
ar
X

iv
:2

30
5.

11
20

1v
1 

 [
gr

-q
c]

  1
8 

M
ay

 2
02

3

Quasinormal Modes and Phase Structure of Regular AdS Einstein-Gauss-Bonnet

Black Holes

Yerlan Myrzakulov,1, 2, ∗ Kairat Myrzakulov,1, † Sudhaker Upadhyaycd,3, 4, ¶ and Dharm Veer Singhf5, ††

1Department of General & Theoretical Physics, L. N. Gumilyov Eurasian National University, Astana, 010008, Kazakhstan
2Ratbay Myrzakulov Eurasian International Centre for Theoretical Physics Astana 010009, Kazakhstan

3Department of Physics, K. L. S. College, Magadh University,

Nawada 805110, India
4School of Physics, Damghan University, P.O. Box 3671641167,

Damghan, Iran
5Department of Physics, Institute of Applied Sciences and Humanities,

GLA University, Mathura 281406, Uttar Pradesh, India.

In this paper, we present an exact regular black hole solution in Einstein-Gauss-Bonnet coupled
with nonlinear matter fields. It is a generalization of a regular Einstein-Gauss-Bonnet black hole
in 5D AdS spacetime. The causal structure of the obtained solution identifies with Boulware-
Deser black hole solution, except for the curvature singularity at the center. It incorporates the
Boulware-Deser black holes in the absence of deviation parameters. We also study the thermody-
namic properties of the solution that satisfies a modified first law of thermodynamics. Furthermore,
we discuss the stability of the obtained black hole solution and, in this regard, a double phase
transition occurs. Within context, we find that phase transition exists at the point where the heat
capacity diverges and, incidentally, the temperature attains the maximum value. We discuss the
fluid nature of the black hole also exhibiting critical points. The quasinormal modes of the black
hole solution and their dependencies on Gauss-Bonnet coupling and deviation parameters are also
analysed in terms of null geodesics.
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I. INTRODUCTION

The higher-order curvature theories are useful to explore various (conceptual) concerns of gravity. Lovelock’s
theory of gravity [1–3] is one of such higher-order curvature gravity that generalizes the general relativity (GR) to
higher spacetime dimensions. In Ref. [1], Lovelock proposed that GR in 4D with a cosmological constant possessing
diffeomorphism invariance, metricity and second-order equations of motion is a unique theory of pure gravity. The
Einstein-Gauss-Bonnet (EGB) gravity is a particular class of Lovelock gravity that characterizes non-trivial dynamics
for the higher-dimensional gravity having second-order field equations. However, EGB gravity in 4D is a topological
theory that, in general, does not contribute to gravitational dynamics. In the recent past, a lot of efforts have been
made to study the EGB gravity in 4D. For instance, Glavan and Lin proposed the 4D GB theory by re-scaling the
GB coupling constant. But the theory in D = 4 limit is either plagued by the partial breaking of diffeomorphism
or by additional gravitational degrees of freedom. The generalization of EGB gravity as F(GB) gravity in 4D was
presented in Refs [4, 5]. In another effort, EGB gravity in 4D is constructed that has only two dynamical degrees of
freedom but it breaks the temporal diffeomorphism [6, 7].
Black holes are one of the most fascinating objects and the subjects of active research. Black holes are either

singular or regular solutions of the Einstein equation of GR. A singular solution for the rotating counterpart of a
higher-derivative theory in Lee-Wick prescription is explored recently [8]. The first spherically symmetric regular
black hole solution was given by Bardeen [9] that does not hold a strong energy condition. In the recent past, people
are paying much attention to the regular black hole solutions [10–17]. An exact regular black hole solution for the
EGB coupled with non-Abelian gauge field in 4D AdS spacetime and their thermal properties are explored recently
[18]. Recently, a 4D AdS EGB black hole solution with nonlinear electrodynamics (NLED) is studied [19]. In another
recent work, the EGB massive black hole solution in 4D AdS is studied also [20–23].
The NLED in the context of black hole physics is a more relevant and quite suitable alternative for Maxwell (linear)

electrodynamics as we know that the real electromagnetic field remains no longer linear at high energy due to the
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influence of other physical fields. Since the original consideration of nonlinear electrodynamics by Born and Infeld
[24], extensive progresses on the subject has been made [25–29]. Some NLED coupled to GR may provide a better
explanation for the inflation of the universe [30–33]. Black holes with NLED are quite relevant in astrophysical
observations [34, 35].

