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We present a detailed study of the generation of large primordial non-Gaussianities during the
slow-roll (SR) to ultra-slow roll (USR) transitions in the framework of Galileon inflation. We found
out that due to having sharp transitions in the USR phase, which persist with a duration of ANysgr ~
2 e-folds, we are able to generate the non-Gaussianity amplitude of the order: |fxr| ~ O(1072) in
the SRI, =5 < fxr. < 5 in the USR, and —2 < fy1, < 2 in the SRII phases. As a result, we are
able to achieve a cumulative average value of |fnr.| ~ O(1). This implies that our results strictly
satisfy Maldacena’s no-go theorem in the squeezed limit only for SRI, while they strictly violate the
same condition in both the USR and SRII phases. The non-renormalization theorem in the Galileon
theory helps to support our results regarding the generation of large mass primordial black holes
along with large non-Gaussianities, which we show to be dependent on the specific positions of the
transition wave numbers fixed at low scales.
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I. Introduction

The general assumption about the primordial curvature perturbations always described by a Gaussian distribution
provides the simplest way to discuss two-point correlation functions. Particularly, any higher-point correlation function
of such distribution vanishes. These primordial perturbations around the scalar field, which drives inflation, stretch
during the exponential expansion phase. In the super-horizon regime, they become far larger than the Hubble scale
and are treated using Gaussian random fields, (,(x), satisfying Gaussian statistics. As a result of this classical nature,
we can treat each point as independent from the other due to negligible spatial gradients in the perturbations. This
motivates the study of local non-Gaussianity as non-linearities arising in the local Gaussian random field.

The current observational estimates for the value of this amplitude comes from the CMB measurements, with a
value of fni, = —0.9 £ 5.1 at 68% level confidence from Planck [1]. The statistical errors in this estimate are much
larger than the actual signal to comment concretely on anything physical. However, the hope of reduced error bars
from newer surveys in the future, which are expected to provide improvements of an order of magnitude over the
current estimates [2, 3], would be an important step towards breaking the degeneracy in many theoretical frameworks
of inflation and ruling out those models where production of a large, fx1, ~ O(1), is almost impossible. From the above
discussion, an important problem arises: providing a theoretical model that can show the generation of such large
non-Gaussianities. This is important from the perspective of obtaining more insights about the origin of structure in
the very early universe.

The initial study for the case of the single field inflation model was carried out by Maldacena in [4], where a
consistency condition for the amplitude of the amount of primordial non-Gaussianity fnxr was derived, under a
specific squeezed limit that concerns the UV modes, and was found to be fxr, ~ O(1072). This condition, in the form
of a no-go theorem, automatically restricted the possibility for the production of large non-Gaussianities in models of
a scalar field minimally coupled to a quasi-de Sitter background. Different modified theories were later investigated to
check for the production of large non-Gaussianity amplitudes which includs the P(X, ¢) theories, where X = —(9¢)?/2
is the kinetic term, schemes of modification in the gravity sector, non-minimal coupling between the inflaton and the
gravitational sector, beyond P (X, ¢) ghost free theories, e.g., string theory originated DBI inflation model, tachyon
inflation model, K-inflation model, Galileon model of inflation, DBI Galileon model, Horendeski theory etc., each
with having different combinations of operators in the effective action of the underlying theory. See refs.[5-48] for
more details.

In such frameworks, the value of the non-Gaussianity amplitude computed at the level of the three point correlation
function of scalar modes in most cases is proportional to fyr, o 1/¢2, where ¢ is the effective sound speed parameter.
Now, maintaining the causality and unitarity requirements in the underlying theory and satisfying the observational
constraints from Planck requires the effective sound speed to satisfy 0.024 < ¢y < 1 [49]. After maintaining these
constraints one can able to generate a slightly larger amount of non-Gaussianity compared to the estimation obtained
from the consistency condition with having ¢; = 1. Here it is important to note that, apart from detecting the CMB
polarization and producing very high pixelated, foreground subtracted, clean CMB maps, the initial prime claim of
the Planck observation was to detect primordial non-Gaussianities [1] with high statistical accuracy. The magnitude
of primordial non-Gaussianity of scalar modes was believed to be detected within the window, —5 < fnr, < 5 i.e
|fNL| ~ O(1) (where the expected relative high accuracy of the statistical error bars is taken into account). Such large
non-Gaussianities are almost impossible to generate from all possible single-field slow-roll frameworks of inflation or
from any of the above mentioned modified frameworks and models. Then the concept of the Effective Field Theory
(EFT) of single-field inflation [50-52] came into the picture, in which the effective sound speed ¢, is automatically
generated, but no significant improvement in non-Gaussianity was observed using such a scenario. The underlying
physical problem is related to the introduction of effective gravitational operators in the bulk and fluctuations at
the boundary. By applying the well-known Stueckelberg trick one can explicitly show that such operators can mimic
the role of a scalar field and its perturbation described in the background of a quasi-de Sitter space-time, where the
corresponding vacuum is asymptotically Minkowski flat, also known as the Bunch-Davies vacuum. A distinguished
example of Gaussanity is provided by a massless scalar field: a massless scalar field in the de-Sitter background
adheres to Wick’s theorem. Within the framework of primordial cosmology, a quasi-de Sitter background is essential
for stopping inflation at a proper scale, and this further demands the presence of a scalar field with a very small
mass compared to the scale of inflation. This induces non-vanishing but small non-Gaussian amplitudes in the slow-
roll phase of inflation, which is consistent with the findings of Maldacena’s no-go theorem [4]. From the detailed
computations of all of the above mentioned possibilities proposed within the framework of single-field models, not
very many improvements have been found yet within the slow-roll phase of inflation. At this stage, there remain
two distinct possibilities, whose implementation is expected to produce non-Gaussianities of the order, | fxr| ~ O(1)
at the level of the three-point cosmological correlation function. The first possibility is the multi-field approach
of scalar fields to describe the slow-roll inflationary paradigm, where generating large amounts of primordial non-
Gaussianities is possible without having any theoretical restrictions. However, not taking proper care of the various
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possible interactions between the fields makes it too cumbersome to solve the Mukhanov-Sasaki(MS) equation for the
mode functions of the scalar perturbations. The major difficulty arises due to the presence of a higher-dimensional
interaction square matrix, dependent on the number of fields involved. A strongly coupled framework automatically
suggests large primordial non-Gaussianities in the cosmological correlators, which are almost impossible to solve
analytically. Some authors have also investigated this problem using various theories in [53-59], including large-N
theories and random matrix theory. However, such computations in the strong coupling regime, due to their increased
sophistication, quickly become untrustworthy. For this reason, the UV-free, N formalism [60-65] is used more
frequently to describe the cosmological correlation functions. The second option is related to definite features in the
potential, followed by the slow roll phase, which might enhance the non-Gaussianity amplitude fxg, by a considerable
amount within the framework of single-field. For instance, one can consider a sharp transition from slow-roll (SR) to
ultra slow-roll (USR) phase, which basically gives rise to an enhancement in the one-loop corrected primordial power
spectrum as well as in the tree-level non-Gaussian amplitude of the three-point function of the scalar modes !. Such
a setup is very useful to describe the generation of primordial black -holes (PBHs) at the tree level [66-139]. Recently
in refs. [117, 118, 121-123], it is pointed out that having large quantum loop effects in the primordial power spectrum
of scalar modes rules out the formation of PBH. Recently, we came up with a no-go theorem which only allows us
to generate very tiny mass PBHs, Mppg ~ O(10?gm) from both canonical and EFT of the single-field inflationary
paradigm [121-123]. To know more about the impacts of the loop effects on the power spectrum in the light of PBH
formation, see other refs. [119, 120, 124, 140-145]. Now, since the findings of the tree level non-Gaussianity have to
be consistent with the findings of the quantum loop corrected amplitude of the primordial power spectrum, one can
immediately discard both possibilities in the present scenario.

Finally the question becomes of modifying the single-field theories to produce large non-Gaussianities, and if possible
then formation of large mass PBHs. For the case of the scalar-tensor theories, where the ghost-free propagator picks
up a correct sign, the effective sound speed should satisfy the causality and unitarity constraints which gives us
the Horendeski theory [146] having second order equation of motion. The subclass of the Horendeski theory is the
theory that respects the Galilean shift symmetry, which is sufficient enough to address the ghost-free properties of
the underlying theory. See refs. [12-14, 25, 26, 28, 29, 31-33, 36, 147-212] for more details in this direction.

In view of the aforementioned attractive features of Galileon field, we shall compute the non-Gaussianity amplitude
from the bispectrum which is expected to be large in this case as quantum loop effects are insignificant thanks to the
non-renormalizability property of the underlying framework. The paper is organized as follows: In section II, we have
reviewed the general framework of covariantized galileon theory with a scalar field in a de-Sitter background. Section
IIT presents a semi-classical treatment using the mode functions in terms of the comoving curvature perturbation
to compute the tree-level power spectrum in the underlying CGT framework. In section IV, we discuss primordial
non-Gaussianities in general, including their theoretical motivation and current observational status. In Section V, we
perform a detailed study on the evaluation of the three-point function and the associated bispectrum for all the three
phases individually and cumulatively using the well-known in-in formalism and information about the scalar modes
discussed in the previous sections. The numerical results are shown in section VI. Then, in section VIII we summarise
our findings. Finally, in Appendix IX A, IXB and IX C we provide the detailed computations of the bispectrum and
the associated non-Gaussianity amplitudes for each of the three regions respectively.

II. General Framework of Covariantized Galileon in de Sitter Background

The Galileon action was first introduced in [213]. It is a framework where one can obtain equations of motion of
second-order from a scalar field theory with higher-derivative terms in a Minkowski space-time. In [214], the authors
presented a construction of the Galileon theory which was ghost-free and preserved unitarity in a dynamical space-time
by introducing non-minimal coupling with the background gravity. The Galileon theory is equipped with a Galilean
symmetry, a modified version of the shift symmetry which has relation with the slow-roll feature of the inflationary
potential. This symmetry transforms a scalar field ¢ as follows:

¢ — ¢+ c+ byt (1)

where c is a scalar constant, b, is a vector constant, and z* represents the 341 dimensions space-time coordinates. The
last term in the above equation represents space-time translations since it resembles coordinate transformation between
non-relativistic inertial frames. Now, having an inflationary solution requires the soft breaking of the exact Galilean

1 In this discussion, the one-loop corrected primordial spectrum and the tree-level non-Gaussianity amplitude of the three-point function
of the scalar modes are considered at the same level of importance because both are computed using the same third-order action, which
is obtained by performing cosmological perturbation theory in a gauge invariant manner up to third-order in the comoving curvature
perturbation variable .



symmetry. This manner of breaking ensures the fact that our underlying theory, coupled with the gravitational sector,
does not receive any significant correction due to those being suppressed by the factor A/M,,; where M, is the Planck
mass. In [214], the authors also introduced a ghost-free version of the theory from Ostrogradski instability in a curved
space background in the classical regime. This is known as the Covariantized Galileon Theory (CGT). Starting with
a five-dimensional covering theory in a curved background, the action for this theory is written to be as:

M2 5
S:/d4$(}\/—g TMR—VE)-FZCZ‘EZ‘ (2)

The explicit form of the terms above, £;, Vi = 1,2, 3,4, are given by the following expressions:

L= 6. Lr=—3(VoP, L= 5(Vo)os, L= —5(Vo)?{(06) - (VuVus)(V#9"6) ~ {R(V6) 1(3)
L5 = (V6P {(06)° ~ 3(00)(VuVab) (VHV9) + 2V, V06)(V/V0) (VaVH6) — 6G TV 6V 6V a0 }.

where R is the Ricci scalar and G, represents the Einstein tensor for the gravitational background. This CGT,
with a curved background, breaks the Galilean symmetry softly. Here the coefficients ¢; are adjusted to appear in a
dimensionless manner. Also, the parameter A represents the physical energy scale cut-off for the theory. It must be
kept in mind that given our representation, the theory given is not valid above the cut-off scale. However, it is possible
for the quantum fluctuations to go beyond the energy scale A if the Vainshtein effect is active. In the terms mentioned
above, the lagrangians £4 and L5 do contain terms with non-minimal coupling to gravity, but they are later suppressed
through powers of H/A. We have kept these terms for the completeness of the covariantization description even though
we mentioned they remain insignificant during inflation, where galileon self-interactions dominates the non-linearities.
A careful examination of the above expressions shows that for specific values of the coefficients, ¢4 = 0 = c¢5, one
is able to recover the covariantized version of the DGP model. However, if the Galileon field ¢ is important only
while inflation persists, then the coefficients ¢; must be determined only through cosmological observations. Such an
analysis is performed in ref.[150] for the coefficients cs, c3, and ¢4.

Terms like a constant V{y, and those linear in the scalar field ¢ are also part of the only allowed possibilities that are
known to respect the non-renormalization theorem [12], which is going to be the prime highlighting component of this
work. To successfully implement inflation requires softly breaking the modified shift symmetry, which is possible in
the presence of such terms. Beyond this, one can look into other theories, such as the Horendeski theory [146], where
hard symmetry breaking would render the non-renormalization theorem inapplicable to implement inflation further.
We localize our present discussion towards the Galileon theory, and hence, the terms mentioned above are the only
ones necessary to consider to implement inflation in the present discussion successfully.

We now begin the discussion of the inflationary solution in a quasi-de Sitter background. The effective inflationary
potential is required to satisfy the respective constraint given by |[AV/V| <« 1. This leads to the Galileon theory in a
quasi-de Sitter background where the scale factor satisfies a(t) = exp (Ht), with H representing the Hubble parameter
which does not remain a constant. Now focusing on the Galileon part of the action, we find that upon performing
integration by parts and discarding the boundary terms together gives us the action of a time-dependent, background
Galileon field ¢(t) in the following form:

- [ec 9¢ - H¢
So = /d4a? ad {¢(2) (22 4 2¢37 + 7422 + 6C5Z3> + )\3¢0} where 7 = A(i . (4)
From this we obtain solutions under specific conditions as:
)\3
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o el L s N] ) B e s -
07 12H ¢5 2 A3| A3 N3
1803 ﬁ when VA > 1

When considering the theory in a weak-coupling regime, i.e., Z < 1, it eventually resembles the canonical slow-roll
inflation model. On the other hand, in a strong-coupling regime, i.e., Z > 1, we encounter the DGP model. However,
if Z ~ 1, then the theory lies in between two extremes of the strong and weak regimes. The relative contributions
become controlled if we compare the higher-derivative and lower-derivative terms as a result of the coupling parameter
Z having positive powers in the construction. This is because the terms with non-minimal couplings to gravity will
become insignificant due to there being no interactions with the background gravity. The non-linearities from the
Galileon sector will still be present from various derivative terms. However, under the condition Z <« 1, we have to
consider the mixing contributions of the Galileon and the non-minimal couplings from the gravitation sector since
changes due to them in the canonical slow-roll inflation will be significant in nature. In this paper, we are concerned
with the intermediate regime, i.e., Z ~ 1.



III. Semi-Classical modes from Cosmological Perturbation

In this section, we discuss the second-order perturbation under the framework of the Covariantized Galileon Theory
(CGT). We begin by constructing the classical equation of motion for the generalized curvature perturbation modes in
the Fourier space. This is the well-known Mukhanov-Sasaki equation. After this, in the subsequent sections, we solve
this equation in the three regions of interest, namely the first slow-roll (SRI), Ultra slow-roll (USR), and the second
slow-roll (SRII) regions. An analytic approach would require us to establish a quantum initial boundary condition,
known as the Bunch-Davies vacuum state, through the use of the Bogoliubov coefficients of the region of interest.
This is required to fix the mode functions in the SRI region, and using these along with the continuity conditions at
the transition points between SRI to USR and USR to SRII also determines the mode functions separately for the
other regions.

