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In this study, we investigate the cosmological history within the framework of modified f (Q) grav-
ity, which proposes an alternative theory of gravity where the gravitational force is described by a
non-metricity scalar. By employing a parametrization scheme for the Hubble parameter, we obtain
the exact solution to the field equations in f (Q) cosmology. To constrain our model, we utilize external
datasets, including 57 data points from the Hubble dataset, 1048 data points from the SN dataset, and
six data points from the BAO dataset. This enables us to determine the best-fit values for the model
parameters involved in the parameterization scheme. We analyze the cosmic evolution of various
cosmological parameters, including the deceleration parameter, which exhibits the expected behav-
ior in late-time cosmology and changes its signature with redshift. Further, we present the evolution
of energy density, EoS parameter, and other geometrical parameters with respect to redshift. Fur-
thermore, we discuss several cosmological tests and diagnostic analyses. Our findings demonstrate
that the late-time cosmic evolution can be adequately described without the need for dark energy by
employing a parametrization scheme in modified gravity.

I. INTRODUCTION

Our universe is expanding at an accelerated rate,
as supported by cosmological evidence from vari-
ous sources such as Type Ia Supernovae (SN), Bary-
onic Acoustic Oscillations (BAO), and the Cosmic Mi-
crowave Background (CMB) [1–6]. One of the most sig-
nificant challenges in modern physics is comprehend-
ing the underlying cause of cosmic acceleration. Within
the framework of General Relativity (GR), it is hypothe-
sized that this acceleration is attributed to an enigmatic
form of energy known as Dark Energy (DE). The pre-
vailing belief is that DE dominates the Universe; how-
ever, none of the existing hypotheses regarding DE pro-
vide a complete explanation for this phenomenon. The
most successful cosmological model accounting for DE
is the ΛCDM model, commonly referred to as the cos-
mological constant (Λ) model, where the equation of
state (EoS) parameter ωΛ = −1. The physical nature
of the cosmological constant is linked to the existence of
non-zero vacuum energy and can be estimated through
quantum field theory. However, the theoretical predic-
tions and observational cosmological data differ signifi-
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cantly by several orders of magnitude, presenting a pro-
found fine-tuning challenge [7].

In an attempt to address the cosmological constant
problem, various ideas involving DE with a time-
varying energy density have been proposed in the litera-
ture [8–10]. Modified gravity is another theory aimed at
explaining the present acceleration of the universe. One
straightforward approach is f (R) gravity [11–13], where
the scalar curvature R in Einstein’s Lagrangian density
is replaced by an arbitrary function of R, modifying the
gravitational action of GR to include a generic scalar cur-
vature function. Other theories, such as f (R, T) [14, 15]
and f (R, Lm) [16, 17], where T and Lm represent the
trace of the stress-energy tensor and matter Lagrangian,
respectively, are based on a non-minimal interaction be-
tween matter and geometry. In GR, the Levi-Civita con-
nection is employed as an affine connection to describe
the gravitational interaction in Riemannian spacetime.
However, there exist numerous possibilities for affine
connections on any manifold, leading to various equiv-
alent descriptions of gravity [18, 19]. In order to incor-
porate torsion T and provide an alternative theory for
gravitational interaction, the Teleparallel Equivalent of
GR (TEGR) was proposed [20]. In TEGR, the Weitzen-
bock connection is utilized, which results in zero curva-
ture R and non-metricity Q. To further reduce the con-
straint on non-metricity while still eliminating both cur-
vature and torsion, a novel theory called the Symmetric
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Teleparallel Equivalent of GR (STEGR) has been devel-
oped [21]. Within this theory, one can formulate f (Q)
gravity, where the non-metricity Q describes the gravi-
tational interaction [22, 23]. Recently, researchers have
shown increased interest in modified theories of f (Q)
gravity as they offer insights into the phenomena ob-
served in the Universe. Consequently, an extension of
f (Q) gravity known as f (Q, T) gravity has been pro-
posed [24]. Similar to f (R, T) gravity, f (Q, T) gravity
is based on a non-minimal coupling between the non-
metricity Q and the trace of the energy-momentum ten-
sor T, rather than the Ricci scalar R. Several investi-
gations have provided alternative explanations for the
current cosmic acceleration of the universe and have of-
fered viable solutions to the DE problem through f (Q)
gravity [25–27]. A relevant perspective in line with this
paper is presented in [29], where the parametrization
technique is employed to explore cosmological mod-
els within the framework of f (Q) gravity. Further-
more, references [30, 31] presented the initial cosmologi-
cal solutions in f (Q) gravity, while [32] investigated the
corresponding energy conditions in f (Q) gravity. The
parametrization method not only allows us to investi-
gate f (Q) cosmology by parametrizing the Hubble pa-
rameter but also offers a powerful framework for study-
ing the underlying dynamics of the universe and the
nature of DE. By parametrizing the Hubble parameter,
we can express it as a function of a set of parameters
that capture the essential features of the cosmological
model under consideration. This parametric form pro-
vides a flexible description of the expansion rate of the
universe, allowing us to explore a wide range of possi-
bilities beyond the standard cosmological models. The
referenced studies [33–35] highlight the significance of
the parametrization technique in cosmology. These in-
vestigations have utilized various parameterizations to
explore different aspects of the universe, ranging from
the nature of DE to the modified gravity theories. The
key advantage of this method is its ability to incorpo-
rate observational data in examining cosmological mod-
els [29].