The advantage of the study of NLED field coupled with the gravity, we obtained the regular black hole solution in
the particular limits it correctly retrieves the Reissner-Nordstrom black hole. Another major difference is in the strong-
field limits of Einstein’s gravity, where the exponential mass function leads to a Minkowski-flat core around, which is
in striking contrary with other regular black holes [36, 37] that generally have de-Sitter core [38–40]. Therefore, the
curvature of the geometry has some maximal peak in between spatial infinity and core. Although, in the 4D EGB
gravity, all regular black holes have flat core around them [4, 5]. Therefore, this novel regular black hole share many
features with other regular black holes, but there are also significant differences.

The AdS/CFT correspondence [41–43] provides a duality between strong interacting quantum field theory and
weakly interacting gravity. This is also known as the holographic duality or the gauge/gravity duality. GB term
in such correspondence may play an important role, see Refs. [44, 45]. Originally, this was explored in the context
of string theory but further extended to wide domains, such as the coupling dynamics of QCD and the electroweak
theories, black holes physics, quantum gravity, condensed matter physics, etc. In the context of black holes, Witten
found that black hole thermodynamics in AdS spaces can get a resemblance with the thermodynamics of dual CFT
at the high temperature [46].

The concept of black hole thermodynamics originated by Bekenstein [47, 48] and Hawking [49] who realized that
entropy is somehow connected to the area of the Black hole horizon. To a certain extent, it is clear that entropy of
the black holes is proportional to the area of horizon [50–53]. This subject was studied further extensively [54–59] In
the context of black hole thermodynamics (mechanics), it is found that the black hole system satisfies the first law
of thermodynamics. The stability of dS and Nariai black hole in higher derivative gravity is discussed in Ref. [60].
Here, it is found that for certain regime Nariai black hole is stable and does not decay into pure de Sitter space. The
this connection of higher derivative gravity, negative (or zero) Schwarzschild-(Anti)-de Sitter black entropy is found
which depends on the parameters of higher derivative terms [21].

Quasinormal modes (QNMs) have been found an active and wide area of research [61–64]. QNMs are found very
useful to predict the stability of the perturbed black holes. Abbott et al. (LIGO scientific collaboration and Virgo
collaboration) detected transient gravitational waves [65]. The images of Event Horizon Telescope [66] display a
prominent ring consistent with the size and shape of the lensed photon shadow of a supermassive black hole. These
studies hint about the correspondence between QNMs and black hole shadow radius. The correspondence between
QNMs and shadow radius may provide a new viewpoint for the gravitational waves which are massless particles moving
along an outmost unstable orbit of null geodesics. Recently, the shadow cast of the charged Reissner-Nordström AdS
black hole in both plasma and non-plasma medium is studied [67].

The rest of the sections are organized as follows. In Sec. II, we consider a EGB gravity coupled to the NLED in 5D
AdS spacetime and obtain a new black hole solution. We discuss the horizon structure of this new black hole solution
in AdS spacetime. The thermodynamics of this black hole along with stability and phase transition are discussed in
section III. The behavior of black holes as the Van der Waals fluid is reported in section IV. We have calculated the
critical values of pressure, temperature, and horizon radius and their dependencies on various parameters. The QNMs
for the black hole solution are calculated in section V. Finally, we summarize the results and make final remarks in
the last section.

II. ACTION, BLACK HOLE SOLUTIONS AND HORIZON STRUCTURE

For the present study, we are interested in the solution of 5D EGB gravity coupled to the NLED in AdS space.
The action describing 5D EGB gravity coupled to the NLED in AdS spacetime is written as [68]

S =
1

2

∫

d5x
√−g

[

R− 2Λ + α(RµνγδR
µνγδ − 4RµνR

µν +R2)− 4P
∂H
∂P

+ 2H
]

, (1)

where R, Rµν and Rµνλσ are the Ricci scalar, Ricci tensor and Riemann tensor, respectively. However, Λ and α
are the cosmological constant related to AdS length l via relation −3/l2 and the Gauss-Bonnet coupling constant,
respectively. H(P ) is the structure- function that depends on the invariant P = 1