The action second-order in the curvature perturbation modes is written as a function of conformal time in the
following way:

2 A . /
S = /dT Bz a® =2 (¢ 22 (0,0)°) = /dT Bz a? e (¢ = 2 (8:07). (6)
where a derivative with respect to the conformal time is performed. Here the time-dependent quantities A and B are
represented as follows:

72
% <CQ +12¢3Z + 5dey  Z° + 12005Z3>, (7)
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where the coupling constant Z is introduced in the CGT action in the previous section. Here we introduce the first
and second slow-roll parameters, € = —%777 = —I%’O. The parameter cs in the second-order action is the effective
sound speed which is defined as, ¢, = \/g. Now that we have the second-order action with us, we move on to
introduce a new variable which redefines the curvature perturbation field and is written as, v(7,x) = z(7)({(7, x) with
z(1) = “H‘/—QTA =& é? , this is also known as the Mukhanov-Sasaki variable. Using this variable in Eq.(6) gives us its
different form whose canonically normalized version is written as:

522) = %/dT dx (1}/2(7, x) — & (Bv(r,x))° + 2 (1) v3(T, x)) (9)

Now we move towards the Fourier space for this action which leads to the aforementioned second order action being
transformed in the following manner:

1 [ &k ,
5% = §/W dr (vk(7)|2 —wQ(k,cs,T)|vk(T)|2>. (10)
where the effective conformal time dependent frequency in the present context is defined as:

"

After varying the above mentioned action in Fourier space we get the following equation of motion, which is frequently
referred as the Mukhanov-Sasaki equation (MS) and given by the following expression:

w2(k, Cs, T)

v (7) + w?(k, cs, 7)ok () = 0. (12)

In order to implement the three phases, SR, USR, and SRII, the shape of the potential is not altered here as it
would disturb the symmetry-breaking feature needed to perform inflation. We can, therefore, play with the coupling
coefficients ¢; Vi =1,--- ,5. These coeflicients are significant in implementing the three phases. Since we are working
here in an EFT framework, one can, in general, develop a large class of possibilities to generate the conditions for
the slow-roll parameters for each of the three phases. Finally, we join these three initially disconnected phases to
explain the phenomenon of PBH production within the Galileon framework; the said phases may be joined sharply



or smoothly. We have not analyzed the smooth transition case and refer the reader to refs.[120, 140, 142]. In this
discussion, we focus on having a sharp transition feature, which we have implemented by using the Heaviside Theta
function at the position of the transition, k4 for the SRI to the USR, and k. for the USR to the SRII. Apart from this
construction, the choice of those coupling coefficients ¢; also assures the formation of PBH and allows for a sufficient
number of e-foldings by maintaining the necessary perturbative approximations. A similar effect can be implemented
by our choice of the effective sound speed parameter c¢s. The definition of the sound speed involves the time-dependent
quantities A and B. These quantities are written down explicitly in Eqgs.(7,8) and the use of the coupling coefficients
¢; and the other new coupling constant Z, in terms of the time-dependent background galileon field as in Eqn(4),
is evident in their definition. Hence, to parameterize the sound speed exactly mimics the role to parameterize the
couplings ¢;.

Though we have not mentioned the explicit parameterization of these couplings, we do mention the specific param-
eterization of the effective sound speed. Its value is labelled as c; = c¢; . at the scale of horizon crossing at conformal
time 7 = 7,. Throughout the SRI phase, this value remains constant. As we approach the transition moment, at
T = 75 the value it takes is of the form ¢; = ¢; = 1+ 46, where § < 1. This value of ¢ is also the sound speed when the
other transition moment at 7 = 7, is encountered. Between the two transition moments, that is, during the USR and
continuing till the end of inflation, after USR, the effective sound speed is the same as its value at horizon crossing,

Cs = Cg x-

A. Region I: First Slow Roll (SRI) region

We now discuss the general solution of the MS equation, in the SRI region (7 < 75), for the perturbed scalar mode.

This is given as follows:
(1) ; (1) ;
O ¢ —ikcsT Bk ¢ ikesT
v = 1-— e T4 1+ et 13
k(7) V2 k ( kc,ﬂ') V2 k ( kc,ﬂ') (13)
where af(l) and Bl((l) are the respective Bogoliubov coefficients for this region. We also choose the well-known, Bunch-

Davies quantum vacuum state, which is obtained by fixing the mode function using the following choices for the
coeflicients:

ol =1, (14)
. (15)

these initial conditions helps in defining the necessary physical inflationary vacuum state. After implementing the
said initial conditions we obtain the following expression for the curvature perturbation in the SRI region (7 < 74):

_ Uk(T) _ ZHQ 1 . —ikesT

Glr) = == = <2x/ﬂ ooy (L ikesT) 7 (16)
The first slow-roll parameter, €, is roughly of a constant value during this phase and changes very slowly with time.
The second slow-roll parameter, 7, is almost zero for this phase.

B. Region II: Ultra Slow Roll (USR) region

The USR phase is denoted by the following conformal time region 75 < 7 < 7., where 75 marks the beginning of the
USR phase after the end from SRI phase and the conformal time 7. denotes the end of the USR phase. The parameter
¢ in this phase can be explicitly written using the same parameter in the SRI component as follows, e(7) = (7/75)° .
This form clearly depicts the fact that this parameter is almost of a constant value at the moment the transition from
SRI to USR phase occurs, i.e., (7 = 75) = e. After this transition, when 7 > 75, the same slow-roll parameter is no
longer a constant. This fact is crucial for the interpretation of our further analysis; hence, it is worth remembering
this fact at this stage. The general solution of the MS equation in the USR phase is written as follows:

vk () iH? 7s\3 1 (2) . —ikesT (2) . ikcsT
() = = :<zm (7) Gy X | (Ut ikear) e = BT (1= dkey) T (17)

An important thing to consider is the fact that the Bogoliubov coefficients in this region, i.e., af) and B](f), can
be expressed in terms of the initial conditions required to fix the initial Bunch-Davies vacuum state during the SRI



phase. It is achieved through a Bogoliubov transformation which ultimately suggests that the underlying vacuum now
differs in structure from the initial Bunch-Davies state. By imposing the continuity and differentiability conditions on
the modes computed from SRI and USR phases, the Bogoliubov coefficients for the USR phase can then be obtained
through the use of the Israel junction condition applied at the transition time 7, which are given by:

(2 _ 3 2.2 2
M = 1= oaman (1+k2c2r2), (18)

2 3 . 2 —2ikcsTs

D = s (L ke 2R (19)

These values will be fundamental in further analysis of the correlation functions of the modes into this region.
The parameter n has a large magnitude in this phase, n ~ —6, and this is responsible for the enhancement of the
perturbations in the this phase.

C. Region III: Second Slow Roll (SRII) region

The final slow-roll phase, SRII, is denoted by the following conformal time region 7, < 7 < Tenq, Where 7. denotes
the exit from USR and entry into the SRII region while 7.,4 denotes the conclusion of the inflationary paradigm. The
slow-roll parameter € for SRII can be written using the same parameter in the SRI region in the following manner,
e(7) = (7¢/75)% . This parameter now possesses a non-constant value throughout this region, when crossing from USR
to SRII and until the end of SRII region. The general solution of the MS equation also changes when taken into
account this fact along with the specific time-dependent nature. This is written as follows:

-H2 ; 3 1 ) i . .
C(r) = vkiT) = <21\/74) (:) W X ozl(f’) (1 + ike,T) e~ hesT — ﬂl({?’) (1 — ikeor) etkesT| (20)

To obtain this solution which includes the presence of a new set of Bogoliubov coefficients, we use the boundary
conditions fixed using the vacuum of the USR phase. The underlying vacuum structure for the SRII phase is also
now completely different and the use of the new boundary conditions, equivalently the Israel junction conditions, at
the transition from USR to SRII phase gives us the following explicit form of these new coefficients:

(3) — 1 -\ 2 2 2ikcs (Te_Ts)
ap’ = _W [9 (kests — 1) (keste +1)7 €
— {K*c7? (2keore — 3i) — 3i} {KPc7] (2kems + 3i) + 30} |, (21)
3 3 . : —2tkesTs
1(< ) = ARS8378 [(kCSTS —i)? {k*c2r2 (3 — 2ikcyte) + 3} €2 k
i (keste — 1) {30 + k2272 (2kesTs + 3} eQiszTel . (22)

These values will be crucial in further analysis of the correlation functions from this phase. The parameter 7 for this
phase is almost zero, much like what was the condition for this parameter in the first slow-roll phase.

D. Tree level power spectrum from comoving curvature perturbation

The quantization of the scalar curvature perturbations modes (i require the introduction of an annihilation ayx and a
creation operator &IT(, whose action on the initial Bunch-Davies vacuum will in turn create an excited state or annihilate
an existing state. The important restriction in order to define a Bunch-Davies vacuum state is, dx [0) =0 Vk. The
following quantization conditions, at equal times (7), must also be satisfied in order to perform the quantization
procedure:

~ A

Ge(r) e ()] = i0* (k + K, [Gelr),Ge(m)] =0, (), The ()] =0 (23)



where IIy = 0,;(x is the conjugate momentum variable of the scalar curvature mode. Once these classical modes and
its respective conjugate momenta are promoted to become quantum operators, we can then mention the following
expressions for the same operators:

Ge(7) = Geare + Gial ., T (1) = Ty + Tgal . (24)

Upon considering the late time limit 7 — 0 with the co-moving curvature disturbance, we can write the tree-level
version of the two-point cosmological correlation function as follows:

3
(Gl oo = )" 8% (k41 ) A2 k), where A2meq() = 2oy (Gebrd o) = g [G(P) 2o (25)

Currently, from our analysis done in the previous section for each of the individual phases, SRI, USR, and SRII,
we can use their solutions for the cosmological scalar perturbation modes to write down the tree-level version of the
dimensionless power spectrum depending on the particular interval of consideration, in terms of the wavenumber,

after calculation as follows:
o+ k ?
SRI
ATree( ) <W>* {1 + <ks> } when & § ks (SRI)

A freo(k) = { AUSR H* N @ @) (26)
Tree ARRR) = (5 ) (5 o) = 82| when k, <k <k, (USR)
Y Cy s

H* ke \° 2
Alfree(k) = <87r2./4c§’> (kg) ’al((g) - 51((3)‘ when ke < k < kena (SRII)

where the expressions follow upon considering to work in the super-horizon regime. To obtain the cumulative contri-
bution to the primordial tree-level scalar power spectrum, we require summing over all the individual contributions, as
mentioned in the equation above. The final form of this total contribution is a result of using the following equation:

[AZ tree ()] pogar = Aree(k) + Ares (k)O(k — ky) + ATec (k)O(k — ke). (27)

The above equation represents the total tree-level primordial power spectrum where we have incorporated the use of
two distinct Heaviside Theta functions to smoothly connect the individual contributions to the total tree-level power
spectrum from the regions SRI and USR at the transition wavenumber k = k, and from the regions USR and SRII
at the transition wavenumber k = k..

IV. General introduction to Primordial Non-Gaussianity from comoving scalar perturbation modes

In this section, we present a general discussion on primordial non-Gaussianities. They represent the deviations
from Gaussian distribution of the primordial density perturbations locally and described by the Gaussian random
fields (4 (z) which satisfies the Gaussian statistics. The original vacuum fluctuations during inflation get promoted to
classical perturbations when they exit the Horizon. In the super-horizon regime, locally each position can be treated
separately, and their evolution will be determined by the initial conditions in the form of Gaussian distributions.
Now, the observed curvature perturbations, up to first order, can be represented as a term linear in the perturbations
described by the Gaussian random fields. Hence, the non-linearities will give the presence of non-Gaussianities in
observations. This would require that higher-order correlation functions should not become zero. In the present work,
we have evaluated non-Gaussianities with the help of the three-point correlation function or the bispectrum for the
gauge invariant scalar modes. Their non-linear nature is represented mathematically through the following expression:

C00) = G0 + S AL (G00) — (GON) + -+ (25)

where ((x) is the primordial comoving curvature perturbation. Here fyi, denotes the local amplitude of the non-
Gaussianity which is a model-dependent quantity and the current observational estimates for this quantity comes
from the CMB measurements with the value of fn1, = —0.9 = 5.1 at 68% level confidence from Planck [1]. This
measurement contains significant error bars and at present do not allow for a physically concrete statement to be
made. However, with data from the future surveys, the new observations are estimated to provide improvements of
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an order of magnitude over the current estimates [2, 3]. An interesting fact about the understanding of primordial
non-Gaussianities also comes through the fact that one can split those density perturbations into a background part
consisting of a large-scale component, in which one observes appreciable changes when looking into scales comparable
to the wavelength of the long modes and a small-scale component which already provides significant deviations on
scales smaller than the long-modes. This can also be written using the said decomposition, (5 = (4,1 + (4,5 and
¢ = (1 + (g, in the following way:

Gs) = s (1 Eua() + s (20)
L) = Guu) + 2 (9 (30)

where the first equation provides a non-trivial connection between the small-scale and large-scale cosmological fluc-
tuations. These discussions lead to an important question concerned with finding a theoretical model which can
show the generation of non-Gaussianities of the order |fxr| ~ O(1). Since, these features arrive while studying the
cosmological perturbations generated in the very early universe and, remarkably, their observational imprints are also
visible in the form of the CMB data, this question becomes all the more important as it can lead to some exciting
insights into the origin of structure in the very early universe.

According to the canonical single field inflation model, Maldacena derived a consistency condition [4]:

5
N = B (1—ns), (31)
which is sometimes referred as a mo-go theorem, stating that in the squeezed limit, the value of the amplitude of
non-Gaussianity, fni,, computed using the three-point cosmological correlation function of scalar modes for single
field models during slow-roll is connected to the spectral index of the primordial power spectrum of scalar modes, and
is estimated as O(10~2), which is a very small number when considering the detection of primordial non-Gaussianities
in cosmological observations.

This is obviously a challenging task to generate large amount of non-Gaussianities from single field models of
inflation. To achieve such an interesting goal in this paper, we completely devote ourselves to study the generation of
large non-Gaussianities by explicitly breaking the Maldacena’s no-go theorem in the squeezed limit of the three-point
cosmological correlation function for the scalar modes using the underlying theory of Galileon inflation. In the next
section we are going to provide a mechanism which allows us to produce large amount of non-Gaussian amplitude
out of this computation. To fulfill the purpose as discussed before, we will introduce the three phases SRI, USR and
SRII along with sharp transitions at the phase changing boundaries near the beginning and end of the USR phase.
With the help of our computation we will explicitly show that such sharp transitions along with the transition scale
positions described in terms of the small wave numbers is able to generate a large non-Gaussianity amplitude from
the mentioned cosmological three-point function by breaking the previously mentioned no-go theorem in the squeezed
limit, particularly, in the USR and SRII phases.

V. Computing the three point function and the associated bispectrum from scalar modes

In this section, we use the information about the modes obtained in the previous section to calculate the tree level
three-point correlation function and similarly the associated bispectrum for all the three SRI, USR, and SRII regions.
We also focus on the validity of the consistency condition for single-field inflation in present Galileon inflation theory
for all three regions, especially in the USR region, which will let us know about the scope of this condition while
considering the formation of PBH. Hence, we explicitly examine the squeezed limit behavior of the bispectrum. The
Schwinger-Keldysh formalism, also known as the in-in formalism, is the well-known method with which we will begin
to introduce the expectation value for the required three-point correlation function, and that is used together with the
third-order action of CGT to calculate the results for the bispectrum and corresponding associated non-Gaussianity
amplitude.

