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Abstract: We discuss the shadow cast by the charged Reissner-Nordström (RN) AdS

black hole. With the help of Killing equation and Hamilton-Jacobi equation, we calculate

the geodesic equations for null particle. With the help of geodesics of null particle, we then

determine the celestial coordinates (α, β) and the shadow radius of the RN AdS black

hole. We present a graphical analysis of the black hole shadow and find that shadow is

a perfectly dark circle. The impacts of charge and cosmological constant of the RN AdS

black hole on the radius of shadow are also presented. In this connection, radius of the

shadow is a decreasing function of the charge. Furthermore, we study the effects of plasma

medium on the RN AdS black hole shadow. Here, we find that radius of circular shadow

increases with increasing plasma parameter. In addition, we also discuss the energy

emission rate of RN AdS black hole. The effects of parameters like charge, cosmological

constant and plasma parameter on energy emission rate are analyzed graphically.

Keywords: Black hole shadow; RN AdS5 black hole; Plasma medium; Energy emission

rate.

1Visiting Associate, IUCAA Pune, Maharashtra-411007

http://arxiv.org/abs/2207.10085v2
mailto:surajitmandalju@gmail.com
mailto:sudhakerupadhyay@gmail.com
mailto:sudhaker@associates.iucaa.in
mailto:ymyrzakulov@gmail.com
mailto:gyergaliyeva1171@gmail.com


Contents

1 Introduction 1

2 5D RN AdS black hole 3

3 Horizons 4

4 Particle motion for non-plasma medium 4

5 Constructing the black hole shadow 7

6 Effect of parameters on shadow radius in non-plasma medium 10

7 Shadow cast in the presence of plasma medium 10

8 Geodesics and the black hole shadow for the plasma medium 11

9 Effect of parameters on shadow radius in plasma medium 15

10 Energy emission rate 17

11 Conclusion 17

1 Introduction

The study of black hole is an interesting topic of physics since the discovery of Einstein’s

theory of general relativity. Nowadays, it is sharply presumed that there exist black holes

at the center of most of the galaxies, for example, it is mostly accepted that supermassive

black hole Sagittarius A⋆ or Sgr A⋆ is present in the galactic center of Milky Way [1,

2] and recently the shadow of this supermassive black hole has been noticed by event

horizon telescope (EHT) group [3]. Any objects moving near the black hole has a intense

gravitational attraction and, within a critical radius, must falls into the black hole. This

is happen due to strong gravitational lensing.

If an illuminated source of photon is present just behind the black hole, then photon

particles can move in the vicinity of black holes and can make a shadow at a plane which

might be visible by a distant viewer. The shadow of the black hole was first studied by
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Bardeen [4]. It has been found that the spherically symmetric static (Schwarzschild) black

holes can cast a shadow of circular shape [5, 6], whereas the rotating (spinning) black holes

cast deformed shadows from circular shape [7–12]. Nowadays, the study of shadow cast of

black hole has becomes an active area of research and received a momentous attention [13].

The shadow of Schwarzschild black hole has been studied in [14, 15]. The rotating black

hole shadow along with gravitomagnetic and electric charge can be found in [16]. The

gravitational lensing together with optical phenomena for the Janis-Newman-Winicour

[17], the Kerr-Newman and the Kerr-Newman-AdS spacetimes have been studied in Ref.

[18]. Peoples have investigated the shadow of other black holes, such as regular black

holes [19–21], Kerr black holes [4], Kerr-Newman black holes [22] and multi-black holes

[23]. Shadow of black holes in a modified gravity due to extended Chern-Simons and

Einstein-Maxwell dilaton gravity can be found in [24]. However, the shadow in Randall-

Sundrum braneworld case is studied in [25]. Recently, Övgün et al. studied the black

hole shadow of noncommutative black holes in Rastall gravity [46]. Testing of generalized

Einstein-Cartan-Kibble-Sciama gravity using shadow cast was made in [26]. Jusufi et al.

[27] studied the shadows of 5D charged Bardeen black holes. Shadow cast of rotating

braneworld black holes with a cosmological constant was made in [28].

The black holes solution in higher than four dimensions are of momentous impor-

tance. For moment, the black hole solutions in five-dimensions (5D) have been con-

sidered in varius research, inspired by the ideas in string theory, braneworld cosmology

and gauge/gravity duality. Certain interesting and surprising results can be found [29].

