where � is defined in equa-

tion (20).
The possible solutions for α1 and α2 are shown in Fig. 1. The region bounded by the red and 

blue curve in the first octant is the possible solution, except the region bounded by the black 
curve.

4. Thermodynamics with first-order correction

In this section, we study the effect of thermal fluctuations on various thermodynamic pa-
rameters of black holes up to the first order. To the first order, correction to entropy was first 
7
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studied in Ref. [13], which is logarithmic in nature. The logarithmic corrections to thermody-
namic entropy arise when small stable fluctuations around equilibrium are taken into account. 
The logarithmic correction to the entropy of BTZ black hole, Schwarzschild AdS black hole & 
Reissner-Nordstrom black hole studied in Refs. [13,23]. The partition function of a thermody-
namics system is

Z(β) =
∞∫

0

ρ(E)e−βEdE, (28)

where β = 1/TH . The density of states for fixed energy can be obtained from the above equation 
using inverse Laplace transformation

ρ = 1

2πi

c+i∞∫
c−i∞

eS(β)dβ. (29)

The above complex integral can be computed using the steepest descent method at saddle point 
β0, and we obtain

S(β) = S0 + 1

2
(β − β0)

2
(

∂2S0

∂β2

)
β0

+· · · , (30)

where S(β) and S0 is the exact entropy and zeroth order entropy. Substituting equation (30) into 
equation (29) we have

ρ = eS0

2πi

c+i∞∫
c−i∞

e
1
2 (β−β0)

2(
∂2S0
∂β2 )β0 dβ. (31)

Finally, the above integral gives [13]

ρ(E) = eS0

√
2πS ′′(β0)

. (32)

Therefore, the exact entropy due to thermal fluctuation is

S = lnρ = S0 − 1

2
ln

(
∂2S0

∂β2

)
. (33)

From [13] one can write the above entropy as

S = S0 − 1

2
ln (S0T

2
H ). (34)

Therefore, entropy received correction due to thermal fluctuations. Now, to identify the effect of 
this correction term on other thermodynamical quantities, we label the 1/2 factor in the R.H.S. 
of equation (34) by γ . Finally, the corrected entropy becomes

S = S0 − γ ln (S0T
2
H ), (35)

where γ = 0 refers to uncorrected entropy S0 and γ = 1/2 refers to corrected entropy in equation 
(34). Therefore, the correction coefficient γ can only take two values, i.e. γ = 0 or 0.5 & γ is 
a dimensionless quantity. The correction coefficients γ arise due to the thermal fluctuation in 
the equilibrium thermodynamics of black holes. This thermal nature leads to a prefactor in the 
expression for the density of states of the system, which in turn modifies the entropy of the black 
hole.
8
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Fig. 2. Entropy vs. black hole horizon with ζ = 1, α1 = α2 = 2 and l = 2. Here γ = 0 is denoted by a black line and 
γ = 0.5 is denoted by a blue dash-dot line.

4.1. Corrected entropy

Using the relations (16), (17) and (35), we obtain

S = 2�2πr2
h(α1ζ − 2α2

3 )

ζ 2κl2 − γ ln

[
�2r

4
h(α1ζ − 2α2

3 )(3ζ 2 − 2α1ζ + α2)
2

8πζ 6κl6

]
. (36)

The effects of thermal fluctuation on entropy are depicted in Fig. 2. From the diagram 2, we 
observe that entropy increases with the horizon radius. The thermal fluctuation increases the 
entropy of the black hole significantly for small-sized black holes with horizon radius rh < 0.2. 
Therefore, quantum effects significantly dominate for smaller-sized black holes with rh < 0.2. 
However, for larger black holes with rh > 0.2, the effects of thermal fluctuations on the entropy 
are negligible.

4.2. Corrected mass

Now, we analyze the effect of thermal fluctuation on the total mass (enthalpy) of the black 
holes. The corrected mass can be evaluated with the help of the following definition:

Mc =
∫

TH dS. (37)

Here, we have introduced the corrected entropy in place of equilibrium entropy. Substituting the 
value of Hawking temperature and corrected entropy from equations (16) and (36), respectively, 
into equation (37), we have

Mc = (3ζ 2 − 2α1ζ + α2)rh(3πζr2
h�2α1 − 9γ ζ 2κl2 − 2πr2

h�2α2)

4 4 . (38)

9l ζ πκ

9
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Fig. 3. Mass (enthalpy) Vs. black hole horizon with ζ = 1, α1 = α2 = 2 and l = 2. Here γ = 0 is denoted by a black line 
and γ = 0.5 is denoted by a blue dash-dot line.