In this study, we consider the Hubble parameteriza-
tion proposed in [36] and analyze the FLRW Universe
within the framework of f (Q) gravity theory using the
functional form f (Q) = −Q + α

Q , where α is a free
model parameter. The article is organized as follows:
Sec. II introduces the formalism of f (Q) gravity. Sec. III
presents the motion equations in the FLRW Universe. In
Sec. IV, we analyze the cosmological model and derive
expressions for the cosmological parameters. Sec. V dis-
cusses the observational data and the methodology used
to constrain the model parameters. The behavior of cos-

mological parameters, such as the deceleration parame-
ter, density, and EoS parameter, is examined in Sec. VI.
In addition, in Sec. VII, we investigate the energy condi-
tions of the obtained solutions. In Sec. VIII, we analyze
the behavior of diagnostic parameters. Finally, our find-
ings are briefly discussed in Sec. IX, which provides the
concluding remarks.

II. f (Q) GRAVITY THEORY

In this section, we will construct the field equations of
f (Q) gravity, which requires an understanding of sev-
eral key geometric concepts necessary for formulating a
relativistic theory of gravitation. To initiate the discus-
sion, we define the action of f (Q) gravity as presented
in [22],

S =
∫ 1

2
f (Q)

√
−gd4x +

∫
Lm
√
−gd4x. (1)

In this scenario, Lm represents the matter Lagrangian,
and g denotes the determinant of the metric tensor gµν.
Moreover, f (Q) is an arbitrary function of the non-
metricity Q. The non-metricity tensor Qγµν, which is the
covariant derivative of the metric tensor with respect to
the Weyl-Cartan connection, is discussed in [37],

Qγµν = −∇γgµν = −∂γgµν + gνσΥσ
µγ + gσµΥσ

νγ. (2)

The Christoffel symbol Γγ
µν, the contortion tensor

Cγ
µν, and the disformation tensor Lγ

µν can be combined
to form the Weyl-Cartan connection. This connection is
defined in the following manner:

Υγ
µν = Γγ

µν + Cγ
µν + Lγ

µν. (3)

The first term in the previous expression, the Christof-
fel symbol, corresponds to the Levi-Civita connection
associated with the metric gµν. It is given by the fol-
lowing expression:

Γγ
µν ≡ 1

2
gγσ

(
∂µgσν + ∂νgσµ − ∂σgµν

)
. (4)

The torsion tensor Tγ
µν is employed in the construc-

tion of the contortion tensor Cγ
µν, which is defined as

Tγ
µν ≡ 1

2

(
Υγ

µν − Υγ
νµ

)
. (5)

According to the given definition, the contortion ten-
sor is defined as

Cγ
µν ≡ 1

2
(Tγ

µν + T γ
µ ν + T γ

ν µ) = −Cγ
νµ. (6)
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The disformation tensor is,