A. The Schwinger-Keldysh formalism

The method from in-in formalism is better used to evaluate the expectation value of the required three-point
correlation function since we are interested in the expectation of operators at a specific instant of time, and the
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respective boundary conditions for the scalar modes are imposed only at very early times. This is the primary reason
for this formalism to be named as in-in.

The time-dependent expectation value for a given operator in Interaction picture is then given by in this formalism
as:

@U@ (7)) = 0] [ Texo ( / H{nt(r’)dr’ﬂcf(f) Tew (—z' JR <T’>dr’)} 0. (2
—oo(1—1i€) —oo(1+4i€)
where Q(7) is the operator in the Heisenberg picture, |©2) and |0) are the interacting and free theory vacuum in the
far past, described by:

.
(7)) = {Texp (2/ Hﬂlt(T’)dT'N 0), (33)
—oo(1+ie)
and T and T tells us that the operators are either time or anti-time ordered. The early time limit is taken by 7 — —o0
and then regularizing the integral by the ie prescription. Finally, the superscript I implies the fields making up the
interaction Hamiltonian and the operators are in the interaction picture. This picture is introduced to deal with
the non-linearities arriving in the equations of motion as a result of the interactions in the total Hamiltonian. The
expectation value of any operator is computed by first evolving the fields from the early past to the point in time of

interest and then going from that moment back to the initial time.

Now we expand this expression and take the leading order term when expanding in H IInt since this will be responsible
for the tree-level contribution which is what we are interested with for our further computations. The leading order
term is then given by:

QWIQ ) = i [ ar' 011Q"(r) ()] [0) = 2 x T [ [ aroom e e

where in the last equality the Hermiticity property is used to further simplify the commutator form. For the concern of
this paper, Q! (7) would be the three-point correlation of the curvature perturbation written as f(kl, T)é:(kQ, T)f(k;;, 7).

To begin with the evaluation of the correlation function, we must use the interaction Hamiltonian, also formed
by the interaction picture fields, and start by performing contractions using the commutation relations for the fields
for the quantized curvature perturbation, into a product of green’s functions. The critical difference between the
standard in-out and the in-in formalism here is that there is no analog of the Feynman propagator in an inflationary
background. So we have to keep that in mind while performing contractions.

While performing the Wick contraction method to evaluate correlation functions, there is first the normal ordering
of the fields where the positive frequency modes are kept to the right of the product to annihilate the vacuum, keeping
all the negative frequency operators to the left. This arrangement will be similar under normal ordering for both
the in-out and in-in cases. When we next begin to perform the contraction, we encounter the previously mentioned
expression for the two-point cosmological correlation of the quantized curvature perturbation (é (k, T)é: (k’, 7)) which
turns out to be a real quantity, more equivalently an absolute value squared of the mode functions, contrary to the
imaginary quantity of the Feynman propagator in case of the in-out formalism. Combining both normal ordering and
what we learned from the behavior of contractions from above, we can say that the expectation value of a string of
field operators evaluated using Wick’s theorem is written as:

0166 |0) = (0] : G1la -+ G 2 |0) + all possible contractions. (35)

where ¢; = ((k;, ;) and all possible contractions means including one contraction term for each way of contacting
the n operators into pairs. Using the methods learned here, we will explicitly compute the three-point correlation
function for the different SRI, USR, and SRII regions. However, before that we have to understand the third-order
action of the Covariantized Galileon Theory, which is necessary for the future computations to be possible. Hence in
the next section, we discuss details of this action for the CGT properly.

B. Third order action of comoving curvature perturbation

We now analyze how the third-order action for the curvature perturbations computed from the CGT is constructed,
which is used to calculate the required correlation functions. Here we must consider what changes the Galilean shift
symmetry can bring to the curvature perturbation. Careful analysis of these changes leads us to understand what
terms could be allowed by such symmetry and what others will not be necessary to include in the action.
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We know from our earlier discussions that the Galilean shift symmetry must be broken softly to get a de-Sitter
like solution in the inflationary phase. The curvature perturbation and its spatial and temporal derivatives transform
differently under the Galilean shift symmetry Eq.(1). Only terms breaking the shift symmetry will be of importance
while there will be additional terms which will either be absorbed through field redefinition or they vanish at the
boundary. There is one term of special importance when considering the USR period, which is of the form C/CQ. It
is one of those terms which vanishes at the boundary after the use of the shift transformation property but its effect
at the transition points, before and after the USR phase, is much significant due to its coefficient having the form
dr(n/c?). To understand how this term is actually redundant we take a look into how this term transforms under the
softly broken Galilean shift symmetry:

(¢ = (c/ - Hbo) (c’ - H(Mx)) ~ %(bﬁw)@(@) ~0 (36)
%o ®o

2 , 3
this is the result at the boundary. Remaining terms coming from this such as, (&E) (b-ox)C, (g) bo (b - 596)2,
0 0

2 ’
(g) bo (b - dx), (f) (b-0x)¢ do not participate in the third-order action. As a result of the transformation
0 0

properties and the corresponding analysis done in ref.[124] regarding the inclusion of several possible terms based on
their soft symmetry-breaking behavior, we get the following final expression for the action which is of third-order in
the curvature perturbation as a result of the remaining bulk self-interaction terms:

2
s = /dT d's — [galc’?’ + %& (0%¢) + %g’ (0:0)° + % (2:¢)” (9%¢) ] (37)

The coupling parameters G;, Vi = 1,2, 3,4 appearing in the above action are are obtained to be of the following form:

2H ¢
G: = AfO (Cg + 9c4 Z + 3OC5Z2> s (38)
263
Go: = _TP? 3+ 6c4Z +18¢5 2% |, (39)
2H &3 203 H
Gy: = —— Afo <03 +T7csZ + 1805Z2> — ‘bﬁg 0 <03 +6c4Z + 1805Z2>, (40)
43 i 3¢LH
Gs: = ;@{03—1—30424—605 [Z2+ Aﬁo}}_ (bXG n{C4+4C5Z}, (41)

where factor Z is the same as in Eq.(4). The exact details for the construction of such an action is performed by
the authors in [12], where they have detailed the construction of the third-order action considering the soft breaking
of Galilean symmetry.

Now, from our analysis about the slow-roll parameters € and 7 in the three, SRI, USR, and SRII regions, we know
that parameter € exhibits a smooth behavior when transitioning between the SRI to USR and USR to SRII phases
at their respective conformal times 7 = 75 and 7 = 7.. However, when we look at the behavior of the parameter 7
around the exact transition times, we realise that it needs extra attention due to its value being changing abruptly in
between the three phases. Consider using the following parametrization:

n(t)=—-6—An[O(t —75) — O(T — )] . (42)

The benefit of such a parameterization is found when differentiating with respect to the conformal time, where it gives
us, 7 (1) = —An[6(t — 1) — 6(7 — 7¢)], which is sharply peaked at the two consecutive transition points. However,
terms like these are forbidden in the perturbative action obtained above for the curvature perturbations due to having
softly broken Galilean shift symmetry. This particular term appears in refs.[117-123, 140, 141], where large quantum
fluctuation from the short range UV modes are present due to the absence of such a symmetry. So in our paper,
we do not worry about the derivative of the parameter i at the transition points. Nevertheless, the behavior of this
parameter at the transition points is already made clear and further we will show in the rest of our analysis that
such a behaviour of 1 will be helpful to generate large amount of non-Gaussianity in the USR and SRII regions by
violating Maldacena’s no-go theorem in the squeezed limit of our calculated three-point functions.

We end the discussion by highlighting some important facts about the strength of the cubic interaction terms in
the three regions. In the couplings G3 and G4, the second slow-roll parameter 7 is present, which enhances their
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contributions in the USR region compared to the ones coming from the last two coupling terms, i.e., G; and Go. Also,
all of the interactions in the cubic action give suppressed contributions in the phases of SRI and SRII since n vanishes
in these regions. These observations will help us in the end while considering the final result from all three phases.

In the following subsection, we will explicitly calculate the tree-level three-point function and its associated bispec-
trum using the third-order action. We show the contributions due to all the operators in the three regions and later
use them to derive the bispectrum in the three regions. Since we do not have a time derivative of parameter 7 in any
of the terms, the results which be more suppressed in regions SRI and SRII than during USR due to the presence of
a finite and large 7 in that region.

C. Local non-Gaussianity from three point function and the associated Bispectrum computation

From this point onward we begin detailed analysis of the calculation of the tree-level three point cosmological
correlation function which is also known as the Bispectrum. This function is relevant as the least order measure of
the deviation from standard Gaussian statistics. From the third-order action in the curvature perturbations discussed
using the Covariantized Galileon Theory in the previous section and working with the in-in formalism which is also
discussed before the cubic action, we begin this section by introducing the general three-point function as:

(i Grn i) : =<[Texp () )| Gaabe

—oo(1—ie)
X [T exp ( - z/ dr’ Hing (TN>):| . (43)
—oo(1+4ie)

7—0

where T and T represent the anti-time and time ordering of the unitary operators which are made up from the time
integral of the interacting Hamiltonian, which is described in this case as follows:

g4

T 2 ’
Hin(r) = [ @2 500 [ D54 S 020) + B¢ 007 +

L0007 (@) | (a4)
where the coefficients G;,Vi = 1,2, 3,4 are the same as before in the perturbed cubic action. Next, the contribution
to the three point function coming from all the diagrams due to interactions present in the Hamiltonian is written as:

(Cier Cea Ces) = (Coey Cien Cies )73+ (Coey Ciea Cies ) 72 (82¢) + (Cey Cea G ) ¢ (05002 + (Coey Ciea Cies ) (01002 (92¢) - (45)

Our main task would be explicitly calculating these contributions in all three phases, SRI, USR, and SRII respectively.
To calculate them, we use the formula from the equation developed after perturbatively expanding the formula for
the expectation of any operator up to the leading order in Hyy, (7). To keep track of formulas that we are going to use
further, we mention the general expression from which the correlation functions are then derived for each interaction
operator:

(Gaiaio) = 2 [ (e () [ ans" 00, n)}
= 2 I o ()6 (6 () [ S LT [T 4 S0 G, ) expl—ilan + s + ) )] - (46
where a Fourier transform:
Qo) = [ dn@a(m)esp(-ifan + a + a2 x) (47)

is used and Q,(71) represents the operators ;C 3 gQ ’(q fC),%C/ (q;.9;¢?), and g ((qi-q5)a?) (€)* (9%¢) where

a = a(m), and { = (q(71) are the mode functions for the concerned regions. This expression will be used for each
operator in all three regions. To perform further calculations, we would need information about the behavior of
mode functions in the three regions, which has already been evaluated in the previous sections, and we can then
contract operators who are outside the time integral with the interactions ones inside the integral as part of the wick
contraction method. It will be explicitly shown in the following subsections, where we will evaluate the contribution
from the interaction operators for each SRI, USR, and SRII region.
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Also, while calculating in each said region, the integral over conformal time will be tackled by dividing it with
respect to the region of concern:

T Ts Te Tend —0
Conformal time integral : lirr%J = (/ ) + (/ > + (/ > . (48)
T —o0 —o0 Ts Te
—— ——

———
SRI USR SRII

1. Bispectrum and associated non-Gaussian amplitude for region I: SRI

We now begin the bispectrum calculation for each operator in the SRI region. This region is defined for the
conformal time interval —co < 7 < 7, where at 75 a sharp transition occurs from SRI to USR region. Only first
slow-roll parameter e is finite (constant to be precise), and the second parameter 7 is approximately zero for this
region. From our analysis performed in this section we will show that contribution of the non-Gaussian amplitude
obtained in this section for the SRI phase is going to be extremely small and in the squeezed limiting case it will
be consistent with the Maldacena’s no-go theorem. Before we proceed, we mention that in [12] the authors found
non-zero results for the non-Gaussianity amplitude, fnr,, under the equilateral limit while for the squeezed limit they
concluded that the value of fxi, decays to zero. Our results in this section for SRI shows that under the limit 74 — 0,
in the absence of any USR and SRII phases, the value of fyi, also tends to zero. Hence, our results agree with the
findings of the authors in [12].

We mention the detailed analysis of the contributions from all operators and their combined contribution to the
tree-level scalar three point correlation function in Appendix IX A. The combined contribution as a result of the
contributions coming from the Eqgs.(82,83,84,85) is written as follows:

(Ciey G Gy )sr1 = (27)36° (k1 + ko + ka) BER (y, ko, is). (49)
where, the RHS includes the sum of the individual contributions from each operators as:

4
B (K, ko, ks) = > BG (k. ka, k). (50)

i=1

where () represents the four interaction operators such that for each of them we will have the following explicit
contributions:

H? ¢ 6 E2E2E2 K? K K K
SRI _ 1 17ah3 L Ly S0 o
B = i e e 2 () ~2e o () ) o1
H'? @G 4 k2E2E2 K2 K K3 K K
SRI _ J2 1™v2"™3 _ ) 2 - 3 _
Beror = Ay ms Ry ok {<” B ) <k> (k %) o <k> } o
H'? G, 4 kikoks
B??EIM? = (LA 1 ISR KO (18k1k2k3K + 2k (kg + k3) + 2k3 (ks + k1) + 2k3 (k1 + ko)
K K
+2 (k33 + k3k3 + k3k7) )k sin <k> — Bk koks K cos <k> + (ki” + K3+ k3
2 2 2 2 K
+5k7 (kz + k3) + b5k5 (ks + k1) + 5k (kl + kz) + 18/€1k2k’3) k3 cos (k) } (53)
S

BRI _ H2 Gy 6 kikoks
(0:0)2(8%¢) — (4A)3 H3 k‘?kgk‘g clOK3

K3 K\ K?
{klekgkg <sin k) +o7 <k$(k2 + k) + k3 (ks + k1) + k3 (ko + k)

K 1
+6k1k‘2k‘3> (COS k) — k‘i (kﬁ% + k% + k‘g + 6](5%(]62 + ]fg) + Gkg(k‘l + k‘3) + Gk‘g)(kl + kg) + 28k1koks K

ks

+12k1k2k3> (cos f) } . (54)

K
+10k1k3 + 8k3k3 + 10k%k§> (sin ) - z(kf + kS kS 4k? (kg + k3) + 4k3 (ks + k1) + 4Kk3 (k1 + ko)
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After mentioning the individual contributions towards the tree-level three-point function, coming from each inter-
action operator, we further evaluate the corresponding values of the non-Gaussian amplitude fyr, using the following
expression:

2 A’SIEée(kl)A%Eée(kQ) A’SIEée(kQ)A’SIEtIae(k?)) A’SIEée(k3)A’SI$ée(k1)
W03 BT T

BSRI(k‘l, k‘g,kﬁg)) = § 1§IIL)LIX(27T2)

- . (55)

The same factorization is also used in the USR and SRII regions to extract the information regarding the non-
Gaussianity amplitude fyi,. Also it is important to note that, the above expression is written using the dimensionless
power spectrum in the SRI region.

2. Bispectrum and associated non-Gaussian amplitude computation for region II: USR

In this section, we continue our analysis of the bispectrum for the scalar modes by working out its explicit expression
in the USR region. This region is defined for the conformal time interval 75 < 7 < 7., where we have sharp transitions
between phases SRI and USR at 75 and between phases USR to SRII at 7.. In the USR phase, the parameter € is
not a constant. However, it depends on the conformal time through the relation as defined earlier when discussing
the modes for USR, and the parameter 7 is also not a constant but takes the value n ~ —6. These facts will have
implications on the behavior of the strength of the bispectrum and the way the Bogoliubov coefficients depend on
conformal time, which is visible in the mode expansion in the USR, phase from Eq.(18).