Now, to do a comparative analysis, we plot the corrected mass and equilibrium mass with 
respect to the horizon radius in Fig. 3. From Fig. 3, we see that the mass is an increasing function 
of the horizon radius. Interestingly, we find that the thermal fluctuations decrease the mass a bit 
but do not change the behavior of the mass.

4.3. Corrected thermodynamic volume of black hole

In this subsection, we study the corrected thermodynamic volume of the black hole as a func-
tion of pressure and horizon radius. The thermodynamic volume of an asymptotically AdS black 
hole is defined as [41]

V =
(

∂Mc

∂P

)
S0,Q

. (39)

To compute this equation, we first write the corrected mass in terms of pressure. Since pressure 
depends on the cosmological constant. So, the corrected mass (38) can be expressed in terms of 
pressure as follows:

Mc = 64(3ζ 2 − 2α1ζ + α2)rh(3πζr2
h�2α1 − 27γ ζ 2κ

8πP
− 2πr2

h�2α2)πP 2

81ζ 4κ
. (40)

Substituting the value of (40) in Eq. (39), we obtain the corrected thermodynamic volume of 
black hole as

Vc = 8(3ζ 2 − 2α1ζ + α2)rh(48Pπ2ζ r2
h�2α1 − 32Pπ2r2

h�2α2 − 27γ ζ 2κ)

4 . (41)

81ζ κ

10
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Fig. 4. Thermodynamic volume of the black hole Vs. black hole horizon with ζ = 1, α1 = α2 = 2 and l = 2. Here γ = 0
is denoted by the black line, and γ = 0.5 is denoted by the blue dash-dot line.

This further simplifies to

Vc = 8(3ζ 2 − 2α1ζ + α2)rh(6πζr2
h�2α1 − 9γ ζ 2κl2 − 4πr2

h�2α2)

27l2ζ 4κ
. (42)

To study the behavior of thermodynamic volume and their dependency on thermal fluctuations, 
we plot Fig. 4. We find that the thermodynamic volume of the black hole increases with the 
horizon radius. The thermal fluctuation decreases the volume of the black holes which becomes 
significant in larger black holes.

4.4. Corrected Helmholtz free energy

In this subsection, we study the corrected Helmholtz free energy of the AdS black hole due to 
thermal fluctuation. The Helmholtz free energy is defined by

Fc = U − TH S. (43)

By plugging the values from Eqs. (16), (22) and (36), the above expression leads to

Fc = rh(3ζ 2 − 2α1ζ + α2)

[
9γ ln

(
�2r4

h(3α1ζ−2α2)(3ζ 2−2α1ζ+α2)2

24πζ 6κl6

)
ζ 2κl2 − 30πζr2

h�2α1 + 20πr2
h�2α2

]
36l4ζ 4πκ

.

(44)

To study the behavior of Helmholtz free energy and their dependencies on thermal fluctuation, 
we plot Fig. 5. From the figure, it is evident that the Helmholtz free energy decreases with the 
horizon radius. The thermal fluctuation does not change the nature of Helmholtz free energy. 
Thermal fluctuation decreases the Helmholtz free energy a bit.
11
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Fig. 5. Helmholtz free energy Vs. black hole horizon with ζ = 1, α1 = α2 = 2 and l = 2. Here γ = 0 is denoted by a 
black line and γ = 0.5 is denoted by a blue dash-dot line.

4.5. Corrected Gibbs free energy

Another important thermal quantity that plays important role in the discussion of the stability 
of black holes is Gibbs free energy. The Gibbs free energy is defined by

Gc = Mc − TH Sc − �Q. (45)

Substituting the expression of Mc, TH , S, � and Q from equations (38), (16), (36), (15) and 
(14) into above equation, we have

Gc = −

(
−9rhα1ζ

3 + 6rh(α
2
1 + α2)ζ

2 − 6rhα1α2ζ − 2rhα
2
2

)
�2rh

6κζ 4l4

−

(
3ζ 2 − 2α1ζ + α2

)[
2�2πr2

h(α1ζ− 2α2
3 )