Extra dimensions voilate uniqueness theorem due to the fact that there exist spurious

degrees of freedom. The study of black-ring solutions in five-dimensions demonstrate that

higher dimensional spacetime can approve the non-trivial topologies [30]. The structure

of 5D black hole shadows in the context of holography were invesigated in [31]. Recently,

the shadow of five-dimensional Gauss-Bonnet black hole is studied in [48]. Shadow of

five-dimensional rotating Myers-Perry black hole [32, 33] and rotating five-dimensional

charged black holes [34] have also been studied. Such investigation indeed provides a

good inspiration to study the black hole shadows for RN AdS5 black hole. RN AdS black

hole solution in five-dimensions is a static, spherically symmetric vacuum solution of the

Einstein equation in RN AdS5 spacetime. Geodesic Motions near the RN AdS5 black hole

are studied in [35]. The goal of this paper is to investigate the shadow of charged RN

AdS5 black hole in both non-plasma and plasma medium.

This work is presented systematically in following manner. In section 2, we provide

an overview of five-dimensional RN-AdS5 black hole solution. From the positive real zero

of horizon function, the radius of the event horizon is calculated in section 3. In section

4, using the Hamilton-Jacobi equation, we discuss the (null) particle motion around the

five-dimensional RN-AdS black hole in non-plasma media and eventually derive the radius

of photon sphere for non-plasma medium. The shadow of this black hole for non-plasma

medium is studied in section 5. Within section, we also tabulated the values of shadow
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radius and photon sphere radius for different charges. The shadow images are aso given for

different values of parameters. We study the effect of various parameters on shadow radius

for non-plasma medium in section 6. Similar to case the non-plasma medium, geodesics

in the presence of plasma medium are studied in section 7. The shadow for such plasma

medium is presented in section 8. The behavior of shadow radius for various parameters

in plasma medium is discussed in full details in section 9. We discuss the energy emission

rate of five-dimensional RN AdS black hole in section 10. We see that the emission rate of

RN AdS black hole also depends on various parameters like temperature, frequency and

cross-section of photon radius. Finally, we conclude our results and make future remarks

in section 11.

2 5D RN AdS black hole

Let us consider a 5D spacetime with a negative cosmological constant. The field equations

near the black hole are given by following equation [35]:

Ḡab = −Λḡab + k2(5)T̄ab, (2.1)

where ḡab is a 5D metric with signature (−,+,+,+,+), Ḡab denotes the 5D Einstein ten-

sor, T̄ab denotes 5D energy-momentum tensor and Λ represents the cosmological constant.

The constant k(5) is defined as

k2(5) = 8πG =M−3, (2.2)

where G is the 5D Newton’s constant and M is the 5D reduced Planck mass.

Now, we assume that the spacetime has a constant curvature K̄ = α
l2
. For AdS

geometry, K̄ is negative i.e, α = −1 while for dS geometry K̄ becomes positive and

α = 1. Consequently, the radius of curvature of spacetime becomes

l =

√

3α

Λ
, (2.3)

and it gives the necessary length scale to have a horizon. The exterior metric for the black

hole field in 5D is given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3, (2.4)

where the metric on unit 3-sphere is

dΩ2
3 = dθ2 + sin2 θ(dφ2 + sin2 φdψ2). (2.5)

For this static spherically symmetric vacuum solution of the Einstein equations in RN

AdS5, the metric function f(r) is defined as

f(r) = 1−

(

2M

r

)2

+
q4

r4
−

Λr2

6
. (2.6)

Here, q, M and Λ are the total charge, geometric mass and the cosmological constant,

respectively.
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3 Horizons

We can write the lapse function (2.6) as

f(r) =
∆

r4
, (3.1)

where ∆ is the horizon function that depends on r only for the given q, M and Λ. Now,

the exterior metric (2.4) can be written as

ds2 = −
∆

r4
dt2 +

r4

∆
dr2 + r2dθ2 + r2 sin2 θ(dφ2 + sin2 φdψ2). (3.2)

We know that the spacetime is singular intrinsically at r = 0 and the nature of this

singularity depends on the parameters such as cosmological constant Λ and charge q. Both

of these parameters can be chosen so that spacelike naked singularity of the spacetime

can be avoided [36]. The metric function vanishes at the real positive zeros of the horizon

function, i.e, ∆ = 0, which gives

Λr6 − 6r4 + 24M2r2 − 6q4 = 0. (3.3)

So, the real positive zeros of ∆ gives the position of the horizon, which indicates the

coordinate singularities for this RN-AdS5 black hole. Interestingly, among the six distinct

roots of Eq. (3.3), only one is positive real, which describes the radius of the event horizon

of the RN AdS5 black hole. This single positive real root is given numerically by

r+ =

√

2

Λ
−

242
1
3M2

P
+

122
1
3

ΛP
+

P

32
1
3Λ
, (3.4)

where

P =
(

432− 1296M2Λ + 162q4Λ2 +
√

4(−36 + 72M2Λ)3 + (432− 1296M2Λ + 162q4Λ2)2
)

1
3
.