4PµνP
µν of the tensor Pµν which

corresponds to electric induction. The expression for the NLED structure function H(P ) is given by

H(P ) = 3Pe−
q
M (−2qP )1/3 , (2)
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where q and M are the free parameters associated with the charge and mass, respectively. In the weak field limit
(P << 1), the NLED structure function (2) corresponds to the linear electrodynamics, i.e. H(P ) ≈ P . The
requirements to satisfy the weak energy condition are H < 0 and ∂H

∂P > 0 [69–71].
The field equations corresponding to the action (1) for the metric tensor (gµν) and electromagnetic potential (Aµ)

are

Gµν +Hµν + Λgµν = 2

(

∂H
∂P

PµλP
λ
ν − 2P

∂H
∂P

+H
)

, (3)

∇µP
µν = 0, (4)

where Gab and Hab are, respectively

Gµν = Rµν −
1

2
gµνR, (5)

Hµν = −α
2

[

8RρσRµρνσ − 4Rρσλµ Rνρσλ − 4RRµν + 8RµλR
λ
ν

+ gµν
(

RµνγδR
µνγδ − 4RµνR

µν +R2
)]

, (6)

Now, we are interested to obtain a 5D EGB black hole solution in the presence of NED. For this, we first write the
static spherically symmetric metric as follows:

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (7)

where f(r) is the metric function which will be determined later.
We use the following ansatz for the antisymmetric field:

Pµν = 2δθ[µδ
φ
ν]D(r) sin2 θ sinφ, (8)

which, upon integration (4), eventually leads to

P =
q2

2r6
. (9)

Here, we chose the integration constant as q.
With this antisymmetric field Pµν and invariant P , the non-vanishing component of Einstein field equation (3)

results

(4αf ′ − 2r)(f − 1)− r3f ′−Λr2 =
2Mk

r3
e−k/r

2

, (10)

where the prime (′) is the derivative of the metric function f(r) concerning r and deviation parameter k = q2/M .
The solution of Eq. (10) determines the form of metric function as

f(r) = 1 +
r2

4α

(

1±
√

1 +
8Mα

r4
e−k/r2+

8Λα

3

)

. (11)

We note that the solution (12) has two branches, +ve and −ve, respectively.
For vanishing Mass, the obtained black hole solution (12) becomes

f(r) = 1 +
r2

4α

(

1±
√

1− 8α

l2

)

. (12)

For α > 0, 8α/l2 ≤ 1 and beyond this, there is no black hole solution. Thus, the action 1 has two AdS solutions with

effective cosmological constants l2eff = l2

4

(

1±
√

1− 8α
l2

)

. For 8α/l2 = 1, both the solutions coincide and, therefore,

the theory has a unique AdS vacuum.
When α < 0 , the solution (12) still remains AdS for −ve signature and becomes dS if one takes the +ve signature.

From the vacuum case, the solution (12) with both signs seems reasonable, from which we cannot determine which
sign should be adopted. Then Boulware and Deser showed that the solution with +ve branch is unstable and the
solution is asymptotically an AdS Schwarzschild solution with negative gravitational mass, indicating the instability.
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The solution (12) with −ve branch is stable and the solution is asymptotically a Schwarzschild solution. Therefore
the +ve branch is of less physical interest [44, 45]
This describes a 5D AdS regular black hole for EGB gravity coupled with NLED. The resulting black hole is

characterized by parameters like M , k and α. In the limit, α → 0 and k = 0, the negative branch of solution
(11) corresponds to the 5D Schwarzschild-Tangherlini black hole. However, in the limit α → 0, the solution (11)
corresponds to the regular Schwarzschild black hole in 5D AdS [71, 72]

f(r) =

(

1− 2Me−k/r
2

r2
− Λr2

3

)

. (13)

Here, we remark that the exponential factor present in the solution removes the curvature singularity. The given
metric (11) can also be considered as the EGB black hole coupled to NLED. It can be checked that solution (11)
matches with the Boulware-Deser black hole provided the mass (M) must be replaced with M(r):

M(r) =
σ(r)