Lγ
µν = −1

2
gγσ

(
∇νgµσ +∇µgνσ −∇γgµν

)
, (7)

=
1
2

gγσ
(

Qνµσ + Qµνσ − Qγµν

)
,

= Lγ
νµ. (8)

Based on this, the non-metricity can be expressed as

Q = −gµν
(

Lα
βµLβ

να − Lα
βαLβ

µν

)
. (9)

In the coincident gauge, when the covariant deriva-
tive is reduced to the partial derivative (∇µ → ∂µ), the
non-metricity invariant is chosen to be equal to the Ein-
stein Lagrangian. This gauge choice is consistent with
symmetric teleparallel gravity and is known as the coin-
cident gauge [38]. In the connection given by Eq. (3), the
non-metricity tensor, Levi-Civita connection, and tor-
sion tensor are utilized to describe the disformation, cur-
vature, and contortion, respectively. In the case of f (Q)
gravity, where torsion and curvature vanish, the connec-
tion reduces to solely the disformation within the coin-
cident gauge.

The trace of the non-metricity tensor is given by

Qα = Qα
µ

µ and Q̃α = Qµ
αµ. (10)

The superpotential tensor, which is the conjugate of
the non-metricity, is given by

4Pγ
µν = −Qγ

µν + 2Q(µ
γ

ν) + (Qγ − Q̃γ)gµν − δ
γ
(µ

Qν).
(11)

The non-metricity scalar can be obtained through the
following expression:

Q = −QγµνPγµν. (12)

The content of the Universe is described as a perfect
fluid matter with the following energy-momentum ten-
sor,

Tµν =
−2√−g

δ(
√−gLm)

δgµν . (13)

By varying the action (1) with respect to the compo-
nents of the metric tensor gµν, we obtain the following
equations,

2√−g
∇γ(

√
−g fQPγ

µν) +
1
2

gµν f + fQ(PµγβQν
γβ − 2QγβµPγβ

ν) = −Tµν. (14)

In this case, we will consider fQ = d f
dQ , which repre-

sents the derivative of f with respect to Q.

III. MOTION EQUATIONS IN f (Q) GRAVITY

In this context, we assume that the Universe can
be described by the Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) metric, which is characterized by its ho-
mogeneity, isotropy, and spatial flatness.

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2], (15)

where a(t) denotes the scale factor of the Universe.
Moreover, the non-metricity scalar associated with the
metric (15) is given by

Q = 6H2, (16)

where H represents the Hubble parameter, which quan-
tifies the rate of expansion of the Universe.

In cosmology, the commonly used energy-momentum
tensor is that of a perfect cosmic fluid, neglecting viscos-
ity effects. In this case, the energy-momentum tensor is

given by

Tµν = (ρ + p)uµuν + pgµν, (17)

where ρ and p represent the energy density and
isotropic pressure of the perfect cosmic fluid, respec-
tively, and uµ = (1, 0, 0, 0) represents the components
of the four-velocity vector characterizing the fluid.

The modified Friedmann equations that govern the
dynamics of the Universe in f (Q) gravity are expressed
as [38, 39]

3H2 =
1

2 fQ

(
−ρ +

f
2

)
, (18)

and

Ḣ + 3H2 +
ḟQ

fQ
H =

1
2 fQ

(
p +

f
2

)
, (19)

where an overdot denotes the derivative with respect
to cosmic time t. It should be noted that the standard
Friedmann equations of GR are recovered when assum-
ing the function f (Q) = −Q [39].
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Now, let us derive the matter/energy conservation
equation in its well-known form,

ρ̇ + 3H
(
ρ + p

)
= 0 (20)

Using Eqs. (18) and (19), we can express the cosmic
energy density ρ and isotropic pressure p of the fluid as

ρ =
f
2
− 6H2 fQ, (21)

p =

(
Ḣ + 3H2 +

˙fQ

fQ
H

)
2 fQ − f

2
. (22)

IV. COSMOLOGICAL f (Q) MODEL

In our current analysis, we consider the following
functional form,

f (Q) = −Q +
α

Q
,

where α is the free model parameter. Consequently, we
find fQ = −1 − α

Q2 . It is worth noting that for α = 0, the
model reduces to the well-established case of GR found
in the literature [39]. The proposed functional form of
f (Q) has been extensively studied [28], and it provides a
modification to late-time cosmology, potentially giving
rise to DE [23]. Then, for this specific model of f (Q), the
equations for the energy density of the Universe, ρ, and
the isotropic pressure, p, are as follows:

ρ = 3H2 +
α

4H2 , (23)

and

p = −3H2 − 2
.