4 Particle motion for non-plasma medium

In order to find the shape of the RN AdS5 black hole shadow, we first require to derive the

geodesic equations for the photons (null particle) around the black holes. The directions of

symmetry basically work on the issue of searching the geodesics by knowing the constants

of motion related to the directions of symmetries. Let us take kµ as a vector towards the

direction of symmetry and uµ = dxµ

dλ
along perpendicular direction tangent on a curve

xµ = xµ(λ) with affine parameter λ. Now, with the help of the Killing equation, it can

be shown that

kµuµ = constant, (4.1)
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when the trajectory xµ is a geodesic [37]. As the coefficients of metric (2.4) are independent

of time, this results a timelike Killing vector. Therefore, Eq. (4.1) becomes

k0u0 = u0 = −E, (4.2)

where constant E is known as the relativistic energy per particle mass. The negative sign

in front of E is chosen for convenience only and has no other physical significance. In

fact, coefficients of the metric are independent of φ and ψ as well, so these coordinates

represent the other symmetry directions. Hence, by choosing kµ = (0, 0, 0, 1, 0) along the

φ direction, we get

kµuµ = u3 = Lφ, (4.3)

and kµ = (0, 0, 0, 0, 1) along the ψ direction, we get

kµuµ = u4 = Lψ, (4.4)

where constants Lφ and Lψ are known as the angular momentum per particle mass.

Now, the geodesic equations along the t, φ and ψ directions can be calculated by

utilizing the above constants of motion. These read

dt

dλ
=

E

f(r)
, (4.5)

dφ

dλ
=

Lφ

r2 sin2 θ
, (4.6)

dψ

dλ
=

Lψ

r2 cos2 θ
. (4.7)

The remaining two geodesic equations can be calculated with the help of the relativistic

Hamilton-Jacobi equation given as

∂S

∂λ
+

1

2
gµσ

∂S

∂xµ
∂S

∂xσ
= 0. (4.8)

Now, in order to solve the above Hamilton-Jacobi equation, we take an ansatz for S of

the form [8]

S =
1

2
m2

0λ− Et+ Lφφ+ Lψψ +Hr(r) +Hθ(θ), (4.9)

where Hr(r) and Hθ(θ) are functions of only r and θ, respectively. Here, λ and m0 signify

the affine parameter and the rest mass of the test particle, respectively. Using Eqs. (4.9)

and (4.8), we obtain

(

∂Hθ

∂θ

)2

+L2
φ cot

2 θ+L2
ψ tan

2 θ+
1

2
m2

0−
r2E2

f(r)
+ r2f(r)

(

∂Hr

∂r

)2

+L2
φ+L2

ψ = 0. (4.10)

This further simplifies to

(

∂Hθ

∂θ

)2

+L2
φ cot

2 θ+L2
ψ tan

2 θ+
1

2
m2

0 =
r2E2

f(r)
− r2f(r)

(

∂Hr

∂r

)2

−L2
φ−L2

ψ = C (4.11)
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where C is the Carter constant. As we know the relation pθ =
∂H
∂θ

= ∂Hθ

∂θ
, so we have

∂Hθ

∂θ
= r2

∂θ

∂λ
. (4.12)

Here, the condition pθ =
∂L
∂θ

is used and Lagrangian L is given by

L =
1

2
gµν

dxµ

dλ

dxν

dλ
. (4.13)

Similarly, using the condition pr =
∂H
∂r

= ∂Hr

∂r
, we can write

∂Hr

∂r
= r2

∂r

∂λ
. (4.14)

In order to determine the null geodesics, we set m0 = 0 and plugging the values of the

Eqs. (4.12 and (4.14) into Eq.(4.11), we obtain

r2
(

dr

dλ

)

=
√

r4E2 − (L2 + C)r2f(r), (4.15)

r2
(

dθ

dλ

)

=
√

C − L2
φ cot

2 θ − L2
ψ tan

2 θ, (4.16)

where L2 = L2
φ + L2

ψ. The above Eqs. (4.15) and (4.16) are the geodesic equations along

r and θ, respectively.