σ∞
M, (14)

where σ(r) = e−k/r
2

is the probability distribution function satisfying σ(r) ≥ 0 and σ′(r) < 0 for r ≥ 0. Also,
σ(r)/r → 0 for r → 0 and σ∞ refers to is the probability distribution function when r → ∞. Asymptotically
((r >> k)), the metric (11) corresponds to the charged AdS EGB black hole [73]

f(r) = 1 +
r2

4α

(

1±
√

1 +
8αM

r4
− 8αq2

r6
+

8Λα

3

)

. (15)

Henceforth, we end up with a new solution describing an exact regular EGB black hole coupled with nonlinear matter
fields in AdS space. This AdS solution, characterized by the parameterM and k, extends the Wiltshire charged EGB
black hole [73] to AdS space.
The horizon of the black hole is described by the following condition:

1 +
r2

4α

(

1±
√

1 +
8Mα

r4
e−

k
r2 +

8Λα

3

)

= 0. (16)

The plot for f(r) versus r is depicted in FIG. 1. Eq. (16) is a complex expression that complicates the analysis of

FIG. 1. The metric function f(r) versus r with different value of deviation parameter k for α = 0.1 (left panel) and α = 0.2
(right panel) with fixed M and l.

the horizon structure analytically. Henceforth, we prefer numerical analysis of the horizon condition by varying the
deviation parameter k. The horizon condition f(r) = 0 will find two real roots, namely, r+ and r− that correspond
to the event and Cauchy horizon, respectively. The numerical values of r− and r+ for different α and k are tabulated
in Table I. The horizons can also be discussed in terms of the deviation parameter k. Now, it is possible to compute
the value of k which satisfies the horizon condition that admits two real roots for r. From the table, it is evident that
there exists a critical horizon rc = r± = 0.483 and critical deviation parameter kc = 0.17 for α = 0.1. However, a
critical horizon rc = r± = 0.447 and critical deviation parameter kc = 0.092 exist for α = 0.2. These signify extremal
regular AdS black holes. Moreover, k < kc for α = 0.1 and k > kc for α = 0.2, the two different horizons (r±) signify
the non-extremal black hole. We find that the size of the black hole decreases with an increase in the value of α.
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α = 0.1 α = 0.2
k r− r+ δ k r− r+ δ

0.1 0.283 0.643 0.360 0.1 0.258 0.596 0.338
0.125 0.329 0.612 0.283 0.07 0.329 0.558 0.229
0.17 0.483 0.483 0 0.092 0.447 0.447 0

TABLE I. Cauchy horizon (r−). event horizon (r+), and δ = r+ − r− for the 5D AdS EGB Bardeen black hole with α = 0.1
and α = 0.2 with fixed M and Λ.

III. THERMODYNAMICS

Now, we can study the thermodynamic properties of the obtained black hole solution in terms of horizon radius,
which are described by the horizon mass (M+), deviation parameter (k), and the cosmological constant Λ. The
horizon mass and Hawking temperature (T+) is calculated by

M+ = ek/r
2
+

(

r4+
l2

+ (r2+ + 2α)

)

, (17)

T+ =
1

4π

∂

∂r

√−grrgtt
∣

∣

∣

∣

r=r+

=
r4+ − k(r2+ + 2α)

2πr3+(r
2 + 4α)

+
2r6+ − kr4+

2l2πr3+(r
2
+ + 4α)

. (18)

The Hawking temperature is characterized by k, α, and Λ. The temperature of this regular AdS black hole is plotted
in FIG. 2. From the figure, we see that the effect of the deviation parameter is more significant for small black holes.

FIG. 2. Temperature T+ versus r+ for distinct value of deviation parameter k with α = 0.1 (left panel) and α = 0.2 (right
panel) with fixed M = 1 and l = 10.

As the value of k increases, the peak of the temperature decreases and occurs at larger r+ as well. The temperature
of the AdS regular black hole also decreases with an increase in α and shifts toward the large value of the horizon
radius.
Being a thermal system, the black hole follows the first law of thermodynamics given by

dM+ = T+dS+ + φde, (19)

where S+ refers to the entropy of the black hole. For the given values of M+ and T+, the first law of thermodynamics
leads to the following expression for the entropy:

S+ =
4πr3+
3

[

(2k + r2+ + 12α)ek/r
2
+

r2+
− 2

√
πk (4k + 6α)

r3+
erf

(√
k

r+

)]