H +
α

2H2

 .
H

3H2 − α

2

 . (24)

Furthermore, the EoS parameter can be obtained by
taking ω = p

ρ ,

ω = −1 +
2

.
H

3H2 − 16
.

HH2

12H4 + α
. (25)

As observed, Eqs. (21) and (22) form a system of equa-
tions with ρ, p, and H as the three unknowns. To ob-
tain the exact solutions, we require an additional phys-
ically reasonable condition. In this study, we consider
the parametrization of the Hubble parameter in terms
of redshift as investigated in [36],

H (z) = H0

(
m + (1 + z)n

m + 1

) 3
2n

, (26)

where m and n are free model parameters obtained
from observational constraints, and H0 represents the
current value of the Hubble parameter. The chosen
parametrization for H(z) is valid from the matter epoch
(z ≫ 1) to the infinite future (z = −1). Moreover, we
assume that q(z ≫ 1) = 1

2 based on the appropriate
form of the deceleration parameter (see Eq. (40)), which
is required for the formation of cosmic structures, and
q(z = −1) = −1 for thermodynamic reasons. This pro-
posed parametrization for H(z) is consistent with a spa-
tially flat ΛCDM model [36]. In this study, we aim to
constrain the model parameters H0, m, and n using the
most recent cosmological dataset. Although the model
parameter α is not explicitly present in the expression
for the Hubble parameter, we choose a specific value,
α = 2, in order to investigate the evolution of den-
sity, pressure, and EoS parameter and make predictions
about late-time acceleration.

V. OBSERVATIONAL CONSTRAINTS

In this section, we aim to constrain the model pa-
rameters (H0, m, and n) of our obtained model using
available external datasets. We utilize the Hubble H(z)
dataset, which consists of 57 data points, the Pantheon
sample of SN dataset with 1048 data points, and the
BAO dataset with six data points. To perform the pa-
rameter estimation, we employ the emcee Python li-
brary [40], which utilizes Bayesian analysis and like-
lihood functions along with the Markov Chain Monte
Carlo (MCMC) approach.

A. H(z) dataset

The Hubble parameter can be expressed as H(z) =
− dz

dt(1+z) . The model-independent value of the Hubble
parameter can be determined by measuring the quantity
dt, while dz is obtained from a spectroscopic survey. We
consider a dataset consisting of 57 data points within the
redshift range 0.07 ≤ z ≤ 2.41, which were collected us-
ing the differential age technique and line of sight BAO
[41]. To estimate the model parameters m and n, we em-
ploy the chi-square function to calculate the mean val-
ues based on the dataset,

χ2
H(H0, m, n) =

57

∑
k=1

[Hth(H0, m, n, zk)− Hobs(zk)]
2

σ2
H(zk)

,

(27)
where, Hth represents the predicted value of the Hubble
parameter from the model, while Hobs represents its ob-
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served value. The standard error in the measured data
of H(z) is denoted by σH(zk)

.
Fig. 1 depicts a comprehensive comparison between

our proposed model and the well-established ΛCDM
model in the field of cosmology. For the plot, we have
considered specific cosmological parameters, namely
Ωm0 = 0.315 and H0 = 67.4 km/s/Mpc [42]. These
parameters serve as the foundational assumptions for
the ΛCDM model. To provide a holistic view, the figure
incorporates the experimental results from the Hubble
dataset, which consists of an impressive collection of 57

data points. By including the Hubble results, Fig. 1 fa-
cilitates a direct and illuminating comparison between
our proposed model and the widely-accepted ΛCDM
model. This allows researchers and cosmologists to as-
sess the performance and validity of both models in
light of the empirical data. The figure serves as a vi-
sual tool for analyzing the discrepancies, agreements,
and overall consistency between the two models. It
enables the identification of regions where the models
align closely with the observational data and highlights
areas where there are deviations or variations.