We mention the detailed analysis of all the different contributions coming from the individual operators and their
combined results in Appendix IXB. Here we mention the results for the tree-level scalar three-point correlation
function in the USR region as the combined contribution coming from the individual operators using the specific
functions and their details in the appendix.

The tree-level contribution to the three point function due to all the operators in the USR region can be written
as follows:

(Gier o Gica yusr = (27)%0% (ky + ko + ka) BES (ky, kz, is). (56)

where the RHS consists of the sum of the individual contributions towards the tree-level bispectrum value:

4
BE (k1 ko ks) = > BG  (ky, kg, k). (57)

i=1

here @ represents the 4 interaction operators and the explicit contributions from all the operators individually are
written as follows.
From the first operator, the total tree-level contribution to the three-point correlation function is given, using the
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expressions in Eq.(74,88,89,92,93,96,97,100,101), in the following manner:

pug _ M2 G 2
(4477 H (R7K3HE)

<k1<n><k2<n><k3<n>}{<<a,2?*a,§?*a,i?*><h>1</c17kl,km) (@Bl

*(I1)2 (Ko, Ky, —ka, ks) — (a2 a8 (1) (K, b, ko, —ks) — (B 0" a ,£?*><Il>4</c47—k17k27k3>—c.c)
2)x 2) % 2) %

Jr((oz,(ﬁ) a,(w) 0423)

( (2)*ﬁ 2)*)

~—

(kg(IQ)l(/Cl, —k1, —ko) + k}(I2)2(K1, —ka, —k3) + k3 (I2)3 (K1, —k1, k:s))
k3(X0)a(KCs, k1, —ko) + kT (X2)5(Ks, k2, —k3) + k3 (I2)6 (K3, ks, —k1)>

~(@"al B k/‘%(12)7(/€2,—k’1,k2)+k%(12)8(’C27—k’27k3)+k§(12>9(’C27—k37k1)>

N7 N7 N

(ﬁ(2)* (2)* (2)*)

ay, k3(X9)10(Ka, —k1, —ka) + k3 (Io)11(Ka, —ka, —k3) + k3 (I2)12(Ka, —ks, —k1)) - C~C)

~—

+(<a£?*a;ii’*a2?* (k%k%(lgwcl, k1) + k3K7 (Te)a (K1, —k2) + k3K3 (Ia)s </c1,k3>) (" B2 a2)
(BB, k) + AR T Ko )+ KT, —k3)> (@2 af2"5(2%) (K34 0z (0, )
+kfk§(13)g(lc3,—k2)+k§k§(13)g(l€3,k3)> (B a2 2)*)<k3k2(13)10(’C47k1)+k k3 (T3)11(Ka, —ka)
+k%k§(13)12(’C47—k3)) —C-C> + kik3k3 (( (21)*a1(622) al(ci)*)(]:4)1(K:1) (a (2)*5 2)*)(14)2(/C2) -

(0"l 51 ) (M) (KCs) — (B ol ol ><14>4</<4>—c-c)+2Perms-}~ 8)

From the second operator, the total contribution to the three-point, tree-level, correlation function is given, using the
expressions in Eq.(75,104,105,108,109,112,113), in the following manner:

H12 g 4 * * * *
BEe = (0 19 (D) [cklus)gkzm)cks(rsn{((a,i'? o) 0 VX1 (ki b bs) = (002" ol)")

X (L1)2(Ka, k1, — k2, ks) — (02 2" B2 ) (1)3(Ks, by ko, —ks) — (B s af2)” ><11>4</c4,—k1,k27k3>—c.c)
+<(az(<21)*0‘1(€22)* o )(7‘“2(12) (’C17—k17—k3)+k%(12)2(’C17—/€27—/€3)> — (@B )(k2(12) (K2, —ky, —ks)
k3 (12)4(Ka, ko, — )) ("o (2)*5 )(k3(12)5(763,—k1,k3)+k%(12)6(163,—k2,k3)> —( z(j)*a/(i)*a;(c?*)

(k§<12>7(ic4,k1,—k3>+k%<12>8(/c4,—k2,—k3>> —c.c) +<k%k3)(( a0l (T5)1 (K, —ks)
(o ﬁ 2)*)(13)2(’C27—k3) (041(3)*065@22) 5(§)*)(13)3(/C37k3) (Br, o 1222)*042? )(I3)a(Ka, —k3)

—c.c) +2 Perms.} (59)

From the third operator, the total contribution to the three-point, tree-level, correlation function is given, using the
expressions in Eq.(76,104,105,108,109), in the following manner:

H?2 G3 —4 —k1ks (2)% _(2)% (2)* *o 2)*
Bg%go = (4A)3ﬁ(ki’k§k§’) [Ckl(Ts)Ckz(Ts)Cks(TS)]{ 3 (( Qg Qp, O )(Il)l(KlvklakQ’k?’) ( Bkz ks )
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x(I1)2 (Ko, kr, —ka, ks) — () ak?*ﬁ2’*>(Il>3(/c37k3,k2,—k3) B a2 al") (10)a(Ka, k1, ko, k)

—C~C> — 22 ((afj) ap) a;(fs) )(L2)1 (K1, —k1, —k2) — (a8 i) )(I2)2(Ka, —k1, k2)

3
(a2 BV (X2)5 (Ks, —her, —k2) — (B a2 alP) (X)a (Ka, by, —ks) _c.c> +2 Perms.} (60)

From the fourth operator, the total contribution to the three-point, tree-level, correlation function is given, using the
expressions in Eq.(77,120,121), in the following manner:

H1? G4 2 (2)* (2)>r< (2) (2)* (2)* )
B (o, = (24)3 H3 (k3k3k3) [Ciey (75)Ciea (T5) e (75)] k1k2k§<( Xy VX1 (K, ks ko, ks) = (o B, )

X(I4)2 (Ko, k1, —ka, kg) — (a;(i)* (2)= ﬁk3 V)3 (Ks, ki, kay —ks3) — (3 2)* ;(623)*)(11)4(/C47—/€1J€2,k3)
—c.c) +2 Perms} (61)

In the above expressions (c.c) indicates the complex conjugate of all the previous terms which takes into account the
contributions coming from the negative exponential integrals. There are also other 2 permutations in momentum
variables which are taken care of when we present the numerical results. From using the expression for the tree-level
bispectrum in the USR region we can further evaluate fyi, through the use of the relation:

6 AUS& AUS@P}e k AUSSe AUSBPEe k AUS‘S:9 AUS& k

where in the USR region we have used the dimensionless power spectrum. The explicit calculation regarding the
squeezed limit in the above equations for the bispectrum in the USR region and the related non-Gaussianity amplitude
fny is rather cumbersome to write here and would not be be very illuminating in itself. Hence, we present the results
for the case of the squeezed limit by performing a numerical analysis for the amplitude fy1, with respect to the wave
numbers in the USR region while also considering different effective sound speed values.

8. Bispectrum and associated non-Gaussian amplitude computation for region III: SRII

In this section, we continue our analysis for the bispectrum by working out it’s explicit expression in the final SRII
region. This region is defined by the conformal time interval 7. < 7 < Tepq, where 7. marks the transition from USR
to SRII region while 7,4 is the end of the SRII phase, which will eventually be taken to zero in the late time limit.

We mention the detailed analysis of all the different contributions coming from the individual operators and their
combined results in Appendix IX C. In this section, we mention the results for the tree-level scalar three-point correla-
tion function in the SRII region as the combined contribution coming from the individual operators and their specific
results in the appendix.

The tree-level contribution to the three-point function due to all the operators in the SRII region can be written
as follows:

(Giey Gies G ) = (27)0% (K + kea + k) BELL (ki Ko, K. (63)
where the RHS consists of the sum of the individual contributions towards the tree-level bispectrum value:
4
B (k1 ke ks) =Y BE (ky, ko, Ks). (64)
i=1

here @ represents the 4 interaction operators and the explicit contributions from all the operators individually are
written in the following way. From the first operator, the contribution to the tree-level three-point correlation function
is given, using the expressions in Eq.(74,126), in the following manner:

H12 92 k18 . . B .
BE = A)ng(%kg) [Gis ()i (7)o (7] k18<k2k2k3>{< o g el @01k — () B )

x(J1)2(K2) — (a2 al?" B2 (31)3(Ks) — (B )" £i>*><J1>4<K4>—c.c+2Perms.} (65)
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For the second operator, the contribution is given by using the expressions in Eq.(75,129) in the following manner:

le g 4 le * * * * * *
Bifine = Tap 15 (ki (9 ()6 () ()] kls{m‘? o) 0 RS (J2)1 (K, —hs) — (02" B "0y
123

KR (J2)2 (K, —ks) — (a0 B2 kK3 (32)3 (s, ks) — (B al)* al* Vk3k3 (J2)a (K, —ks)

—c.c+2 Perms.} (66)

For the third operator, the contribution is given by using the expressions in Eq.(76,132) in the following manner:

SRIT H? G3 4 ke | @ @9 @)%,2 O
B (8 02 = (4,4)3?(]63]{3]63) [Ckl(Te)Ckz(Te)Cks(Te)] le (Oékl OékZ Oéks )]{i3(J3)1(’C1,—/€1,—/€2) ( ﬁkz ks )
1RaR3

S

xk3(I3)2(Ka, —k1, k2) — (0" ol B2 VK3 (33)3(Ks, —kr, —k2) — (B ol ol k3 (I 3)a(Ka, by, —k2)

—c.c+ 2 Perms.} (67)

For the fourth operator, the contribution is given by using the expression in Eq.(77,135) in the following manner:

H12 g4 2 le * * * * * *
B(Sgglcl)(aig)z = (4A)3m(k§’k§k§’) [Ciey (Te ) o (Te ) Cieg ()] == AL (a(l) a,(i) a,(fs) V(J4)1 (Ko, Ky ko, k3) — (a,(f) Bkz i) )

X (Ja)a (Ko ki, —ka, ks) — (a2 D" B2)(34)5 (K, b, ko, —ks) — (B2 a2 al®*)(34)a(KCa, —kn, ko, k)

—cc+2 Perms.} (68)

In the above expressions (c.c) indicates the contributions from all the negative exponential integrals and the terms
obtained from the other 2 permutations in the momentum variables are also taken care of in these results. From using
the expression for the tree-level bispectrum in the SRII region we can further evaluate fyi, through the use of the
relation:

AT (k)AL (k2) | AT (ko) AT (Rs) | AT (ks) AL (k)
T E kSRS

6
Bk, ko ) = 2 XL > (2%)? [ (69)

where in the SRII region we have used the dimensionless power spectrum. The explicit calculations for the squeezed
limit in the above equations for the bispectrum and the related non-Gaussianity amplitude fxr, in the SRII region is
dealt in a similar way, as done for the USR region, by performing a numerical analysis for the amplitude fnr, with
respect to the wave numbers in SRII region, for different values of the effective sound speed.

D. Total bispectrum and associated non-Gaussian amplitude

In this section, we present the combined version from the individual bispectrum contributions and the associated
non-Gaussian amplitudes from the three-point function of the scalar modes computed for all three regions, SRI,
USR, and SRII. To perform this, we would have to be extremely careful about the behavior of the amplitude at the
transition points, 75 for SRI to USR, and 7. for USR to SRII transitions. The sharp transition features between the
three regions are taken care of at their respective wavenumbers in the following manner:

BI (ky, ko, ks) = BEE (ky, ka, ks) + ©(k — ko) BEEE (ky, ko, ks) + O (k — ke) B (K1, k2, ks) (70)

This quantity represents the total bispectrum, and here we refer to the Eqgs.(50,57,64) while adding the individual
bispectrum results. It is this quantity that will be ultimately useful to give us the total behaviour of the non-Gaussian
amplitude across all wavenumbers. This expression also involves using Heaviside Theta functions to join the individual
contributions carefully at their respective wavenumbers, as done similarly in the case of the total tree-level scalar power
spectrum in Eqn.(27).
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For the case of the squeezed limit where one of the momenta is much shorter (long wavelength) than the others,
ie., k1 — 0 and ko = k3 = k, we can express the total contribution to the tree-level bispectrum as the following;:
B (ky — 0,k k) = B (ky — 0,k klk < kg) + O(k — ko) BEL (k1 — 0,k k|ks < k < k)
+O(k — ke) B (k1 — 0,k k|ke < k < kena). (71)

Through the use of this we now mention the expression for the total non-Gaussianity amplitude fyi, in the squeezed
limit as:

I?;ital(k) = 1%%1(]‘5 < kS) + G(k - kS) gER(ks Sk< kE) + G(k - ke) ggll(ke <k< kend)~ (72)

The results related to this quantity will be examined in the next section, starting with the individual contributions
before presenting the final behaviour of the total non-Gaussian amplitude across all wavenumbers joined carefully
using Heaviside Theta functions.
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FIG. 1. The plot represents the contributions of individual operators to the non-Gaussian amplitude fy1, in the SRI region as a
function of the wave number. The values of the effective sound speed parameter cs are chose to be as follows ¢; = 0.04, 0.05, 0.06.
The plots in the top row represent contributions from the first and second operator. The plots in the bottom row represent
contributions from the third and fourth operator.
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Total non — Gaussian amplitude in SRI phase using squeezed limit
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FIG. 2. Plot represents the total contribution of all operators to the non-Gaussian amplitude fnr, as a function of the wave
number in the SRI phase under the squeezed limit. The values of the effective sound speed parameter cs are chose to be as
follows ¢s = 0.04,0.05,0.06. Here we find that c¢s = 0.05 gives the best agreement with the value predicted from the consistency
condition.

VI. Numerical Results

In this section, we present our results obtained from the analysis of the non-Gaussian amplitude fyi, in the squeezed
limit. We will begin by mentioning the plots showing the behavior of the parameter fnp with respect to the wave
number (k), for different values of the effective sound speed (¢;), coming from all the four interaction operators
individually and finally their combined contributions separately for all the three regions, SRI, USR and SRII. This
gives us essential insights into the way the coefficients for the interaction operators change between different regions,
since they are time-dependent, to validate the consistency condition as per Maldacena’s mo-go theorem in the first
slow-roll region, and to also control the behaviour of the non-Gaussianities produced in the next two USR and SRII
regions in the squeezed limit. Here we will find out that the consistency condition is clearly violated in both the USR
and SRII regions and we will see the production of large non-Gaussianity in both the regions, with amplitude in SRII
being much less than in USR but still greater when compared to SRI.

A. Results obtained from region I: SRI

In this subsection, we present our findings through representative plots regarding the variation of the non-Gaussian
amplitude fyr, with respect to the wave number (k) in the SRI region. We first show the individual contributions of
each operator towards this behavior and then give the combined behavior of all the operators together.
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FIG. 3. The plot represents the contributions of individual operators to the non-Gaussian amplitude fxr, in the USR region as a
function of the wave number. The values of the effective sound speed parameter cs are chose to be as follows ¢; = 0.04, 0.05, 0.06.
The plots in the top row represent contributions from the first and second operator. The plots in the bottom row represent
contributions from the third and fourth operator.

From the figure in Fig.(1), we can see that the contribution from the first operator ¢'3 towards fxr, in plot (1(a))
is much smaller than the contribution from the second operator which gives the highest contribution overall in the
SRI, plot (1(b)). The operators third ¢ (8;¢)? and fourth (9;¢)29%¢ gives the least significant contribution in plots
(1(c),1(d)). Results from the plot (1(b)) are very close to what the value of fxi, is obtained from the Maldacena’s
consistency relation in the squeezed limit, i.e., fyr ~ O(1072), and especially for ¢ = 0.05 the result is in exact
agreement with the consistency relation. All the individual contributions tend to move towards zero as ¢, is increased
except for those coming from the first operator. This specific behavior is the result of the analytic structure of the
individual terms and their dependence on cg, where throughout the analysis the causality and unitarity constraints
are perfectly maintained.