Now, using Eq. (4.15), we can arrive at the the familiar form of equation:

(

dr

dλ

)2

+ V (r) = 0, (4.17)

where V is an effective potential, given by

V (r) =
f(r)

r2

(

C + L2
)

−E2. (4.18)

To find the unstable circular orbits, we consider the following conditions:

V (r)|r=rp = 0,
∂V (r)

∂r

∣

∣

∣

∣

r=rp

= 0. (4.19)

Now, V (r) will be a maximum at r = rp when

∂2V (r)

∂r2

∣

∣

∣

∣

r=rp

< 0, (4.20)

where rp is the photon sphere radius. Now, using Eq. (4.18), the first condition of (4.19)

leads to
r2p

f(rp)
= η + ξ2, with ξ2 ≡ ξ21 + ξ22, (4.21)
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where the Chandrasekhar constants η, ξ1 and ξ2 are considered to have forms [8]

η =
C

E2
, ξ1 =

Lφ

E
, ξ2 =

Lψ

E
. (4.22)

Now, the (boundary) condition,
∂Veff (r)

∂r

∣

∣

∣

r=rp
= 0, yields

r
df(r)

dr

∣

∣

∣

∣

r=rp

= 2f(r)|r=rp . (4.23)

For the given metric function f(r) in (2.6), the condition (4.23) leads to

r4p − 8M2r2p + 3q4 = 0. (4.24)

The solution of this equation results to the radius of the photon sphere as

rp =

√

8M2 +
√

64M4 − 12q4

2
. (4.25)

5 Constructing the black hole shadow

To get the shadow of the RN-AdS5 black hole, we introduce the celestial coordinates as

shown schematically in figure 1. For 5D, the celestial coordinates become [38]

α = lim
r→∞

(

r2 sin θ
dφ

dr
+ r2 cos θ

dψ

dr

)

,

β = lim
r→∞

r2 sin θ
dθ

dr
, (5.1)

where α component represents the apparent perpendicular displacement of the shadow

Figure 1. Schematic diagram of celestial coordinates. Courtesy: [39].

as observed from the z-axis (axis of symmetry) and β component represents the the

– 7 –



apparent perpendicular displacement of the shadow as observed from its projection on

the equatorial surface. Here, r0 denotes the distance between the viewer and the black

hole. However, θ0 is the angle between the observer’s eye line and the axis of rotation of

the black hole called as the inclination angle. Recalling the geodesic equations derived in

Eqs. (4.5) and (4.15), we get the values of dφ

dr
, dψ
dr

and dθ
dr

as following:

dφ

dr
=

Lφ csc
2 θ

r2
√

E2 − f(r)
r2

(

C + L2
φ + L2

ψ

)

, (5.2)

dψ

dr
=

Lφ sec
2 θ

r2
√

E2 − f(r)
r2

(

C + L2
φ + L2

ψ

)

, (5.3)

dθ

dr
=

1

r2

√

√

√

√

C − L2
φ cot

2 θ − L2
ψ tan

2 θ

E2 − f(r)
r2

(

C + L2
φ + L2

ψ

)
. (5.4)

Plugging the these equations into the Eq. (5.1), we get

α = −
ξ1 csc θ + ξ2 sec θ

√

1 + (η + ξ21 + ξ22) Λ
, (5.5)

β = ±

√

η − ξ21 cot
2 θ − ξ22 tan

2 θ

1 + (η + ξ21 + ξ22) Λ
. (5.6)

Let us consider two different values for θ, i.e., 0 and π
2
. If θ = π

2
then Lψ = 0 and as a

result ξ1 ≡ ξ. However, when θ = 0, Lφ = 0 which indicates ξ2 ≡ ξ. Taking both the

cases together into account, the above celestial coordinates take the form

α = −
ξ

√

1 + (η + ξ2) Λ
, (5.7)

β = ±

√

η

1 + (η + ξ2) Λ
. (5.8)

Combining the eqs. (5.7) and (5.8), we arrive at the equation of a circle in the αβ-plane

α2 + β2 =
η + ξ2

1 + (η + ξ2)Λ
≡ R2

s (5.9)

where Rs refers to the radius of the shadow for non-plasma medium.