0.0 0.5 1.0 1.5 2.0 2.5
z

50

100

150

200

250

H(
z)

From curve fitting
CDM

From CC dataset

FIG. 1. Error bar graph of H versus z for the assumed model. The curve for the model is shown by the solid red line, while the
ΛCDM model is shown by the black dotted line. The 57 Hubble data points are represented by blue dots.

B. SN dataset

1048 data points from Pantheon supernovae type Ia
samples data have recently been made available. It
includes data from the PanSTARSS1 Medium, SDSS,
SNLS, Deep Survey, a number of low redshift studies,
and HST surveys. The Pantheon supernovae type Ia
samples, 1048 of which are in the redshift range 0.01 <
z < 2.3, were assembled by Scolnic et al. [43]. The lumi-
nosity distance for a spatially flat Universe is given by
the expression

DL(z) = (1 + z)
∫ z

0

cdz′

H(z′)
, (28)

where c represents the speed of light.

The χ2 function for type Ia supernovae is generated

by correlating the theoretical distance modulus

µ(z) = 5log10DL(z) + µ0, (29)

with

µ0 = 5log(1/H0Mpc) + 25, (30)

like that

χ2
SN(H0, m, n) =

1048

∑
k=1

[
µobs(zk)− µth(H0, m, n, zk)

]2
σ2(zk)

.

(31)
Here, µth is the theoretical value of the distance modu-
lus, µobs is the observed value, and σ2(zk) is the standard
error of the observed value.

By including the Pantheon experimental results, Fig.
Fig. 2 facilitates a direct and illuminating comparison
between our proposed model and the widely-accepted
ΛCDM model.
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0.0 0.5 1.0 1.5 2.0 2.5
z

32

34

36

38

40

42

44

46

(z
)

From curve fitting
CDM

From Pantheon dataset

FIG. 2. Error bar graph of µ(z) versus z for the assumed model. The curve for the model is shown by the solid red line, while
the ΛCDM model is shown by the black dotted line. The 1048 points of the Pantheon are represented by the blue dots with
corresponding error bars.

C. BAO dataset

The BAO (Baryon Acoustic Oscillations) is well de-
scribed in observational cosmology. The fluctuations
in the density of ordinary (baryonic) matter in the
Universe are measured, which is influenced by acous-
tic density waves in the early Universe’s primordial
plasma. Here, we have considered the six BAO mea-
surements at different redshifts for the 6dFGS, SDSS,
and WiggleZ survey as shown in (Tab. I). The sound
horizon, rs, at the photon decoupling epoch, z∗, deter-
mines the characteristic scale of BAO and is provided
by the relation:

rs(z∗) =
c√
3

∫ 1
1+z∗

0

da

a2H(a)
√

1 + (3Ωb0/4Ωγ0)a
, (32)

where the current densities of baryons and photons are
indicated here by the symbols Ωb0 and Ωγ0, respectively.
In order to measure BAO, the following relationships
are used,

△θ =
rs

dA(z)
, (33)

dA(z) =
∫ z

0

dz′

H(z′)
, (34)

△z = H(z)rs. (35)

Here △θ represents the observed angular separation, dA
represents the measured angular diameter distance, and
△z represents the measured redshift separation of the
BAO characteristic in the two-point correlation function
of the galaxy distribution on the sky along the line of
sight. In this study, six data points of BAO dataset for
dA(z∗)/DV(zBAO) are used from the Referenced. [44–
49]. The redshift z∗ ≈ 1091 is used as the redshift at the
time of photon decoupling and dA(z) is the co-moving
angular diameter distance together with the dilation

scale DV(z) =
[
dA(z)2z/H(z)

]1/3
. The chi-square func-

tion is assumed to be [49]

χ2
BAO = XTC−1X , (36)

zBAO 0.106 0.2 0.35 0.44 0.6 0.73
dA(z∗)

DV (zBAO)
30.95 ± 1.46 17.55 ± 0.60 10.11 ± 0.37 8.44 ± 0.67 6.69 ± 0.33 5.45 ± 0.31

TABLE I. Values of dA(z∗)/DV(zBAO) for different values of zBAO.
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where