The combined contributions from all the operators are given in Fig.(2) where the fyi, amplitude is plotted against
the wave number while considering the same set of different values for the sound speed to check for the variation
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Total non — Gaussian amplitude in USR phase using squeezed limit
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FIG. 4. Plot represents the total contribution of all operators to the non-Gaussian amplitude fxr, as a function of the wave
number in the USR phase under the squeezed limit. The values of the effective sound speed parameter ¢ are chosen to be as
follows ¢s = 0.04,0.05,0.06. Here we find that the value predicted from the consistency condition is being violated

in results. According to the analysis for the plots in Fig.(1), the total contribution in Fig.(2) looks similar to the
contributions from the second operator, with the inclusion of contributions from the first operator evident in the final
results. The fact that the second operator contributes so heavily, in addition to the slight but visible contribution
of the first operator and the least significant effects of the other two operators, is encoded in the coefficients G;,
Vi =1,2,3,4. In the end, from the overall results in Fig.(2), it is clear that for ¢, = 0.05, the consistency relation as
a result of Maldacena’s no-go theorem is strictly valid, and even for small changes around this value does not lead to
any violation of the said consistency relation as expected for the case of the SRI region.

B. Results obtained from region II: USR

In this subsection, we present the representative plots regarding the variation of the non-Gaussian amplitude fnr,
with respect to the wave number in the USR region. Here also, we first show the individual contributions of each
operator towards this behavior and then give the combined behavior of all the operators.

From the figure Fig.(3), we see that the contributions from individual operators in the USR region to the non-
Gaussian amplitude, fyr, is significantly higher than the value produced by the consistency relation in the squeezed
limit, i.e., fnr ~ O(1072). This behavior shows the clear violation of the Maldacena’s consistency relation in the
USR region. Contributions from all the operators are essential for getting the overall behavior in this region, unlike
in the SRI region, where only a few operators had a visible impact. The values in these plots are well within the
bounds for maintaining the perturbativity approximation and give us the required enhancement for the production
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FIG. 5. The plot represents the contributions of individual operators to the non-Gaussian amplitude fxr, in the SRII region as a
function of the wave number. The values of the effective sound speed parameter cs are chose to be as follows ¢; = 0.04, 0.05, 0.06.
The plots in the top row represent contributions from the first and second operator. The plots in the bottom row represent
contributions from the third and fourth operator.

of PBH and in the corresponding primordial power spectrum amplitude. The contribution from the first operator
in plot (3(a)) consists of oscillations which are less significant when compared to the contributions from the second
and third operators in plots (3(b), 3(c)), while the fourth operator in plot (3(d)) does not exhibit a clear oscillatory
nature. The presence of a sharp rise or fall in the behavior of the amplitude is also visible, coming from all the
operators, at either the beginning of the USR phase, for k, ~ 10 Mpc~!, or near the end of the phase, for k. ~ 107
Mpc~!. From this, we conclude that a sharp transition will be present when crossing over from the SRI to the USR
region or from the USR to the SRII region. For different sound speed values, the plots do not deviate significantly
relative to each other and the causality, unitarity constraints are perfectly maintained. However, as we increase the
sound speed values, the behavior is more enhanced than for the previous values, which can be clearly visible in all of
these representative figures. In the plot in Fig.(4), we present the total contribution of all the operators towards the
non-Gaussian amplitude fyr,. After their addition, we see a definite sharp behavior in the values right at the position
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Total non — Gaussian amplitude in SRII phase using squeezed limit
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FIG. 6. Plot represents the total contribution of all operators to the non-Gaussian amplitude fxr, as a function of the wave
number in the SRII phase under the squeezed limit. The values of the effective sound speed parameter cs are chose to be as
follows c; = 0.04,0.05,0.06. Here we find that the consistency condition is again being violated.

of the transition wave numbers ks and k.. The green line shows the value obtained from the consistency relation,
and the values for fyr, in the USR region are significantly larger than that, indicating the violation of the consistency
relation. The coefficients G; Vi = 1,2, 3,4 are adjusted accordingly to control the behaviour of the amplitude.

C. Results obtained from region ITI: SRII

In this subsection, we present the plots regarding the variation of the non-Gaussian amplitude fyr, with respect to
the wave number in the second slow-roll (SRII) region. We first show the individual contributions of each operator
towards this behavior and then give the combined behavior of all the operators.

From the figure Fig.(5), we see that these contributions are much larger in amplitude when compared to their
corresponding operator plots in the SRI region, and consequently display larger deviation compared to the value
from the consistency condition, i.e., fnr, ~ O(1072). This is expected as the fluctuations in SRII region are already
enhanced after going through the USR phase and the vacuum state corresponding to this region is also a non Bunch-
Davies type which supports large non-Gaussianities. The amplitude must be larger than the values in the SRI region
but still smaller when compared to the USR region, which is clear from the plots. Also, the fluctuations only seem
to increase drastically when the end of inflation, i.e., kena = 6 x 1026 Mpc™! is reached. In terms of individual
contributions, those coming from the plot (5(a)) contains less rapid oscillations and the fluctuations tend to increase
fast as ¢, is increased, while fluctuations in the plot (5(b)) are violent in nature and increases as ¢; is increased. Similar
is the case of the plots (5(c), 5(d)) where after a certain value of the wave number we only get positive oscillations.
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Total non — Gaussian amplitude in SRI + USR + SRII phase in squeezed limit
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FIG. 7. Representative diagram of the cumulative behavior of all three phases, SRI, USR, and SRII, towards the non-Gaussian
amplitude fxi, as a function of the wave number in the squeezed limit. The effective sound speed c; is fixed as ¢s = 0.05. The
pivot scale is fixed at k. = 0.01 Mpc~?!, the SRI to USR transition is fixed at ks = 10 Mpc~?, the USR to SRII transition is
fixed at ke = 107 Mpcfl, and the end of inflation at kena = 10%7 Mpcfl. Large non-Gaussianity is observed within the USR
phase with the peak non-Gaussianity value being observed at the scale ~ 8 x 10° Mpc~!. Lastly, a sufficient amount of 60
e-foldings is achieved from our analysis.

However, only for the fourth operator do the oscillations decrease when ¢, is increased. This can be understood from
the analytic relation for this operator and its dependence on the parameter c;.

The plot in Fig.(6) contains the combined behavior of all the operators, where the parameter fyi, is plotted against
the wave number while considering the same set of different values for the sound speed to check for the variation in
results. The result eventually displays the similar violent oscillations as found in the individual contributions and the
values increases as the parameter ¢ is increased. The deviation from the consistency condition is also clear from the
plot.

D. Bispectrum related shape function and the corresponding numerical plots

In the previous subsections, we demonstrated our results for the behaviour of the non-Gaussiantiy parameter, fni,,
throughout the three regions after utilizing the explicitly calculated form for the three-point correlation functions as
shown before. In this section, we elaborate on another crucial property of the bispectrum, which is the shape function,
and examine its results for all three phases.

From its definition, we know that the bispectrum is a function of the three momenta, ki, ks, and kg, such that
under the conditions imposed by translation invariance (homogeneity) and rotation invariance (isotropy), those three
momenta form various triangular configurations depending on their magnitudes relative to each other. The resulting
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FIG. 8. Representative flow chart of the underlying process of generating large primordial non-Gaussianity from transient ultra
slow-roll Galileon inflationary paradigm and its connection with large mass PBHs formation.

shape of the triangle contains information about the non-Gaussianity source. Thus, its qualitative analysis also helps
to support the determination of the fxi, parameter [16, 215].
We now introduce the other version used to define the bispectrum as follows:

3
Beee(kay ko, k) = S(k1, ko, k) X ngL(%?)2 11 % (73)
i=1""1
The above expression results from the existing relation for the bispectrum that involves the tree-level scalar power
spectrum, in Egs.(55,62,69), and which ultimately enables the calculation of the quantity fnr, for each region.

The shape of the bispectrum refers to the particular form of function S(k1, ko, k3) which treats the momentum
ratios, say xo = ko/k1 and x3 = ks/k1, as its variables while the total momentum, K = ki + ko + ks, is kept fixed.
Different names for the shape exist depending on the kind of relation the function has with the momenta. One
of them is the squeezed configuration, where one of the momenta is very small compared to the other two, which
becomes equal due to momentum conservation, k1 < ko ~ k3. Another one is the equilateral configuration, where all
the three momenta remain equal, k1 = ko = k3. To visualize these particular shapes, we require the 3D plot of the
shape function, and there we start with the assumption that xo < x3, which helps to avoid considering repetition in
configuration, and the arguments must obey the triangle inequality xs +x3 > 1. The actual quantity to 3D plot is the
dimensionless quantity, =5 1x3_ s (1, 29, x3), because the definition used in Eqn.(73) must determine the bispectrum
as a homogeneous function of degree —6. Also, we set to zero the region outside the interval, 1 — x5 < x3 < 2, s0
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that the same configuration does not get plotted twice.

Shape function for the SRI phase

FIG. 9. Plot of the function x;le;lS(l,wg,xg) for the SRI region. The shape is normalized to 1 in the equilateral limit,
z2 = x3 = 1, and vanishe outside the region 1 — x> < z3 < x2.

We now analyze the various shapes obtained for the three regions. Starting with the SRI phase, the bispectrum
contains interaction between different Fourier modes resulting from the expression in Eqn.(73). However, within
the figure Fig.(9), the more informative feature that is visible is where the shape peaks around the squeezed limit,
x3 — 0 and xo — 1. This limit corresponds to the case where one of the modes becomes much longer, k3 — 0 here,
than the others and freezes out much before forming a background for the evolution of the remaining two modes.
The non-linearities then develop when outside the horizon and produce the above shape. Under such a scenario,
the consistency condition from Maldacena’s theorem holds good, and therefore our previously obtained result for the
non-Gaussianity fnr, in Fig.(2), for the SRI region is supported here by the shape function behaviour.

Next we proceed with the shape for the USR region. The figure Fig.(10) shows an interesting behaviour of the
shape. In the squeezed limit, z3 — 0 and x5 — 1, the shape drops quite sharply, as indicated by the violet colour. This
feature is precisely the opposite of what is needed to establish the consistency condition, and hence, the correlations
are highly suppressed in the squeezed limit. There are also sharp and discontinuous regions present in the shape,
specifically when approaching the squeezed limit, which signifies sharp and rapid changes in the non-Gaussianity fnt.,
as already seen previously in fig.(4). The shape sees a continuous increase in the values when both zo — 1, and
x3 — 1, which is also the equilateral limit. Having a USR phase corresponds to a non-attractor feature within the
theory, which leads to deviation from the consistency condition. Also, since our theory consists of higher derivative
operators, this ultimately results in increased interactions between the modes that cross the horizon simultaneously,
and beyond that, their interactions start to become negligible. This feature is an essential reason for the observed
shape of the bispectrum in the equilateral limit.

The figure Fig.(11), depicts the shape for the SRII phase. In a similar spirit as for the USR case, the shape here is
almost flat until it sharply changes near the squeezed limit while also maximizing near the equilateral limit. Both the
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Shape function for the USR phase
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FIG. 10. Plot of the function 1‘2_11‘;15(17562,563) for the USR region. The shape is set to vanish outside the region 1 — x2 <
T3 < ZT2.

USR and SRII phases feature an underlying quantum vacuum structure increasingly shifted away from the Bunch-
Davies vacuum state, and no longer is the consistency condition guaranteed to hold in such a case. It is, therefore,
a consequence of the mentioned properties of the vacuum and increased interactions shown through the bispectrum
shape in the equilateral limit that leads to large non-Gaussianities in both the USR and SRII, as also seen in fig.(4,6).

E. Cumulative results obtained from all regions: SRI 4+ USR 4+ SRII

The representative diagram in Fig.(7) describes the behavior of the non-Gaussianity amplitude fni, through all the
three regions, SRI, USR, and SRII, and represents the combination of the specific behavior of fxr, as seen in the
Figs.(2,4,6) into a single plot.

In the single field slow-roll model, for getting large mass PBH, the values k; = 10® Mpc~! and k. = 107 Mpc~!
is fixed; that restriction comes through the one-loop calculations. Now, the mass for PBH satisfies the relation
Mppn o< 1/k2. The problem arises when the value of k is small, then we can generate large solar mass PBH, but,
reducing the number of e-foldings in the case of single-field slow-roll models. We can only achieve 20-25 e-folds when
also considering the quantum loop effects. As a result, only PBH with small Mpgpy can get produced by pushing the
values to k, = 102! Mpc~! and k., = 10?2 Mpc™!, where such large values are required to have inflation. Hence, we get
Mpgra ~ O(10%) gm in this framework by pushing the wave number towards larger values due to the proportionality
relation before. This problem exists within the single field slow-roll model due to the need for applying renormalization
and resummation techniques which would then require the duration of the SRII region to be very small and total
number of e-foldings, ANTotal ~ 25. Which means that generating large Mppp would require total e-foldings to be
25; if in the present situation to have sufficient inflation 60 e-foldings is the goal, we could only get small Mppy in
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Shape function for the SRII phase
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FIG. 11. Plot of the function w;lxgls(lwz,xg) for the SRII region. The shape is set to vanish outside the region 1 — x2 <
T3 < T2.

the single field models of inflation. For more details see the refs. [121-124] where the details regarding the single field
inflation has been discussed with proper justifications.

In the present Galileon inflationary paradigm, there is the facility to accommodate both the scenarios, which can
able to generate both large and small mass PBHs. Additionally, in the Galileon theory, SRII duration can be changed;
the duration for USR is always the same in almost all types of frameworks, which is ANysr ~ 2. If we increase the
duration of the SRII phase to achieve the 60 e-foldings, then we can generate large Mppy with a SRI to USR sharp
transition scale k, = 10° Mpc~! and USR to SRII sharp transition scale k., = 10° Mpc~!. If we shift k, = 102!
Mpc~! and k. = 1022 Mpc—!, then SRII duration will be very small, and we can generate only small Mppy within
the framework of Galileon inflation.

The non-Gaussianities are calculated using the third-order perturbed action, which is also used to calculate the loop
effects [121-124]. The properties of the non-renormalization theorem, in the present Galileon theory, do not require
a renormalized version of the power spectrum, so resummation is also unnecessary. Hence, earlier those methods
which were giving huge constraints and did not allow for a prolonged SRII phase are not present in the case of the
Galileon theory, and we can generate large Mppy. The requirement for the generation of large non-Gaussianities from
the theory, which can also be possible to detect and facilitate the generation of large Mppy, requires the addition
of an important new feature in the theory. The deviation from Gaussianity is significant when a sharp transition
is present from one region to another, and the respective position of both the transitions, SRI to USR and USR to
SRII, is essential because, in the final results, the amplitude would appear to be proportional to the inverse power
of those transition wave numbers. Hence, an increase in the value of ks and k. in the denominator will suppress
the total contribution. At wave numbers k, = 10° Mpc~! and k., = 107 Mpc~!, the enhancement is significant. So,
in conclusion, if large Mppy is required, then only large non-Gaussianities are produced, and for tiny Mpgy, the
non-Gaussianities would be negligible.
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Now, the proportionality relation for Mppg follows Mppr o 1/k2 and a similar relation for fx, is presently modified
to become proportional to inverse powers of both ks and k.. If we assume that huge quantum fluctuations can produce
an amplitude of the order O(10~%), rather than the actual O(10~2) amplitude required for PBH creation, then the
finding for PBH production is inconclusive. It is not enough to have substantial non-Gaussianities even if the power
spectrum amplitude is small. The precise location of the transition wave numbers is also important in calculating the
quantities, Mppy and fni,.