ζ 2κl2
− γ ln

(
�2r

4
h(α1ζ− 2α2

3 )(3ζ 2−2α1ζ+α2)
2

8πζ 6κl6

)]
rh

4l2ζ 2π

+

(
3ζ 2 − 2α1ζ + α2

)(
3πζr2

h�2α1 − 9ζ 2γ κl2 − 2πr2
h�2α2

)
rh

9l4ζ 4πκ
. (46)

To do a comparative analysis of corrected Gibbs free energy with its equilibrium value, we 
plot a diagram 6. The effect of the correction terms is significant for small black holes which are 
depicted in Fig. 6 (a). However, the behavior of Gibbs free energy for the large horizon radius 
is denoted in Fig. 6 (b). From the diagram, it is obvious that Gibbs free energy starts from zero 
and takes the maximum positive corrected Gibbs free energy with γ = 0.5 value and then starts 
12
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Fig. 6. Gibbs free energy Vs. black hole horizon with ζ = 1, α1 = α2 = 2 and l = 2. Here γ = 0 is denoted by a black 
line and γ = 0.5 is denoted by a blue dash-dot line.

decreasing towards a negative value. It means that for larger black holes uncorrected Gibbs free 
energy takes a negative value.

4.6. Stability and specific heat

In this subsection, we check the stability of the black hole by estimating the specific heat of 
the black hole. The specific heat of the black hole is defined by(

C�

)
c
= TH

∂S

∂TH

= TH

∂S/∂rh

∂TH /∂rh
. (47)

Using equations (16) and (36) Specific heat takes the following form:

(
C�

)
c
=

[
4�2πrh(α1ζ − 2α2

3 )

ζ 2κl2 − 4γ

rh

]
rh. (48)

The stability of a black hole is determined by the condition C� ≥ 0. Now, we plot the specific heat 
with respect to the horizon radius to see the signature. From Fig. 7, we observe that the black hole 
is stable for γ = 0. However, the thermal fluctuation causes instability to the small (rh < 0.13) 
black holes, i.e. black holes with small horizon radii are thermodynamically locally unstable. A 
transition from negative specific heat to positive one occurs at rh = 0.13 Therefore, black holes 
with horizon radius rh > 0.13 are thermodynamically stable. As the horizon increases thermal 
fluctuation becomes ineffective to the specific heat, both corrected & uncorrected specific heats 
coincide for rh >> 0.13.

4.7. Corrected isothermal compressibility

In this subsection, we study the effects of thermal fluctuation on isothermal compressibility 
and adiabatic compressibility. Let us first define the isothermal compressibility of black hole [42]
13
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Fig. 7. Specific heat Vs. black hole horizon with ζ = 1, α1 = α2 = 2 and l = 2. Here γ = 0 is denoted by a black line 
and γ = 0.5 is denoted by a blue dash-dot line.

βT = − 1

Vc

(
∂V c

∂P

)
T

. (49)

Using equations (41) and (49) isothermal compressibility takes the following form:

βT = − 48π2ζ r2
h�2α1 − 32π2r2

h�2α2

48Pπ2ζ r2
h�2α1 − 32Pπ2r2

h�2α2 − 27γ ζ 2κ
. (50)

Now, we plot the isothermal compressibility of nonlinearly charged AdS black hole in fourth 
dimensions critical gravity in Fig. 8. Here, we find that for γ = 0 (equilibrium) isothermal 
compressibility takes constant negative value. However, for γ = 0.5 = 0 (considering thermal 
fluctuations), a phase transition for the isothermal compressibility occurs which takes a positive 
value for small-sized black holes and a negative value for massive black holes.

The adiabatic compressibility of a black hole is defined as [42]

βS = − 1

Vc

(
∂V c

∂P

)
S

= 0. (51)

Here, we find that the adiabatic compressibility is zero. A speed of sound can be calculated for 
the black hole from the given formula

v−2
S =

(
∂ρ

∂P

)
S

, (52)

where ρ refers to the density of the black hole. This simplifies to

v−2
s = 1152P 2r4

h(α1ζ − 2α2
3 )2π4�2

2 − 1296ζ 2Pr2
h(α1ζ − 2α2

3 )γ π2κ�2 + 729ζ 4γ 2κ2

2304(P r2
h(α1ζ − 2α2

3 )π2�2 − 9γ ζ 2κ
16 )2

,

(53)
14
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Fig. 8. Isothermal compressibility Vs. black hole horizon with ζ = 1, α1 = α2 = 2 and l = 2. Here γ = 0 is denoted by 
the black line and γ = 0.5 is denoted by a blue dash-dot line.