, (20)

where erf is the error function. Here, we note that the entropy matches with the one calculated in Ref. [36] without the
cosmological constant. The deformed entropy from the area-law occurs due to the presence of deviation parameters
and GB parameter.
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We know that entropy of the regular black hole does not follow the area law [74, 75] because the black hole mass
is included in the source term. Ma et al [76] proposed the corrected form of first law black hole thermodynamics for
regular black holes which modifies with the extra factor. The modified first law is [37, 76, 77]

CMdM = T+ dS + φde, (21)

where C(M, r+) is

C(M, r+) = 1 + 4π

∫ ∞

r+

r2
∂T 0

0

∂M
dr = 2e−k/r

2
+ . (22)

For this value of C(M, r+) and the obtained black hole solution follows the area law.
The thermodynamic stability of the given black hole can be explained by the nature of the heat capacity as the

positive and negative signatures of heat capacity justify the stable and unstable state of the black hole, respectively.
The heat capacity for the black hole solution can be defined as

C+ =
∂M+

∂T+
. (23)

For the given mass (17) and temperature (18), the expression of the heat capacity reads

C+ =
4e

k

r2
+ πr(r2+ + 4α)2(r4+(l

2 + 2r2+)− k(r4+ + l2(r2+ + 2α)))

2r6+(r
2
+ + 12α)− l2(r6+ − 4r4+α) + k(r6+ − 4r4+α+ l2(3r4+ + 14r2+α+ 24α2))

. (24)

From this expression, it is cumbersome to identify the signature and behavior of heat capacity. Hence, we plot the
heat capacity as depicted in diagram 3 for different values of deviation parameter k. To study the nature of the

FIG. 3. The heat capacity C+ versus r+ with different value of deviation parameter k for α = 0.1 (left panel) and α = 0.2
(right panel) with fixed value of M = 1 and l = 10.

heat capacity, we plotted them for the various values of k and α. From the FIG. 3, we find that there exist double
phase transitions. Firstly, a phase transition occurs from a small stable black hole to a large unstable black hole
and, secondly, from a smaller unstable black hole to a larger stable black hole. For the fixed value of α the radii r1+
increases and r2+ decreases with k.
Gibbs free energy also plays an important role in order to discuss the (global) stability of the black hole. The Gibbs

free energy can be calculated from the standard definition: G+ =M+ − T+S+. This yields

G+ = ek/r
2
+

(

r4+
l2

+ (r2+ + 2α)

)

− 2

3

(

r4+(l
2 + 2r2+)− k(r4+ + l2(r2+ + 2α))

l2(r2+ + 4α)

)

×
[

(2k + r2+ + 12α)ek/r
2
+

r2+
− 2

√
πk (4k + 6α)

r3+
erf

(√
k

r+

)]

. (25)

The stability can also be explained from the Gibbs free energy plot as depicted in FIG. 4. From the plot, we observe
that the free energy exhibits local minima (r1+) and local maxima (r2+) for distinct values of k with fixed value of
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FIG. 4. The Gibbs free energy G+ versus r+ with different value of deviation parameter k for α = 0.1 and α = 0.2 with fixed
value of M = 1 and l = 10.

α. For r > r1+, the free energy is an increasing function of r+ and remains positive and attains the local maximum
value at r2+. After r = r2+, the slope of Gibbs free energy turns negative and, therefore, the theory provides the
natural Hawking-Page phase transition. The various numerical values are tabulated in the TABLE II. Here, we can
also see that the Gibbs free energy (G+) has a minimum and a maximum locally regarding the extremal points of the
temperature where the heat capacity diverges.

α = 0.1 α = 0.2
r1+ r2+ T+ C+ G+ r1+ r2+ T+ C+ G+

1.012 3.218 Maximum Diverge Loc. Max. 1.405 2.881 Minimum Diverge Loc. Min.
1.251 3.148 Maximum Diverge Loc. Max. 1.714 2.754 Minimum Diverge Loc. Min.
1.447 3.063 Maximum Diverge Loc. Max. 2.09 2.515 Minimum Diverge Loc. Min.

TABLE II. The numerical values of the local maxima and minima to characterize the nature of T+, C+, and G+.