Now, we mention clearly the highlighting outcomes and its physical consequences from the analysis performed in
this paper point-wise:

(a) Implication of Non-renormalization theorem: The Galileon theory has this theorem as its most attractive
feature. In the case of single field slow-roll models, due to the presence of quantum loop effects and the need
to complete inflation with the required amount of e-foldings, i.e., 60 e-folds, we will not be able to achieve large
Mppy and maintain 60 e-folds of expansion at the same time. The need for renormalization and resummation
procedures puts extra constraints. In Galileon theory, however, such constraints are not present and we are able
to have a sufficiently long SRII period to complete inflation. This later helps to produce large non-Gaussianities
which facilitates the formation of large Mppy due to the help of a new sharp transition feature which comes
when going from SRI to USR and USR to SRII regions.

(b) Mass of PBH: In this work, we are primarily interested in the case of large mass PBHs, which are more
interesting from the cosmological perspective as they can provide for a substantial fraction of the present-day
dark matter. In the case of working with canonical and non-canonical single field models of inflation in the EFT
framework, the necessary need to perform renormalization and resummation procedure puts strong constraints
on the position of the USR, shifting its position to larger wavenumbers which ultimately makes it possible only to
generate small Mppy, as evident from the relation Mppy x 1/ k? [121-123]. However, quantum loop corrections
and related constraints remain absent in the case of Galileon as per the non-renormalization theorem, which
allows us to shift the transition scale at the position of interest [124]. Moving it towards the larger values
generates small Mpgy while towards the smaller value, we can observe larger Mppy. Regardless of the USR
position, we will observe large non-Gaussianity in return. Fortunately, since we demand the case of large Mpgy
in the present analysis, we also observe the corresponding scenario of large non-Gaussianity in the USR phase.

(c) Controlling Non-Gaussianities: In the present framework, to produce PBH with the help of a sharp tran-
sition window satisfying k./ks ~ O(10), the amount of non-Gaussianity suffers a great increase in the USR
region which has to be controlled using the coefficients G;, Vi = 1,2, 3,4. If the transition wave numbers are of
smaller order then the enhancement could be managed in a controlled fashion and it will be able to give us large
Mpph. However, if the same wave numbers are shifted to much larger orders, then the controlling would require
extreme fine-tuning of the coefficients which can also lead to a violation of the power spectrum constraints and
we can only expect small Mpgy with small non-Gaussianities. Hence, to have controlled non-Gaussianities in
the present theory, we have smaller values of the transition wave numbers. From our results in Fig.(7), the
amount of non-Gaussianity from SRI region is of the order O(1072) and from the USR and SRII region it is
of the order O(1). Hence, the cumulative average of the amount of non-Gaussianity produced all the three
regions is of the order |fnr| ~ O(1). It is clear from these results that the bound on the amplitude fi, from
Maldacena’s no-go theorem, which is | fxr,| ~ O(1072), is strictly satisfied in SRI region, while the same bound
is strongly violated in both the USR and SRII regions.

The representative flow chart Fig.(8) provides a general view of our overall findings. It shows that we are able to
predict the generation of large non-Gaussianities which also facilitates the formation of large mass primordial black
holes, Mppg ~ O(10% — 103%)kg. The non-renormalization theorem protects the galileon theory from unwanted
quantum effects which, along with an additional phase with AANysr ~ 2 helps to support our previous statement.
The figure also shows that we are able to control the amount of non-Gaussianity produced in all the three phases
through which we are led to witness the violation of the consistency condition in the USR and SRII regions.

The table I provides a comparison between the amplitude of the one-loop corrected power spectrum as calculated
in [124] and the amount of non-Gaussianity which we obtain for each of the three phases, SRI, USR and SRII, in
our present work. It also highlights the important features regarding the validity of the consistency condition and
the behaviour of the amplitude fy;, when transitioning between the phases, which are obtained in our findings and
visualized through our plots in Figs.(2,4,6,7).
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A comparison between the One-loop power spectrum and Tree-level non-Gaussian effects in Galileon theory for all three phases

Phase One-loop corrected Non-Gaussian amplitude | Allowed Wave number Highlights and findings
Power spectrum amplitude (A? (k)) (fni) (k Mpc™1)
ke < k< ks No large non-Gaussianities observed.
SRI 01079 (0.01,0.05) where k, = 0.01Mpc™1, Non-Gaussianity of ©@(1072) observed.
and ks = 10°Mpc™!. Consistency condition (¢)

Total e-folds achieved: ANgr1 = 18.

Sharp transition observed at

ks < k < ke the beginning and end of the phase.
USR 0(1072) (—5,5) where ks = 10°Mpc™!, Large non-Gaussianities ~ O(1).
and k. = 10"Mpc~*. Favourable for large Mppy.

Consistency condition (X)
Total e-folds required to maintain

perturbativity approximation: ANysr = 2.

Sharp transition observed while

ke < k < kend exiting the USR phase in beginning.
SRII O(107%) (-1,2) where k. = 10"Mpc ™1, Large non-Gaussianities ~ O(1).
and keng = 102" Mpc ™. Consistency condition (X)

Rapid oscillatory behaviour near keng-
Total e-folds required to complete

inflation: ANsgrr = 40.

TABLE I. Comparison between one-loop corrected power spectrum and tree-level bispectrum amplitudes. We mention each
of their values for all the three phases along with the respective wave numbers involved. The important highlights from our
analysis of the results for the bispectrum is also present which discusses the amount of non-Gaussianities produced, the behavior
of the non-Gaussian amplitude, the total number of e-folds required and validity of the consistency condition in each phase
represented using ¢ and X.

VII. Comparison with other works

In our present work, we show the violation of the well-established consistency condition between the amount of
non-Gaussianity and the spectral tilt in single-field inflation models of inflation under the squeezed limit. Within our
underlying framework of Galileon theory, including a USR phase that provides for a non-attractor evolution of the
background, rightfully exhibits this violation, which only attractor models of inflation respect. The violation is drastic
as the amplitude rises quickly when a sharp transition occurs from a slow roll to a briefly lived USR phase. We have
gone through a rigorous analysis which involves the comoving curvature perturbation dynamics in the superhorizon
regime to truly determine how the overall strength of the non-Gaussianity gets produced in various phases. The final
result is the behavior of non-Gaussianity with the wavenumber using the existing relations, Eqs.(55,62,69), in the
squeezed limit.

The present analysis rests on a detailed computation for the bispectrum. In the study by Palma et al. [216],
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they provide a general discussion on the underlying origins of non-Gaussianity for single-field inflation models with a
non-attractor evolution of the background. Their arguments for this dramatic violation of the consistency condition
are driven purely by considering the symmetries involved, using which they have presented a modified version of the
consistency condition for it to hold during the USR phase. The proposed new result adopts a similar approach for its
derivation by which the original consistency result was re-derived there mainly following symmetry arguments. Our
analysis does not introduce any newer version of the consistency condition. Their main result in [216], in the limit of
e — 0 and n — —6, reduces to give fnr, = 5/2 and agrees with the previously derived relation between the bispectrum
and the power spectrum in the squeezed limit when a violation of the consistency condition occurs [217, 218]. The
value of fnr, = 5/2 signals large non-Gaussianity in the USR, and the magnitude also agrees with the predictions
through our calculations, but we also show from our analysis that a maximum of fxp, ~ —6 is possible to achieve.
Both the results, in the present work and by Palma et al., point towards the reason for this violation involving the
superhorizon evolution of the curvature perturbation modes.

In another work by Cai et al. [219], the authors discuss the effects of the two kinds of transitions, smooth and
sharp from a USR to another SR region, on the modification of the non-gaussianity generated in the USR phase. We
have explicitly focused on the sharp nature of transition, which has a significantly different effect on the evolution
of perturbations than the other smooth case. Also pointed out through the construct in our work is that the non-
attractor phase of background evolution is relatively small, ANysr ~ O(2), compared to the total e-foldings required
for successful inflation achieved after the addition of another SRII phase. In our present setup, there is no relaxation
phase, and the transition from the initial SRI to the non-attractor USR, and from the USR to the SRII phase happens
instantly, which is evident from the change in the n parameter going from n — 0 in SRI to n — —6 in the USR and
n — —6 to n — 0 from the USR to SRII. For such a step function transition feature, had we considered a case of
starting with an initial non-attractor phase that transitions into another SR phase, then according to the analysis
in [219], this would modify the non-gaussianity present in the non-attractor phase which does not lead to recover its
value fxr, = 5/2 as the mode functions do not freeze. Our setup has a case where the sharp transition is incorporated
to connect two slow-roll phases, namely SRI and SRII. We have found that after we observe the transition from the
initial SRI, the consistency condition gets violated and remains as such due to the presence of such sharp transitions.
This result differs from the authors’ conclusion in [219]. Their analysis centers around canonical non-attractor and
specific models of the P(X,¢) class and the effects of transition features on non-gaussianity in such models. Our
underlying model is the Galileon theory, a beyond P(X,¢) class of model. In this Covariantized Galileon Theory
(CGT) driven USR phase we do observe large non-gaussianity, fnr, ~ —6, which is a result of this sharp transition
and this feature also suppresses the amount of non-gaussianity to fnr, ~ 2 in the SRII phase, which still remains in
the category of large non-gaussianity thus violating the consistency condition. In the driven USR phase model, we
conclude that the generated non-gaussianity will always be more significant than the slow-roll case and remain so
after we enter another SRII phase. This scenario is also directly related to the parameterization used for the effective
sound speed c¢,, which is adjusted to peak abruptly near the transition scales in our model. This feature generates a
strong result as it also tags the large non-gaussianity with PBH production in the USR and leads to the theory being
consistent and supportive of the observations coming from the latest NANOGrav 15 signal [220]. There are similar
works in [137-139, 221-223] which highlight the advantages of this large non-gaussianity feature, fni, > 1, from the
perspective of observations with the NANOGrav 15 signal and in addressing the severe PBH overproduction problem.
Our results here show that our model is well-suited to support the conclusions from the observational side.

VIII. Summary and conclusions

In this paper, we studied the production of large primordial non-Gaussianities in the framework of Galileon inflation.
Generation of large non-Gaussianities has always been a challenge [4]: Single-field models of inflation, including the
P(X, ¢) theories and the multi-field framework, are either not able to produce a significant amount of non-Gaussianities
or are too cumbersome to give any meaningful results. We have demonstrated that said problem is relaxed with the use
of the Galileon theory, where the effective sound speed satisfies the unitarity and causality constraint of 0.024 < ¢z < 1
and the framework does not contain any unwanted ghost terms. We have shown that there is a significant improvement
when an additional mechanism, requiring a sharp transition from the SRI to the USR phase, is added, enabling an
increase in the overall non-Gaussianity. This also helps in addressing the parallel question of the generation of large
masses of primordial black holes, Mpgy. In the present scenario, quantum loop effects are controllable, facilitating
the formation of PBH with Mppy ~ O(10%'kg) [124]; the addition of the sharp transition mechanism into the USR
phase provides us with a possibility to address both the problems concerning the required amount of Mpgy and the
non-Gaussianity amplitude fyi,. Galileon theory also possesses a unique feature in its non-renormalization theorem,
which protects the theory and any of its correlators from quantum correction. This allowed to have a sufficient period
of expansion while being able to produce large Mpgy, which would not have been possible in otherwise models for
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single field slow-roll inflation due to a need for the aforesaid procedures. With this theory at hand, we move on
towards obtaining the general solutions for the scalar perturbation modes by exploiting the continuity conditions for
the modes and their conjugate momenta at the transition moments between the SRI to USR and USR to SRII phases.
We found that the initial Bunch-Davies vacuum state gets shifted to a non-Bunch Davies type and that gives rise to
the enhancement of the non-Gaussianities also during the SRII phase. Next, we used the action which is third-order in
the curvature perturbations (, to calculate the tree-level bispectrum in the squeezed limit to obtain the expression for
the non-Gaussianity amplitude fnr,. Our cumulative findings are displayed by representative diagram Fig.(7, 8) for
the squeezed bispectrum which confirms that we are able to achieve large non-Gaussianities from the USR period, but
with a controlled enhancement to satisfy —5 < |fxp| < 5 and k./ks ~ O(10) in order to maintain the perturbativity
approximation. The positions of the transition wave numbers, i.e., ke, ks, are also equally important as they control
the mass of the produced PBH. It worth to recall that in the case of a standard single field inflation, production of
large Mppy would require lower values of the transition wave numbers, i.e., ks = 10 Mpc~! and k. = 107 Mpc ™!, but
that would not suffice the requirement for achieving 60 e-folds. Suppose the same wave numbers increase to k, = 102!
Mpc~! and k. = 10?2 Mpc~!, then inflation is possible, although at the expense of having produced small Mppy.
In the Galileon theory framework, we have demonstrated the possibility to accommodate both features satisfactorily.
Fig.(7, 8) shows that we can achieve the exact number of e-folds as well as obtain the large Mppy through the specific
positions of the transition wave numbers and the increased amount of non-Gaussianities produced. As a result of the
no-go theorem by Maldacena, the consistency condition is strictly valid in the SRI phase but gets violated in the USR
and the SRII phases. The table I provides a quick comparison between the non-Gaussian amplitude observed from
the individual phases, and the one-loop corrected power spectrum value, calculated in a previous work [124]. In both
cases, the same third-order action is used, so both quantities are equally important. The table also lists the critical
highlights from the analysis of the results from each phase. Finally, since controlling the enhancement also requires
tuning the coefficients G;, Vi = 1,2,3,4, if the transition wave numbers are shifted closer to the pivot scale, then
the SRI period will be extremely small and the SRII period will increase dramatically. Still, the non-Gaussianities
are controllable. However, if the same transition wave numbers are taken to much larger wave number values, then
controlling the enhancement in the new SRII region would require extreme fine-tuning of the coefficients, which is not
acceptable.
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IX. Appendix
A. Detailed computation of the bispectrum in the region I: SRI

In this subsection, we present the detailed analysis for the evaluation of the integrals required to get the tree-level
contribution to the three-point correlation function. We begin by mentioning the general definition for the three-point
function which will be used later, and also in the evaluation of the correlation functions for the USR and SRII regions
ahead, for the calculations of contributions from specific operators.