We have shown the numerical values of shadow radius and photon sphere radius of

RN-AdS5 black hole for different values q and cosmological constant Λ in table 1 and

table 2.

In figure 2, the variation of the black hole shadow in celestial plane for different values

of the charge q and cosmological constant Λ = 0.0098, 0.018 is shown graphically. Here,

we observe that the radius of the black hole shadow is a decreasing function of charge

parameter q and cosmological constant Λ.
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q rp Rs

0.1 2.82842 3.76177

0.3 2.82789 3.76135

0.5 2.82427 3.75851

0.7 2.81228 3.74914

Table 1. Photon radius (rp) and the black hole shadow radius (Rs) for varying q with Λ =

0.0098.

q rp Rs

0.1 2.82842 3.5921

0.3 2.82789 3.59174

0.5 2.82427 3.58927

0.7 2.81228 3.5811

Table 2. Photon radius (rp) and the black hole shadow radius (Rs) for varying q with Λ = 0.018.

q=0.1

q=0.3

q=0.5

q=0.7

-4 -2 0 2 4

-4

-2

0

2

4

α

β

(a)

q=0.1

q=0.3

q=0.5

q=0.7

-4 -2 0 2 4

-4

-2

0

2

4

α

β

(b)

Figure 2. In (a), black hole shadow in αβ-plane for different values of q with a cosmological

constant Λ = 0.0098. In (b), black hole shadow in αβ-plane for different values of q with

cosmological constant Λ = 0.018. Here, M = 1.
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6 Effect of parameters on shadow radius in non-plasma medium

Here, we study the effect of various parameter on shadow radius Rs for non-plasma

medium. Now, the shadow radius in non-plasma medium takes the following form:

Rs =

√

η + ξ2

1 + (η + ξ2)Λ
=

√

r2p

f(rp) + Λr2p
. (6.1)

Here, we have used relation (4.21). It is noticed that shadow radius depends on the

parameters like cosmological constant Λ, charge q and mass M of the black hole.

Λ=0.018

Λ=0.98

Λ=1.4

Λ=1.8

1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Charge (q)

S
h
ad
o
w
ra
d
iu
s
(R
s
)

(a)

q=0.1

q=0.3

q=0.5

q=0.7

4 5 6 7 8 9

0.5

1.0

1.5

2.0

Cosmological constant (Λ)

S
h
ad
o
w
ra
d
iu
s
(R
s
)

(b)

Figure 3. In (a), the black hole shadow radius vs. charge for changing cosmological constant

Λ. In (b), the black hole shadow radius vs. cosmological constant for changing charge q. Here,

M = 1.

Figure 3 depicts how shadow radius for non-plasma medium depends on parameter

like charge q and cosmological constant Λ. In 3(a), shadow radius is a decreasing function

of charge for fixed photon sphere radius. We see that, for larger values of Λ, shadow radius

curve decreases sharply. However, in plot 3(b), shadow radius is a decreasing function of

Λ and here shadow radius curve decreases for increasing charge parameter q.

7 Shadow cast in the presence of plasma medium

Generally, a black hole is enclosed by a substance media which gets affected on the

motion of null like particles passing through it. In the present section, we emphasize

the consequences of a plasma medium on the shadow of RN-AdS5 black hole. For the

plasma medium , the refractive index is denoted by n = n (xi, ω), where ω is the angular

frequency of photon measured by a distant moving viewer having a velocity uµ. The

Hamiltonian is now modified by this plasma background. Due to this medium, there

appears an extra term in the equations of geodesic motion and, hence, the trajectories of
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null paricles get modified. Due to the plasma effect, effective energy of the particle also

gets modified and given by E = ~ω = −pαu
α. The relationship between the refractive

index and the 4-momentum of the photon is given by [40]

n2 = 1 +
pαu

α

(pµuµ)
2 . (7.1)

Now, the refractive index (n) and plasma frequency (ωp) arw related by [41]

n =

√

1−
(ωp

ω

)2

, (7.2)

where ωp is defined by

ωp =
4πe2N

me

. (7.3)

Here, e,N and me are, respectively, the charge, r dependent number density and electron

mass in the plasma medium. The physical form of N(r) is considered as N0

ri
[40, 41],

where i identifies various characteristics of the plasma medium but we consider i = 1 that

reflects the minimum dependency on r [41, 42]. Replacing the form of N(r) in the plasma

frequency ωp and, from Eq.(7.2), we have
(ωp

ω

)2

=
k

r
, k > 0. (7.4)