IV. VAN DER WAALS FLUID

The aim of this section is to consider the resulting black hole as a Van der Waals fluid and calculate the P − v
criticality. As we know, the negative cosmological constant induces a thermodynamic pressure (i.e. Λ = −8πP+ with
G = h̄ = c = 1) in the extended thermodynamics. The thermodynamic volume V plays the role of conjugate to
pressure and can be interpreted as the change in the mass under the variations in the Λ having fixed horizon area.
The mass M is then understood as an enthalpy.
The temperature T+ in tandem to the above identifications of thermodynamic pressure and conjugate volume lead

the following equation of state: Using the and volume V , we obtain the following equations of state:

P+ =
1

4πr4(2r2+ − k)

[

6πr3+T (r
2
+ + 4α) + 3(kr2+ − r4+ + 2kα)

]

, v = 2r+, (26)

where the v is a specific volume.
The critical points appear at isotherms Tc where pressure has an inflection point at Pc and vc satisfying conditions

[10,14]

(

∂P+

∂r+

)

T+

= 0,

(

∂2P+

∂r2+

)

T+

= 0. (27)

The critical radius can be calculated numerically from the relation

2r8 − 24r6α− k2(3r4 + 16r2α− 48α2)− 12k(r6 + 9r4α+ 36r2α2)

4πr6(kr2 + 2r4 − 4kα+ 24r2α)(k − 2r2)
= 0. (28)
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FIG. 5. P+ versus r+ with different value of deviation parameter k for α = 0.1 and α = 0.2 at critical temperature Tc.

The fluid behavior of the regular AdS EGB black holes can be seen from the P+ − r+ diagram in FIG. 5.
The Eq. (28) can not be solved analytically and, therefore, the critical radius rc, critical pressure Pc and the critical

temperature Tc are obtained numerically. The numerical values are presented in TABLES III and IV for different
values of α and k. It can be seen that the critical radius rc increases with the increase in the parameters k and α,

k rc Tc Pc Pc rc/Tc

0.1 1.453 0.123 0.0225 0.2173
0.2 1.689 0.110 0.0176 0.2425
0.3 1.884 0.100 0.0146 0.2518
0.4 2.055 0.093 0.0125 0.2558
0.5 2.209 0.087 0.0107 0.2579

TABLE III. The critical temperature Tc, critical pressure Pc and Pc rc/Tc corresponding different value of k = 0.1 with fixed
value of α = 0.1 .

however, the critical pressure Pc and temperature Tc decrease with increase in k and α. Incidentally, the universal
ratio Pcrc/Tc increases with the parameters k and α. It is worth mentioning that the critical radius increases with
decrease in the critical pressure and critical temperature.

V. QNMS IN EKILON LIMIT

QNMs are usually predicts the stability of the given black holes perturbed by an external field or black hole
geometry. QNMs also provide the information regarding gravitational waves. In QNM can be discussed by studying
the motion of photon in the vicinity of the black hole solution (11). The photon motion limited to equatorial plane
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α rc Tc Pc Pc rc/Tc

0.1 1.453 0.123 0.0225 0.2173
0.2 1.8434 0.0936 0.0138 0.2617
0.3 2.154 0.0785 0.0094 0.3216
0.4 2.423 0.0690 0.0073 0.4069
0.5 2.662 0.0623 0.0060 0.5381

TABLE IV. The critical temperature Tc, critical pressure Pc and Pc rc/Tc corresponding to the different value of α = 0.1 with
fixed value of k = 0.1 .

(θ = π/2) is described by the following Lagrangian:

L = −gttṫ2 + grrṙ
2 + gθθθ̇

2 + gφφφ̇
2 + gψψψ̇

2, (29)

where dot denotes the derivative with respect to affine parameter. The corresponding Hamiltonian is given by

H =
1

2
gijpipj = 0, (30)

and the generalized momenta are given by

pt =
∂H
∂ṫ

= constant ≡ E, pr =
∂H
∂ṙ

= grrṙ, pθ =
∂H
∂θ̇

= gθθθ̇,

pφ =
∂H
∂φ̇

= constant ≡ −L, pψ =
∂H
∂ψ̇

= gψψψ̇. (31)

Here, E and L refer to the energy and the angular momentum per unit rest mass of the test particle, respectively.
The equations of motion associated with the photon in the Hamiltonian formalism are given by