Fig. 9. v−2
s Vs. black hole horizon with ζ = 1, α1 = α2 = 2 and l = 2. Here γ = 0 is denoted by a black line and γ = 0.5

is denoted by a blue dash-dot line.

where value of v2
s ranges from zero to one. From Fig. 9, we find that the thermal fluctuation 

increases the speed of sound for smaller black holes. However, for large black holes (rh >> 1) 
speed is constant and the effects of thermal fluctuation are not significant.
15
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Fig. 10. Pressure Vs. specific volume of black hole with ζ = 1, α1 = α2 = 2, rh = 1 and l = 2. Left panel: rh = 1. Right 
panel: rh = 10 Here γ = 0.5 is denoted by blue dash-dot line.

5. Van der Waals black holes

In this section, we study the behavior of charged AdS black holes in nonlinear electrodynamics 
as a Van der Waals fluid. The Van der Waals equation of state describes real fluids and modifies 
the ideal gas equation of states as(

P + a

v2

)
(v − b) = T , (54)

where v = V
N

is the specific volume of the fluid. In the case of a black hole, N = A/l2
p denotes 

the number of degrees of freedom associated with the black hole horizon. Constant represents 
the interaction between the molecules of a given fluid and constant b represents the nonzero size 
of molecules. The specific volume of black hole [43] is given by

v = 6
Vc

N
. (55)

This simplifies to

v = (3ζ 2 − 2α1ζ + α2)(48π2Pζr2
h�2α1 − 32π2Pr2

h�2α2 − 27γ ζ 2κ)

36rhζ 2π2P�2(α1ζ − 2α2
3 )

. (56)

The above equations yield the pressure as

P = − 3γ ζ 2κ(3ζ 2 − 2α1ζ + α2)

4rh�2π2
{
(v − 4rh)ζ 2 + 8ζ rhα1

3 − 4rhα2
3

}
(α1ζ − 2α2

3 )
. (57)

We plot P − v diagram with rh = 1 and rh = 10 as depicted in Fig. 10. We find that when the 
thermal fluctuations are not taken into account the pressure remains zero, but in the presence of 
thermal fluctuations a phase transition of the pressure of the black hole occurs from a negative 
16
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value to a positive value. In Fig. 10(a) pressure is depicted with rh = 1 when specific volume 
v ≤ 1 pressure takes a negative value, a phase transition occurs when v > 1 and finally pressure 
takes a positive value. A similar kind of behavior is shown in Fig. 10(b) with rh = 10.

The equation (16) leads to the pressure as

P = 3T ξ2

2rh(3ζ 2 − 2α1ζ + α2)
. (58)

Comparing equations (54) and (58) we can conclude that a = 0. Black hole mimicking the ideal 
gas behavior.

6. Conclusions

In this paper, we have studied the effects of small statistical fluctuation on the equilibrium 
thermodynamics of nonlinearly charged AdS black holes in four-dimensional critical gravity. To 
do so, we computed the Hawking temperature for the black holes. The entropy of the black hole 
has an additional term at first order due to the thermal fluctuations. With the help of Hawking 
temperature and corrected entropy, we have computed the more exact Helmholtz free energy of 
the black hole. The corrected Helmholtz free energy of the black hole takes a negative value. 
The equilibrium Gibbs free energy of the black hole is positive for small-sized black holes and 
for larger black holes, in contrast, it takes negative values. The corrected Gibbs free energy of 
the black hole is positive. We have found that the black hole is stable in absence of thermal 
fluctuations. However, in presence of thermal fluctuations, the small-sized black hole becomes 
unstable and the large-sized black hole remains stable. Incidentally, the internal energy has not 
found any correction at the leading order.

On the other hand, we have also computed the corrected isothermal compressibility for the 
black hole. The equilibrium isothermal compressibility has found a constant negative value. 
However, when thermal fluctuations are taken into account, the isothermal compressibility takes 
a positive value for small-sized black holes and a negative for large black holes. Finally, we 
have studied the P − v diagram of a black hole and found that the thermodynamic pressure van-
ishes for the system in equilibrium. However, the thermodynamic pressure is negative/positive 
for small/large-sized (with respect to specific volume) black holes with non-vanishing correction 
parameters.
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