We begin with the first operator i.e., a(71)G1 CI3 and use this into Eq.(34) where after performing the wick contrac-
tions, we write the expression as follows:

dqy d3(12 d3(l3
(2m)3 (

(ORONORIZIEIV R [ﬁkl (T)Ckz(T)Ckg(T)/ / dryd*z” Tl)gl(ﬁ)a 7Can (T1)07Cq, (11)07Cg, (1)

Xe—i(q1+q2+q3).x(2ﬂ_>953(kl + q]_)(SS(kQ + (]Q)(53(k3 + q3) +1+—241+— 3] . (74)

where last two terms indicate the 2 possible ways to contract with the modes outside the time integral. The delta
function arises as a result of wick contraction between two modes of different momenta. Now, similar expressions can
be written for the other interaction operators which we write here as they will also be important in many calculations:

daqr d*qe d*qs [T Go(T1)
(271_)3 (27.(.)3 (27T)3 / dr d3 3 a qu( )6 ng (Tl)gqg (Tl)

<ék1€k26k3>g’282( = 2x2xIm [Ckl(T)Ck2(T)Ck3(T)/

x (q2)e~Hataztas)x(97)9653 (k) + q1)0°%(ka + q2)8° (ks + qs) + 1 ¢+ 2+ 1 +— 3] . (75)

R o [ an s TR ()G 001 )
T5q3

<Ck1<k2<k3> (8;0)2 — 2x2xIm [Ck1( )Ckz(T)Cks(T)/ (27T)3 (2’/T)3 (2,”)3 H3

><((11.q2)eii(q1+q2+q3)'x(2ﬂ')g53(k1 + q1)53(k2 + (]Q)(Sg(k;g + CI3) +1+—2+1<+— 3:| . (76)

PR d3 d3 d3 Ts
(Clek2<k3>(l9iC)2(82C) = 2X1m[<k1(T)Ck2(T)Ck3(T)/(27:_1)1 (27_((_1)2 (27?)3/ d 1d3 g[_(lgl)cq1<7-1)< (Tl)C (Tl>

X ((q1.q2)q3)e " WFa2tas)-x(9m)953 (k) + q1)0% (ko + q2)0° (ks +q3) + 1 ¢+— 24+ 1 +— 3] (77)

where the extra factor of 2 multiplied ahead of the expressions represents the identical terms coming from permutations
while contracting with either two 0,-¢; or (;; terms. Let us also mention the time derivative of the mode in SRI region:

i = 0,k = L D (K2c2r)etheT. (78)
. 2VA) (csk)®2

Now using these information, we can explicitly write/ the contributions to three-point correlation function coming from
each interaction operator. For Operator 1: a(71)( 3, the formula from (74) gives us:

o 12 75
(Gababialen = 2% | 530 (e ()G () [ dn TR kg exp (b + o+ o))
x(21)%6% (k1 + ko + k3) +1+— 2+ 1 +— 3] : (79)
7—0

here the integral over the momentum-delta functions is performed and the following property is used:

/ dPpeiathathe) X — (97m)36% (ky + ko + ks). (80)
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The evaluation of the correlation is performed in the limit 7 — 0 while using the relation 7, = —1/(kscs), 7 =
—1/(a(7)H) and the shorthand K = ki + ko + k3, where k; = |k;| Vi = 1,2,3. We also use the following shorthand
by absorbing the momentum conserving delta function in this manner:

(G, Gia Cics) = (27)38(K) (Cicy G Giy)

where K = ki + ko + k3 and K = |[K| = \/k? + k3 + k2.

When the aforesaid substitutions are taken care of, it gives us the following integral which evaluates to:

" _ , —ikik3ks (K* 20K K
/ drkikskatic; 3 exp (ics Ky) = # (kf T 2) exp (_st>. (81)

—0o0

After substitution of this result and taking only the imaginary part coming from this integral, we get the final result

as:
s H? G 6  KMK2 ([ K2 K K (K
D P -— -2 — | —2—si — . 2
(oo Gieaies) 0 = 28 77 (kg B3 {(k )(k) h “(k>} (82)

This gives us the contribution from the first interaction to the three-point correlation function in the SRI region.
Similar analysis including the substitutions can be carried out to evaluate the contributions from the other operators.

For Operator 2: ('2(9%(¢), the formula from (75) gives us the following result after taking care of all the permuta-
tions in the momentum variables:

U H? G 4 12K K’ K\ (K* K\ . (K

For Operator 3: a(ﬁ)(/(&( )2, the formula from (76) gives us the following result after taking care of all the per-
mutations in the momentum variables:

s s  H@ Gy 4 kikgks
(oG i) 0102 = 2475 77 R3S BRCOR2

{ (16k2k3k1K + 2k3 (kg + k3) + 2k3 (k1 + ko) + 2k3 (k1 + k3)

K K
+2 (kTk3 + k3k3 + kTk3) )k sin (k) — 3k koks K2 cos (k) + (k% +5 (k2 + k3) ki

S S

, K
+18koksky + k3 + k5 + 5 (k1 + ko) k2 + 5k3 (k1 + k3) ) k2 cos <k> } (84)

S

For Operator 4: 92¢(9;¢)?, the formula from (77) gives us the following result after taking care of all the permu-
tations in the momentum variables:

o H2 G, 6  kikoks K3/ K\ K?
(Ciey Gz Cies ) 2 (9,002 = AP 73 IBI3K3 0K {k‘1k‘2/€3k3 (Sln ks) t oz <6k1k‘2/€3 + ki (ko + ks) + k3 (ks + k1)

S

K 1
+k3 (kg + kl)) <cos k) - (k‘f + ky + k3 -+ 6k3 (ko + k3) + 6k3 (k1 + k3) + 6k3 (ky + ko)

K ,
+28k1 koks K + 10k3k2 + 8k2k2 + 10kfk§> (sin k) - 2(1513 + k3 + k3 4 12k koks + 4k2 (ko + ks3)

S

VAR (ks + Ry) + 4R2(ky + k2)> (cos kK) } . (85)

As it can be seen, we have collected all the contributions coming from the interaction operators towards the tree-level,
three-point correlation function or the bispectrum in the SRI region. To get the total bispectrum contribution for the
SRI region, we must add the contributions coming from the Eqs.(82,83,84,85).

B. Detailed computation of the bispectrum in the region II: USR

In this subsection, we present the explicit expressions for the set of momentum-dependent functions in terms of
which we have mentioned our results for the tree-level calculation of the bispectrum in the USR region.
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Before explaining the calculations it will be convenient to mention the time-derivative of the mode function explicitly
in the USR region:
9
Iy = 0, ¢ = (%) {ozl(f)* (k%ﬁr - %(1 - ikcsr)) exp (ikesT) + ﬁl((z)* <?_(1 + ikesT) — kzc§7'> exp (—iszT)} .(86)
where we have written the complex conjugate of the time-derivative of the curvature perturbation and k = |k|. The
factor (—iH?)/(2V/A) is also present in the front but omitted here for the sake of clarity.

The time-derivatives in some operators drastically increases the number of integrals to evaluate and would lead
to different kinds of integrals depending upon the factors involved. However, there will be a limited kind of these
integrals and the rest will differ in a particular way. All of their results are written in terms of the functions described
in this section. We have categorized the different set of functions based on their corresponding kind of integral. Also,
we have considered scaling all he expressions with the wave number k. and consequently adjusted for the expressions
for having the necessary correct dimensions. This has made the physical impact of the functions much clearer to
interpret based on the powers of the wave numbers.

In the upcoming results, we have defined a few variables as follows: z.; = K;/ke, xs.; = K;/ks, and K; where
i1 =1,2,3,4, is basically any of the following linear combination of the magnitude of the three momenta ki, ko, k3,

Ki=ki+kot+ks, Ko=k—kotks, Kg=ki+ko—ks, Ki=—k +ko+ks. (87)

The total contribution from all the integrals in the USR region are explicitly taken together in the results of section
V C2 and we only mention specific number of contributions and explain how each is related to the rest.

For Operator 1: a(Tl)C/?’, we use the formula in Eq.(74) to work out the contribution to the bispectrum. We have
the following kinds of integrals for this operator:

e Integral of the first kind: For integral of the first kind, the corresponding set of functions are as follows:

—11/(:? n 132K; (k2k3 + kika + k1ks) B 1320k ko ks

Ki ki, ka, ks) = 88
Pra( 1, ko, k3) = =) i3 (88a)
iKS KT 26KS 6KD 24ikK} 120K3  720iK?  5040K; )
Q11(K;) = ;s — kfz — kS i + = - = - = + . + 40320:. (88b)
K exp (izs ;) (Bi(—ize ;) — Ei(—izs;)) K KT 2iK¢  6KP  24iK}
_ 1.3 i S5t €, S, 7 7 1 i i
Ry = 4] - GE THTR TR TR R
12003 72002 5040K;  40320i
s I v e . (88c¢)
The result of this integral is expressed using the above functions in the following form:
klZexp (—ize)
1), (Ki, ki, ko, k) = ——S————— = Ki, k1, ko, k ICi) + 39916800
(L1);(KCs, o, koo, k3) 17740800c0k9 {731,1( ir k1, ko, k3) Q1 1(Ki) +
362880 (132 (koks + kika + k1ks) — 11K7)  39916800K;
N k2 R
S 39916800iKC;
+ké2 exp (Z(J)eﬂ‘ - Z‘sﬂ‘)) (Pl,l(’Ci)Rl,l(’Ci) — 39916800 — T
362880 (132 (koks + kikg + k1ks) — 11K?
N (132 (koks 21 2 + k1ks3) ,))} (89)
kS
(a) Consider Integral la:
Te —277? . ) ) .
j dTlW exp (icsK1m) (1 — dk1esm1) (1 — ikacsm ) (1 — iksesm1) = (I1)1(Kq, k1, k2, k3)- (90)

The result for this integral is written using the general formula as described above. Other integrals of
the similar kind, for different /C;, also give results in the form of the above equation. The signature of
the momentum variables in the integral corresponds to those present in the factor K;. For this, consider
another example.
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(b) For a similar Integral 1b:

Te 277 ‘ . . .
/ dTlﬁ exXp (ZCS’CQTl)(]. - zklcsﬁ)(l + ZkQCSTl)(]. — ZkgCSTl) = —(Il)Q(ICQ, kl, —k27 kg)
T, s'1

s

(c) For Integral 1c:
Te —277? . ) ) . N
/ dleGXP (—ZCSIC371)(1+lk1cs7'1)(1+2k‘2857'1)(1 —Zk‘3057'1) = (11)3(’C3,k1,k2,—k3). (91)
Ts s'1

The notation of keeping maximum number of positive momentum variables inside the factor IC; is used.
This will give us integrals with negative exponential factors. The result for the above integral is written
in terms of the complex conjugate of the general result obtained through the formula in Eq.(89). The
momentum signature in the argument of RHS is similarly related to those in factor ;.

There will be a total of 4 integrals of first kind, each containing a positive and negative exponential.

o Integral of the second kind: For integral of the second kind, the corresponding set of functions are as follows:

K2 10K; (ka + k) 90koks

Pr2(Kis ko, ky) = W2 2 2 (92a)
Q12(K:) = —ig + g + 22’? —~ 6]2;1 —~ 24;? + 1225? + 7221’@ — 5040. (92b)
Rua(Ks) = K2 {ks(expixs,i> (Ei(;é«ge,i) — Ei(—iz,;)) 211597 B :Z B 2;’55 N 6le64 24;;?;%” ~ 12;);5

722gci452§0}. (92¢)

where a,b belongs to 1,2,3. The result of this integral is expressed using the above functions in the following
form:

kL0 exp (—ize,;) 403207 (=10 (kq + k) + K;)

(I2);(Ki ka, ks) = {7’1,2(/@7%,/%)91,2(/@) -

4032006%9 ke
k,lO )

+362880 + kzo exp (Z(.’Ee)i - .’ES’Z‘)) <P172(Ki)R172(K2‘) — 362880
403207 (—10(k, + K K;

203200 (Z10(ka + kv) + )>} (93)

ks
(a) Consider Integral 2a:
Te 979 . . )
/ dﬁTliQng exp (icsk1 ) (1 — ikicsm) (kacim ) (1 — ikocem) = ki (I2)1 (K1, —k1, —k2). (94)
Ts 1 s

where C; = K1, ko, = —k1 and k, = —k3 comes from the fact that, inside the integral, both ki, k3 have
negative signature. The result follows from the general formula in the equation above. We mention another
example of this.

(b) For a similar Integral 2b:

Te —979 ) . .
/ d7'1 77_12;9 exp (ZCSIC271)(k%C§Tl)(1 + ’LkizCSTl)(l — ’Lk‘3cs7'1) = —k%(Iz)5(’C2, k‘g, —k‘3).
Ts 1 %s

where k, = ko, ky, = —k3 depend on their signature inside the integral.

(c) For Integral 2c
T 977 . 22 . . 207\
dTl 7'1209 exp (7ZCSIC37'1)(]€1 CSTl)(]. -+ ZkQCsTl)(l — ZkngTl) = kl (Ig)g(lcg, kg, 71133) (95)
Ts 1 ]

The negative exponential integrals is related to the formula in Eq.(93) by a complex conjugate as shown
for the integral above.
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There will be a total of 12 integrals of the second kind, each containing a positive and negative exponential.

e Integral of the third kind: For integral of the third kind, the corresponding set of functions are as follows:

P13(Ki ko) = Ik% + 8::. (96a)
01 5(K) = f: - /;55 - 22136? 62}? N 24;‘?? B 12]:;):@ — (96D)
Rus(Ki) = ke{lCi7 exp (iTs,;) (Ei(ké'xe,i) — Ei(—izs,)) N Z]If; B Iljg B 22/? N 6]:21? N 24}2;?

_ 12]%]@ — 7/3?2} (96¢)

where a belongs to 1,2,3. The result of this integral is expressed using the above functions in the following
form:

k8 exp (—iwe ;)

(13)j(lciaka) = - {,PL?,(ICZ‘,]GQ)QL?)(’CZ') + 5040

134408 k2
kS
_?; exp (Z'(J?e,i — .’L‘S,i)) <P173(K1)R173(’Ci) + 5040) } (97)
(a) Consider Integral 3a:
s . :
/ dTlTTcsg exp (ics Ky ) (k2c2m ) (k2c2m) (1 — ikycom) = kika (I3)1 (K1, —k1). (98)
Ts 1 “s
In the result above, k, = —ks3 is based upon the signature of the momentum variable inside the integral.

The result follows from the general formula in Eq.(97). Consider another example of this.

(b) For a similar Integral 3b:
Te 37 ‘ .
/ dTlm exp (ZCSICQTl)(k%cg’ﬁ)(/ﬂgcg’ﬁ)(l + ZkQCSTl) = —k%k%(lg)(;(’CQ, kg)
Ts 1 *s

(c) For Integral 3c:
e —37) . . .
/ dm 7_1710‘9 exp (—icsKam ) (kicim) (k3cim ) (1 4 ikscem) = kiks (I3)5(Ks, k3). (99)
Ts 1 %s
The negative exponential integrals is related to the formula in Eq.(97) by a complex conjugate as shown
for the integral above.

There will be a total of 12 such integrals of the third kind, each with a positive and negative exponential factor.

o Integral of the fourth kind: For the integral of the fourth kind, the corresponding set of functions are as
follows:

KPS K} 2iK3 6K2 24K

Q174(’C1‘) = Tg — E - kg’ kg “+1 k’e —120. (100&)
KSexp (iws ;) (Bi (—ize ;) — Ei (—ims ;) K2 KP  2K3  6K? 24K,

R1.4(K;) = C : : L - 4 L 120 . (100b
e ={ : T A S

The result of this integral is expressed using the above functions in the following form:

kS exp (—iwe ;) kS .
(14)J(’C2) = —W Q174(,Ci) + FS exp (Z(.’Eeyi — xs,i))RlA(]Ci) . (101)
(a) Consider Integral 4a:
Te 79 .
/ dT1 03;7 k%kgk% exp (ZCsK:lTl) = k%k%kg (I4)1(IC1) (102)
Ts s'1

The argument depends only in the factor IC; for each such integral. The result follows from the general
formula in Eq.(101).
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(b) For Integral 4b:

/ dm o E2k3k3 exp (—ics/Cam) = kIk2k3 (14)5(K3). (103)
Ts s'1

The negative exponential integrals is related to the formula in Eq.(101) by a complex conjugate as shown
for the integral above.

There will be a total of 4 integrals of the fourth kind, each with a positive and negative exponential factor.