ṫ =
∂H
∂pt

= − pt
gtt
, ṙ =

∂H
∂pr

= − pr
grr

, θ̇ =
∂H
∂pθ

=
pθ
gθθ

,

φ̇ =
∂H
∂pφ

=
pφ
gφφ

, ψ̇ =
∂H
∂pψ

=
pθ
gψψ

. (32)

since the above Hamiltonian does not depend on the coordinates t, φ and ψ. So, the null geodesics equation is written
by

ṙ2 + Veff (r) = 0, with Veff = f(r)

(

L2

r2
− E2

f(r)

)

. (33)

For a circular null geodesics, the effective potential must necessarily hold the following conditions:

Veff = 0, and
∂Veff
∂r

= 0. (34)

These conditions describe the radius of the photon sphere. These conditions lead to the equation of the photon radius
as

kM − 2Mr2 + ek/r
2

r2
√

1 +
8Mαek/r2

r4
+

8Λα

3r2
= 0. (35)

This equation can not be solved analytically, so we can calculate the photon radius rp, numerically. The numerical
values are presented in TABLE V. From this TABLE, we can see that the photon radius increases along with increasing
deviation parameter and GB coupling.
The QNMs frequency ω in the eikonal limit can be estimated by the virtue of the photon sphere as follows

ω = lΩ− i

(

n+
1

2

)

|Λ|, (36)
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rp
α k = 0.1 k = 0.2 k = 0.3 k = 0.4
0.1 1.4381 1.4574 1.4726 1.4840
0.2 1.4503 1.4783 1.5021 1.5169
0.3 1.4728 1.5154 1.5479 1.5727
0.4 1.5298 1.6023 1.6817 1.6954

TABLE V. The numerical values of photon radius corresponding to the GB coulpling parameter and devation parameter with
M = 1, where l = 1 and n = 0.

rp
k α = 0.1 α = 0.2 α = 0.3 α = 0.4
0.1 1.438 1.450 1.472 1.529
0.2 1.457 1.478 1.515 1.603
0.3 1.472 1.500 1.547 1.654
0.4 1.484 1.516 1.572 1.695
0.5 1.491 1.528 1.591 1.727

TABLE VI. Values of photon radius corresponding to the GB coulpling parameter (α) and devation parameter (k) with M = 1,
where l = 1 and n = 0.

where n is the overtone number and l is the angular quantum number of perturbation. However, Ω is the angular
velocity and Λ is the Lyapunov exponent of the photon sphere with following expressions:

Ω =

√

f(rp)

rp
and Λ =

√

f(rp)(2frp − r2pf
′′(rp))

√
2rp

. (37)

Here rp denotes radius of photon sphere (called as photon radius).
The real and imaginary parts of the QNMs of black hole solution (11) for different values of deviation parameter

and GB parameter are depicted in the FIG. 6 and FIG. 7. These diagrams help us to investigate the effects of the

FIG. 6. The plot of real part (left panel) and imaginary part (right panel) of QNMs versus GB parameter with different k with
fixed M and l.

black hole parameters on the QNMs. Here, we see that the real part of the QNMs is a decreasing function of the GB
parameter. However, real part of the QNMs increases with deviation parameter. On the other hand, the imaginary
part of the QNMs with respect to the GB parameter first decreases very slowly (almost constant) and then increases
sharply. Also, the imaginary part of the QNMs increases with deviation parameter (more significantly for large α).
The signature of the imaginary part of the QNMs characterizes the stability of black hole. Im ω < 0 corresponds

to stable modes of black hole and Im ω > 0 corresponds to unstable modes. The imaginary part of the QNMs for the
obtained black hole solution (11) is negative (See Fig. 6 and 7). This confirms that the modes of the obtained black
hole solution (11) are stable.
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FIG. 7. The plot of real part (left panel) and imaginary part (right panel) of QNMs versus deviation parameter with different
k with fixed M and l.

We list the numerical values of QNMs frequency corresponding various values of parameters in TABLES VII and
VIII.

k = 1 k = 2 k = 3 k = 4
α ω=Re ω − Im ω ω=Re ω − Im ω ω =Re ω − Im ω ω=Re ω − Im ω
0.1 0.71489 - 0.37765 i 0.721135 - 0.36758 i 0.726456 - 0.35734 i 0.73125 - 0.34703 i
0.2 0.71440 - 0.37984 i 0.719702 - 0.37125 i 0.723687 - 0.36266 i 0.72764 - 0.35300 i
0.3 0.71376 - 0.32043 i 0.717979 - 0.32024 i 0.721104 - 0.31778 i 0.72375 - 0.31388 i
0.4 0.71238 - 0.24545 i 0.714816 - 0.25595 i 0.714815 - 0.26844 i 0.71756 - 0.26416 i

TABLE VII. The numerical values of QNMs corresponding to the GB coulpling parameter (α) and devation parameter (k)
with M = 1, where l = 1 and n = 0.