Consequently, the refractive index n becomes

n =

√

1−
k

r
. (7.5)

The corrcted Hamilton-Jacobi equation reads [40]
(

∂S

∂λ

)

+
1

2

[

gµσ
∂S

∂xµ
∂S

∂xσ
−
(

n2 − 1
)

(

∂S

∂t

√

−gtt
)2

]

= 0. (7.6)

8 Geodesics and the black hole shadow for the plasma medium

In order to study the consequences of a plasma medium on black hole shadow, we require

a new set of (celestial) coordinates. We begin the study by considering the modified

geodesic equations. Now, for plasma medium, the set of null geodesics read

dt

dλ
=
n2E

f(r)
, (8.1)

dφ

dλ
=

Lφ

r2 sin2 θ
, (8.2)

dψ

dλ
=

Lψ

r2 cos2 θ
, (8.3)

r2
(

dr

dλ

)

= ±
√

n2r4E2 − (L2 + C) r2f(r), (8.4)

r2
(

dθ

dλ

)

= ±
√

C − L2
φ cot

2 θ − L2
ψ tan

2 θ. (8.5)
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Following the same procedure as in the non-plasma medium, the effective radial potential

in the plasma medium becomes

V pl(r) =
f(r)

r2

(

C + L2
)

− n2E2. (8.6)

The unstable circular orbit can be determined by

V pl(r)
∣

∣

r=r
(pl)
p

= 0,
∂V pl(r)

∂r

∣

∣

∣

∣

r=r
(pl)
p

= 0, (8.7)

where r
(pl)
p denotes radius of photon sphere in plasma medium. The condition for maxi-

mizing V pl(r) reads
∂2V pl(r)

∂r2

∣

∣

∣

∣

r=r
(pl)
p

< 0. (8.8)

The first condition of Eq. (8.7) leads to

η + ξ2 =
n2r2

f

∣

∣

∣

∣

r=r
(pl)
p

, (8.9)

and the second condition gives

(nrf ′ − 2nf − 2n′rf)|
r=r

(pl)
p

= 0. (8.10)

Now, substituting the values of f(r) (2.6) and refractive index n′(r) (7.5)) in (8.10),

we obtain the equation for the radius of the photon sphere as
√

1−
k

rp

[

4M2

r2p
−

6q4

r4p
− 2

]

−
k

rp

√

1− k
rp

[

1−
4M2

r2p
+
q4

r4p
−

Λr2p
6

]

= 0. (8.11)

Here, we notice that an exact solution of Eq. (8.11) is not possible. So, we try to solve

this equation numerically. Due to the plasma medium, an additional parameter (k) arises

in Eq. (8.11) . Let us fix k to take two values, namely, 0.2 and 0.4 and for these values

we obtain the radius of photon rp upon solving (8.11) numerically. Following the same

procedures as before, we obtain an expression for dφ

dr
, dψ
dr

and dθ
dr

for the plasma medium

and calculate the celestial coordinates (α, β) for this medium. These are

dφ

dr
=

Lφ csc
2 θ

r2
√

n2E2 − f(r)
r2

(

C + L2
φ + L2

ψ

)

, (8.12)

dψ

dr
=

Lφ sec
2 θ

r2
√

n2E2 − f(r)
r2

(

C + L2
φ + L2

ψ

)

, (8.13)

dθ

dr
=

1

r2

√

√

√

√

C − L2
φ cot

2 θ − L2
ψ tan

2 θ

n2E2 − f(r)
r2

(

C + L2
φ + L2

ψ

)
. (8.14)
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Plugging the above values into the expressions of the (α, β) coordinates (5.1), we get

α = −
(ξ1 csc θ + ξ2 sec θ)

√

1 + (η + ξ21 + ξ22) Λ
, (8.15)

β = ±

√

√

√

√

√

(

η − ξ21 cot
2 θ − ξ22 tan

2 θ
)

1 +
(

η + ξ21 + ξ22

)

Λ
. (8.16)

Here, we fix θ to have two different values, i.e, π
2
and 0. For both these values together,

the coordinates (α, β) becomes

α = −
ξ

√

1 + (η + ξ2) Λ
, (8.17)

β = ±

√

η

1 + (η + ξ2) Λ
. (8.18)

Taking the celestial coordinates from Eqs. (8.17) and (8.18) into account and using Eq.