For Operator 2: §/232(j, we use the formula in Eq.(75) to work out the contribution to the bispectrum. We have
the following types of integrals for this operator:

e Integral of the first kind: For integral of the first kind, the corresponding set of functions are as follows:

—9K2? 90K (koks + kika + kiks) 720k koks
Por(Cerbr ko k) = —ont 4 Weilbako %) - DOk (104a)
—iKS KD 2ik) 6K 24ik2 120K, ‘

QQ,l(Ki) = k‘g + ?2 + kg - Tg — kg oo + 720i. (104b)
KT exp (ixs ;) (Bi (—ize ;) — Ei(—izs;))  iKS K3 20K} 6K3  24ik? 120K,
_ 3 7 S, €, S, 7 7 7 7 7 1

s = 12| o RTwRTR TR TR TR

200

_ 7}@;”}, (104¢)

The result of this integral is expressed using the above functions in the following form:

kL0 exp (—ize,;) . K
(I1),; (i, k1, oy k3) = —64032000§k§ L {772,1(/@, ki, ko, ks)Qo1(K;) + 7,36288()k—eZ
5040 (90 (ko k kik kiks) — 9K?
_ 5040 (23+]€122+ the) = 9K7) | a62880
klO ] ‘ ) ’Ci
+k§0 exp (i(Te,i — Ts)) <7’2,1(/C¢)R2,1(/Ci) — 362880 — z362880k—s
5040 (90 (koks + kiko + kiks) — 9KC?
+ (90 (kaks ];22 1k3) ))} (105)
e

(a) Consider Integral la:

Te 97 . . . .
/ dﬁrlscg exp (icsKC1m1 ) (1 — ik1csm1)(1 — ikacsTi ) (1 — iksesm1) = (T1)1(Kq, k1, ka2, k3)- (106)
T, 1 S

s

The signature of the momentum arguments depend on their respective signature in /C; for each such integral.
The result is expressed using the formula in Eq.(105).

(b) For Integral 1b:
Te 979 . ‘ ‘ . .
dTlW exp (7ZCSIC3T1)(1 —+ zklcsﬁ)(l —+ ZkQCSTl)(l — ZkgCSTl) = (11)3(K37 kl, ]{32, 7]'{}3). (107)
Ts 1 s

Signature of momenta in the result corresponds similarly to the respective ones inside the factor /C;. The
result of this integral is related to the formula in Eq.(105) by a complex conjugate as shown for the integral

above.

There will a total of 4 integrals of this kind, each with a positive and negative exponential factor.

o Integral of the second kind: For integral of the second kind, the corresponding set of functions are as follows:
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K2 8K (ko +ky) | 56kok
P22 (Kiska, ki) = 25 + (k2 ) | o (108a)

K KY 2K 6K2 24iK,

i) = - = —120. 108b
Gl = T T e T o)
KS(expizs ;) (Bi(—ize;) — Ei(—izs,)) K2 K 20K3  6K7  24ikK; 120
1.2 5,7 €, 5,2 7 7 7 7 (]
R”(’Ci)k@{ kS TETRTRE MR k}

(108c)

where a, b belongs to 1,2,3. The result of this integral is expressed using the above functions in the following
form:

k8 exp (—iwe ;) 7200 (8 (ko + ko) + K5)

(Iz)j(lcivkaakb) = - {P2,2(’Ci7ka7kb)g2,2(’Ci) -

13440c3K?2 ke
kS ,
+5040 + ka exp (Z(l’e’i - LL’S’Z‘)) ('PQ’Q(K:i)RQ’Q(K:i) — 5040
20¢ (8(kq + K i
+70u& + w+K)>} (109)
ks
(a) Consider Integral 2a:
T =37 . : :
/ dﬁroc‘; exp (icsKym ) (k2c2m) (1 — ikicom ) (1 — ikseem) = k2 (T2)1 (K1, —k1, —k3). (110)
Ts 1 %s

The signature of momentum arguments inside the result depends on the corresponding values inside the
integral for each such integral.

(b) For Integral 2b:

Te _3 9
/ dﬁfTs exp (—icSngTl)(kgczn)(l + ik1cs) (1 — iksesm) = kS(Ig)g(ng, k1, —k3). (111)

0
Ti

s

The result of such integrals is related to the formula in Eq.(109) by a complex conjugate as shown for the
integral above.

There will be a total of 8 integrals of this kind, each with a positive and negative exponential factor.

e Integral of the third kind: For integral of the third kind, the corresponding set of functions are as follows:

Ki  Gha
Pg}g(lci, kia) = — 4+ (112&)
ke Tk
KE KD 2ik2 6K,
Qua(ky) = — oty M 20 DR gy (112b)

CRETRT R ke
K3 exp (ixs ;) (Bi (—ize ;) — Ei(—izs;))  iKF K3 2iK?2  6K;  24i
RZ-B(ICi) = ke{ — ]{2 - kg + E + Tg — ? — ks} (112C)

where a belongs to 1,2,3. The result of this integral is expressed using the above functions in the following
form:

kS exp (—iwe ;)

(I3);(Ki, ka) = {732,3(’@‘, ka) Q2 3(K;) 4+ 120

720c8Kk3
k6
_k—z exp (i(xe,i - xsyi)) <Q273<K1)R273(1Ci) + 120) } (113)
(a) Consider Integral 3a:
Te 9
/ d7'1% exp (ics K1 ) (kicm ) (k3icim) (1 — ikscomi) = kik3 (Is)1 (K1, —ks). (114)
Ts 1%s

The signature of the momentum variables inside the result depends on the corresponding values inside for
each such integral.
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(b) For Integral 3b:
Te ) . . .
/ dTng—SCQ exp (—zclegrl)(k%chl)(k:%ciﬁ)(l —ikscsT1) = k%k%(lg)?)(lCl, —ks3). (115)
Ts 1%s

The result of such integrals is related to the formula in Eq.(113) by a complex conjugate as shown for the
integral above.

There will be a total of 4 integrals of the second kind, each with a positive and negative exponential factor.

For Operator 3: a(r;)¢ (9;C)?, we use the formula in Eq.(76) to work out the contribution to the bispectrum. We
have the following types of integrals for this operator:

e Integral of the first kind:

(a) Consider Integral la:

Te 372 . . . .

/ dTlTlilc(g exp (lelclTl)(l 72]€165T1)(1 71]432087'1)(1 77]{33657'1) = (Iz)l(lcl,kl,k27k3). (116)
Ts 1 %s

The form of this integral is exactly equivalent to the one mentioned in Eq.(106). Hence, using the same

functions defined before in Eq.(104), and the same general solution as defined in Eq.(105), we can write

the result of the integrals of the form in Eq.(116). The signature of the momentum arguments depend on

their respective signature in C;.

(b) For Integral 1b:

Te 3 9
/ dTlTlii-scg exp (—iCsIC4T1)(1 —iklcsTl)(l+ikQCSTl)(l+ikJ365T1) = —(11)2(K4,—k‘1,]€2,k3). (117)
Ts 1 %s

This integral is also exactly equivalent to the one mentioned in Eq.(107). Hence, using the same functions
as defined before in Eq.(104), but this time taking a complex conjugate of the general formula in Eq.(105),
we can write down the results of such integrals.

There will be a total of 4 integrals of this first kind, each with a positive and negative exponential factor.

o Integral of the second kind:

(a) Consider Integral 2a:
Te 79 . . _
/ dﬁTlioscg exp (ics k1) (1 — ikicsm ) (1 — ikocsm ) (k3c2T) = ki (I1)1 (K1, —k1, —k2). (118)
Ts 1 *s

The form of this integral is exactly equivalent to that mentioned in the Eq.(110). Hence, using the same
functions as defined in Eq.(108), and the same general solution as defined in Eq.(109), we can write the
result of the integrals of the form in Eq.(118). The signature of the momentum arguments depend on their
respective signature inside the integral.

(b) For Integral 2b:
Te .9
/ dri 5% exp (ie,Kam) (1 + ikicgm)(1 + ikac,m1) (e2m) = =k (L)} (Ko, b, ko). (119)
Ts 1 s

There will be a total of 4 integrals of this first kind, each with a positive and negative exponential factor.

For Operator 4: (0%¢)(9;¢)?, we use the formula in Eq.(77) to work out the contributions to the bispectrum. Here
we have only one kind of integral.

e Consider Integral of the first kind: For integral of this kind, the corresponding set of functions are as follows:

k3 " K2 N k3 :
iKi K 2K 6K,
+

Pa1(Ki, k1, k2, ks) = (120a)

= R TR

K? exp (ixs ;) (Bi (—ize ;) — Ei(—ixs;)) K K3 20K?  6K;  24i
'RQ,l(ICz’):kg{ : s = . TR m T kgwk—% . (120¢)

21(Ki) = + 24i. (120Db)
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The result of this integral is expressed using the above functions in the following form:

kg —1Te i . K
(T0); (K, by, ko, beg) = —e—D = et) exp ( ””v){734,1(/@,1@1,@,kg)Q4,1(/ci)+z5o4ok

403206}%2 e
120 (56 (koks + kiko + kiks) — TIC?
_ 12056 (kohs ;22 the) ZTKE) | soa0
k8 5040/C;
—k—g exp (i(Te,i — ©s,i)) (Q4,1(’Ci)R4,1(ICi) + 5040 + 14
e S
120 (56 (kgks + ki1ko + k1ks) — TK?
B ( (koks 1R2 1k3) Z))} (121)
k2
(a) Integral 1la:
Te - ) ‘ ‘ .
/ dTlﬁ exp (ZCSIC1T1)(]. — Zklcsﬁ)(l — ’LkQCSTl)(]. — zkgcsﬁ) = (Il)l(lCl, ]{71, kQ, kg) (122)
Ts 1%s

The signature of the momentum arguments in the results of such integrals depend on their respective
signature in /C;.

(b) For Integral 1b:
e 79 ) . . .
/ dTng—ng exp (—icsKCam ) (1 4 ikycsm1) (1 + dhacsTi) (1 — iksesm) = (11)5(Ks, k1, ko, —ks3).  (123)
Ts 1%s
The result of this integral is related to the formula in Eq.(121) by a complex conjugate as shown for the

integral above.

There will be a total of 4 integrals of the fourth kind, each with a positive and negative exponential factor.

C. Detailed computation of the bispectrum in the region ITI: SRII

In this subsection, we present the explicit computations for the contributions from individual operators to the
tree-level three point correlation function in the SRII region.

We mention the time-derivative of the mode function in the SRII phase as it would be very convenient for further
calculations. This is given by:

. i} —iH2\ [7\® 1 . , . ,
I = 0-¢ = (2\/74> (Te> (BEE x (k*c2r) (al(f) exp (ikesT) — 1((3) exp(—zkcg)) . (124)

where k = |k|. In the subsequent integrals, the factor KC; is the same factor from the Eq.(87).
We start with Operator 1: a(n)(/g, and use the formula in Eq.(74) to work out the contribution to the bispectrum.

(a) Consider Integral 1a:

Tendﬁo
/ dlefkjgkgcs_?’Tf exp (icsK1m1) = kfk%k;g(Jl)l(lCl). (125)

e

where the result of the above integral is written in terms of the following general formula:

(J31):(K:) = 02;63 {(m — exp (—Z]’f) (m’ - ’;—e (2 + Zf)))} (126)

Different integrals similar to the above will be related through a change in the factor IC; in the above general
formula.

(b) For Integral 1b:

Tend_>0
/ drikkakic; 38 exp (—icKam) = kik3k2(J1)5(Ky). (127)

e

The result of which can be written in terms of the complex conjugate of the general formula in Eq.(126).
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There will be 4 integrals of first kind, each with positive and negative exponential factors along with different /C;’s.
For Operator 2: ¢ 20?(, we use the formula in Eq.(75) to work out the contribution to the bispectrum.

(a) Consider Integral 2a:

Tend‘}O
/ drkk3(1 — ik;gcsﬁ)cs_57'12 exp (icsK1m) = k2k2(32)1(K1, —k3). (128)

e

The result of the above integral is written in terms of the following general formula:

(32)i (s ko) = CS}@{ (/ci (2iexp (f) <2i ’]f— <2+ Z;f))))
+ikq (—6—|—exp (-f) (6+ ’]f— <6i— ’]f— (3+ ZI’:)))) }129)

Different integrals similar to the above will be related through a change in the factor /C; and the signature of
the momentum variables in the above general formula which depends on their corresponding values inside the
integral. In the above case, k, = —ks3.

(b) For Integral 2b:

Tend*)O
/ Ar k22 (1 + ikgesm )= 72 exp (—icskiam) = K2R2(T2)4(Ka). (130)

e

The result of this integral is written in terms of the complex conjugate of the general formula in Eq.(129).

There will be 4 integrals of second kind, each with positive and negative exponential factors along with different KC;’s.
For Operator 3: a(7;)¢ (9;¢)?, we use the formula in Eq.(76) to work out the contribution to the bispectrum.

(a) Consider Integral 3a:

Tcnd*)O
/ dTl(l 71‘1431657'1)(1 7’L']<JQCS7'1)]€§C;7€XP (iCSKlTl) = k%(.]g)l(lchkl,kg,k’g). (131)

e

The result of the above integral is written in terms of the following general formula:

(J3)i(Ki, k1, ko, k) = —

LY ik
W{z (2k7 + 3 (2ka + k3) k1 + (ko + k3) (2ka + k3)) — exp <_ L )

K
< - iklkgkié +1 (2]{1% +3 (2/{32 + /{3) ki + (k’g + kg) (2]432 + kg))

o (K Gk kg)kkl + ka (ks + k3)) > } (132)

Different integrals similar to the above will be related through a change in the factor IC; and the signature of
the momentum variables in the above general formula which also depends on their corresponding values within
Ki.

(b) For Integral 3b:

Tend—0
/ dTl(l +i]€105T1)(1 +ikQCST1)k§CQ7 exp (—iCS’C3T1) = k%(.]g)g(lc,g,kl,kg,—kg). (133)

e

The result of this integral can be written in terms of the complex conjugate of the general formula in Eq.(132).

There will be 4 integrals of third kind, each with positive and negative exponential factors along with different IC;’s.
For Operator 4: 92((9;¢)?, we use the formula in Eq.(77) to work out the contribution to the bispectrum.
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(a) Consider Integral 4a:

Te”d—)o
/ dT1(1 —iklcSTl)(l —ikQCSTl)(l —ikgcsTl)Cs_g exp (iCS]CQTl) = (J4)1(K2,k1,k2,]€3). (134)

e

The result is expressed in term of the following general formula:

(32) (K, ry kg, kg) = { ( —2 (k{44 (ko + k3) kT + 4 (k3 + 3ksko + k3) ky + (k2 + k3) (k3 + 3ksk + k3))

7
)

ikC; ICZQ ((k‘g + k3) k‘% + (k% + 6ksko + k%) k1 + koks (kz + kg)) . ot
+exp| — — -
k kg k3
+i’Ci (k% +5 (k‘g + k‘3) k% + (5]€§ + 18ksks + 5]6%) ki1 + (kg + k3) (k‘% + 4ksko + k’%))
ke

(&

+2 (K + 4 (ko + k3) K + 4 (k3 + 3kska + k3) k1 + (ko + k3) (k3 + 3kska + k3)) >) } (135)
Different integrals similar to the above will be related through a change in the factor /C; and the signature of
the momentum variables in the above general formula.
(b) For Integral 4b:

Tend"O
/ dTl(l + iklcsTl)(l + ikQCSTl)(l — ikngTl)Cs_g exp (—iCSKng) = k‘%(J4)§(IC3, ki, ko, —]{ig). (136)

e

The result of this integral can be written in terms of the complex conjugate of the general formula in Eq.(135).

There will be 4 integrals of fourth kind, each with positive and negative exponential factors along with different iC;’s.
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