α = 0.1 α = 0.2 α = 0.3 α = 0.4
k ω=Re ω − Im ω ω=Re ω − Im ω ω=Re ω − Im ω ω=Re ω − Im ω
0.1 0.7147 -0.4307 i 0.7144 -0.3797 i 0.7137 -0.3202 i 0.71241 -0.245 i
0.2 0.7208 -0.4151 i 0.7197 -0.3712 i 0.7180 -0.3201 i 0.7147 -0.2561 i
0.3 0.7258 -0.4004 i 0.7239 -0.3621 i 0.7211 -0.3175 i 0.7164 -0.2612 i
0.4 0.7303 -0.3866 i 0.7277 -0.3528 i 0.7238 -0.3137 i 0.7175 -0.2640 i
0.5 0.7347 -0.3733 i 0.7312 -0.3435 i 0.7261 -0.3091 i 0.7186 -0.2649 i
0.6 0.7391 -0.3607 i 0.7348 -0.3341 i 0.7286 -0.3035 i 0.7197 -0.2643 i
0.7 0.7440 -0.3482 i 0.7386 -0.3245 i 0.7313 -0.2973 i 0.7209 -0.2629 i
0.8 0.7496 -0.3356 i 0.7432 -0.3143 i 0.7345 -0.2903 i 0.7221 -0.2605 i
0.9 0.7568 -0.3220 i 0.7492 -0.3028 i 0.7383 -0.2821 i 0.7238 -0.2570 i
1.0 0.7669 -0.3061 i 0.7572 -0.2891 i 0.7434 -0.2772 i 0.7256 -0.2528 i
1.1 0.7861 -0.2806 i 0.7716 -0.2674 i 0.7512 -0.2695 i 0.7281 -0.2471 i

TABLE VIII. The numerical values of QNMs corresponding to the GB coulpling parameter (α) and devation parameter (k)
with M = 1, where l = 1 and n = 0.

VI. RESULTS AND CONCLUSION

In this work, we have considered a EGB gravity coupled to the NLED in 5D AdS spacetime and constructed a new
regular black hole solution in AdS spacetime. The obtained solution is a generalized version of 5D Schwarzschild-
Tangherlini black hole, 5D AdS regular Schwarzschild black hole and Boulware-Deser black hole. We have found that
the black hole solution exhibits two horizons, namely, the Cauchy and event horizon. There exist different critical
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horizons corresponding to different GB parameter that characterize the extremal/non-extremal nature of black holes.
The size of the black holes decrease with the increasing GB parameter.
Furthermore, we have studied the thermodynamics of the resulting solution by deriving horizon mass, Hawking

temperature and entropy of the black hole. We have found that the black hole satisfies the modified first law of
thermodynamics. The stabilities of black hole are discussed by estimating both the heat capacity and Gibbs free
energy. The diagrams confirmed that there exist double phase transitions, one from small stable black hole to large
unstable black hole and other from smaller unstable black hole to larger stable black hole. The Gibbs free energy
analysis confirms the existence of (local) minimum and maximum associated to the extremal points of the Hawking
temperature. The fluid nature of black hole is also studied. We have observed that the critical values depend on GB
coupling parameter and deviation parameter considerably. For instance, the critical radius is an increasing function
of the GB coupling parameter and deviation parameter. In contrast, the critical pressure and critical temperature are
decreasing function of the GB coupling parameter and deviation parameter.
It is worth discussing QNMs for the 5D AdS regular EGB black hole coupled with NLED as QNMs may provide

the information regarding gravitational waves. For this purpose, we studied the motion of photon in the vicinity of
the black hole solution. The effects of GB coupling and deviation parameters on the real and imaginary parts of the
QNMs are also discussed. It will be interesting to establish a the correspondence between the QNMs in the eikonal
limit and the shadow radii for such black hole solution of the 5D EGB gravity coupled to the NLED in AdS space.
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