(8.9), we have

α2 + β2 =
n2r2p

f(rp) + Λn2r2p
, (8.19)

where Rs :=
√

α2 + β2 is the radius of the shadow.

Tables 3, 4, 5 and 6 illustrate the values of shadow radius and photon radius for

different charge q of the RN AdS5 black hole and cosmological constant Λ in the plasma

medium. In celestial plane, the dependence of the black hole shadow on charge q and

q rp Rs

0.1 2.16013 4.54487

0.3 2.15914 4.54799

0.5 2.15233 4.57085

0.7 2.12942 4.65152

Table 3. rp and Rs for varying q with k = 0.2, Λ = 0.018 and M = 1.

q rp Rs

0.1 2.15985 4.89338

0.3 2.15885 4.90248

0.5 2.15205 4.93012

0.7 2.12914 5.03282

Table 4. rp and Rs for varying q with k = 0.2, Λ = 0.0098 and M = 1.
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q rp Rs

0.1 2.11695 4.77485

0.3 2.11592 4.78018

0.5 2.10887 4.81765

0.7 2.08512 4.95895

Table 5. rp and Rs for changing q with k = 0.4, Λ = 0.018 and M = 1.

q rp Rs

0.1 2.11636 5.18284

0.3 2.11533 5.18966

0.5 2.10828 5.23775

0.7 2.08453 5.421

Table 6. rp and Rs for varying q with k = 0.4, Λ = 0.0098 and M = 1.

plasma parameter k with cosmological constant Λ = 0.018 for plasma medium is depicted

in figure 4. We see that shadow radius increases with plasma parameter k for different

photon sphere radius. We also observe that the radius of the black hole shadow increases

for an increase in the value of the charge parameter q.
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q=0.5

q=0.7
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Figure 4. In (a), black hole shadow in αβ-plane for different values of q with k = 0.2. In (b),

black hole shadow in the αβ-plane for different values of q with k = 0.4. Here, Λ = 0.018 and

M = 1.
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The figure 5 depicts the dependence of the black hole shadow on charge q and plasma

parameter k with cosmological constant Λ = 0.0098 in celestial plane for plasma medium.

We see that shadow radius increases for an increase in plasma parameter k with changing

photon sphere radius. It is also evident from the plots that the size of the black hole

shadow rises for an increase in the value of the charge parameter q.
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Figure 5. In (a), black hole shadow in αβ-plane for different values of q with k = 0.2. In (b),

black hole shadow in the αβ-plane for different values of q with k = 0.4. Here, Λ = 0.0098 and

M = 1.

Next, we shall discuss the effects of q and Λ on the shadow radius for two different

values of k.

9 Effect of parameters on shadow radius in plasma medium

In this section, we study the effects of various parameter on shadow radius for the plasma

media. The shadow radius Rs in the plasma medium is given by

Rs =

√

n2r2p

f(rp) + Λn2r2p
. (9.1)

It is evident that shadow radius Rs depends on the parameters such as Λ, q and k.

The figure 6 depicts how shadow radius for plasma medium depends on parameter

like charge q and cosmological constant Λ for k = 0.2. Here, in 6(a), we see that shadow

radius is a decreasing function of charge for fixed values of photon sphere radius. For
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larger Λ values, shadow radius curve decreases sharply. However, in plot 6(b), shadow

radius is a decreasing function of Λ for fixed photon sphere radius. Moreover, the shadow

radius curve decreases for increasing charge parameter q.
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Figure 6. In (a), Rs vs. q for changing cosmological constant Λ. In (b), Rs vs. Λ for changing

charge q. Here, k = 0.2 and M = 1

The figure 7 depicts how shadow radius for plasma medium depends on parameter

like charge q and cosmological constant Λ with k = 0.4. In 7(a), shadow radius is a

decreasing function of q for fixed values of photon sphere radius. We also see that shadow

radius curve decreases sharply for larger Λ values. However, in plot 7(b), shadow radius

is a decreasing function of Λ for fixed photon sphere radius. Moreover, the shadow radius

curve falls for increasing charge parameter q.

Λ=0.018

Λ=0.98

Λ=1.4

Λ=1.8

1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

Charge (q)

S
h
ad
o
w
ra
d
iu
s
(R
s
)

(a)

q=0.1

q=0.3

q=0.5

q=0.7

7 8 9 10 11 12

0.5

1.0

1.5

2.0

Cosmological constant (Λ)

S
h
ad
o
w
ra
d
iu
s
(R
s
)

(b)

Figure 7. In (a), Rs vs. q for changing cosmological constant Λ. In (b), Rs vs. Λ for changing

charge q. Here, k = 0.4 and M = 1

Both figures 6 and 7 suggest that, for a fixed photon sphere radius, shadow radius is

a decreasing function of plasma parameter.
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10 Energy emission rate

Here, in the present section, we discuss the energy emission rate of 5D Reissner-Nordström

AdS black hole. The energy emission rate can be expressed as [43–46]

d2

dωdt
Z(ω) =

2π2σlim

exp
(

ω
TH

)

− 1
ω3, (10.1)

where Z(ω), TH and ω are the energy, Hawking temperature and frequency, respectively,

for the black hole. Here, limiting constant σlim for a spherically symmetric black corre-

sponds to the geometrical cross-section of its photon sphere. The Hawking temperature

can be calculated as [47]

TH =
f ′(r)

4π

∣

∣

∣

∣

r=r+

=
2M2

πr3+
−

q4

πr5+
−

Λr+
12π

, (10.2)

where r+ is the event horizon radius of RN-AdS5 black hole.

For 5D black hole σlim reads [48–50]

σlim =
4πR3

s

3
. (10.3)

With this σlim, the energy emission rate becomes

d2

dωdt
Z(ω) =

8π3R3
s

3
(

exp
(

ω
TH

)

− 1
)ω3. (10.4)

In order to study the behavior of the energy emission rate, we plot graphs. The figure

8 depicts the behavior of energy emission rate d2Z(ω)
dωdt

with respect to frequency ω for

varying charge q, varying photon sphere radius with fixed plasma parameter k = 0, 0.2.

In contrast to non-plasma medium, the energy emission rate increases for increases in

charge for plasma medium. The presence of plasma parameter k increases the energy

emission rate. However, the behavior of energy emission rate with respect to frequency ω

for varying charge q, varying photon sphere radius with fixed plasma parameter k = 0.4

is shown in figure 9. Here, it is more clear that the energy emission rate increases for

increase in the values of charge.

11 Conclusion

We now summarize our results here, in the current section. We have investigated the

shadow of RN AdS5 black holes for an infinitely distant observer. We have first evaluated

the null geodesic equations using the Hamilton-Jacobi equation. Using the boundary

condition of unstable circular orbit, we have determined the radius of the photon sphere
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Figure 8. The energy emission rate vs. frequency for changing charge q and changing photon

sphere radius. In (a) k = 0, Λ = 0.018; in (b) k = 0.2, Λ = 0.018; in (c) k = 0, Λ = 0.0098 and

in (d) k = 0.2, Λ = 0.0098. For all cases M = 1.
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Figure 9. The energy emission rate vs. frequency for changing charge q and changing photon

sphere radius. In (a) k = 0.4, Λ = 0.018 and in (b) k = 0.4, Λ = 0.0098. For all cases M = 1.

and then by using the null geodesics we have obtained the coordinates (α, β) which

eventually results the radius of the shadow. We have tabulated of the various numerical
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values of photon radius and shadow radius for different charge. We have also done a

graphical analysis for the black hole shadow in the αβ-plane for different charges. The

plots declared that the radius of the black hole shadow decreases for an increase in the

values of both the charge parameter and cosmological constant. We have also found that

shadow radius depends on the mass of the black hole also. To check the dependency of

the shadow radius on these parameters, we have made a graphical analysis and observed

that shadow radius is a decreasing function of charge for fixed photon sphere radius.

We then introduced a plasma medium in order to investigate their effect on the

unstable circular orbits of null-like particles (photon). It is observed that shadow radius

enlarges with the plasma parameter k with varying photon sphere radius. The resulting

shadow radius in the plasma medium has dependency on plasma parameter. We have

done the graphical analyses for the plasma medium also, which reflect the effect of various

parameters on shadow radius. Finally, we studied the energy emission rate of the 5D RN

AdS black hole and have provided a graphical analysis of energy emission rate with respect

to frequency. For future perspective, by utilizing the mathematical optics, we shall carry

forward the present study and will attempt to distinguish the differences between the

black holes acquired from various theories. We also would like to study the consequences

of spin parameter on the shadows of RN AdS5 black hole.
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