X =



dA(z⋆)
DV(0.106) − 30.95

dA(z⋆)
DV(0.2) − 17.55
dA(z⋆)

DV(0.35) − 10.11
dA(z⋆)

DV(0.44) − 8.44
dA(z⋆)

DV(0.6) − 6.69
dA(z⋆)

DV(0.73) − 5.45


,

and the inverse covariance matrix C−1 is defined in [49] as

C−1 =



0.48435 −0.101383 −0.164945 −0.0305703 −0.097874 −0.106738
−0.101383 3.2882 −2.45497 −0.0787898 −0.252254 −0.2751
−0.164945 −2.454987 9.55916 −0.128187 −0.410404 −0.447574
−0.0305703 −0.0787898 −0.128187 2.78728 −2.75632 1.16437
−0.097874 −0.252254 −0.410404 −2.75632 14.9245 −7.32441
−0.106738 −0.2751 −0.447574 1.16437 −7.32441 14.5022


.

64 65 66 67 68
H0

1.6

1.8

2.0

2.2

2.4

n

1.2

1.4

1.6

1.8

m

H0 = 65.9+1.3
1.3

1.2 1.4 1.6 1.8
m

m = 1.43+0.25
0.23

1.6 1.8 2.0 2.2 2.4
n

n = 2.04+0.27
0.27

H(z)+SN+BAO dataset

FIG. 3. The 1 − σ and 2 − σ likelihood contours for the assumed f (Q) model using the H(z) + SN + BAO dataset.
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For the H(z) + SN + BAO dataset, the χ2 function is
provided as,

χ2
total = χ2

H + χ2
SNe + χ2

BAO. (37)

By minimizing the chi-square function for the com-
bined H(z) + SN + BAO dataset, we have successfully
determined the optimal values for the parameters m and
n in our model, which provide the best fit to the data.
The corresponding likelihood contours for these param-
eters are presented in Fig. 3. In this figure, the 1 − σ

and 2 − σ likelihood contours are displayed, represent-
ing regions of parameter space that are consistent with
the observed data within one and two standard devia-
tions, respectively. These contours allow us to visual-
ize the uncertainties associated with the model param-
eters and provide valuable information about the confi-
dence intervals. Based on the likelihood contours in Fig.
3, we have identified the model parameters that yield
the best fit to the data. The optimal values are as fol-
lows: H0 = 65.9+1.3

−1.3, m = 1.43+0.25
−0.23 and n = 2.04+0.27

−0.27,
values indicate the central estimates for each parameter
along with their associated uncertainties. The param-
eter H0 represents the Hubble constant corresponds to
the best-fit estimation obtained from the analysis of our
model, as derived from the combined H(z)+SN + BAO
dataset. However, it is worth mentioning that this value
appears to deviate from the recent Planck measurements
[42]. The values m and n are specific parameters within
our model that have been determined to achieve the best
agreement with the H(z) + SN + BAO dataset. More-
over, to evaluate the statistical performance of the cos-
mological models, we employ well-established informa-
tion criteria known as AIC (Akaike Information Crite-
rion) [50] and BIC (Bayesian Information Criterion) [51].
These criteria allow us to assess the models based on
their fit to the data. AIC and BIC are calculated as fol-
lows:

AIC = −2 lnLmax + 2k ,

BIC = −2 lnLmax + k ln N , (38)

where Lmax represents the maximum likelihood, k de-
notes the number of free parameters, and N represents
the total number of observational data points. The
outcomes of our statistical analysis are χ2

min = 33.55,
AIC = 39.55, AICΛ = 42.55, and BIC = 45.68. While
the investigated model demonstrates lower AIC val-
ues compared to those of the standard ΛCDM model,
our findings reveal that the difference in AIC values is
∆AIC = AIC − AICΛ < 4. Consequently, this indicates
that the model in this study is in agreement with the ex-
pansion data, thus providing further support for their
consistency.

Model

ΛCDM

-1 0 1 2 3 4 5

-1.0

-0.5

0.0

0.5

z

q

FIG. 4. Evolution of the deceleration parameter for the speci-
fied model in line with the parameter values imposed by the
H(z) + SN + BAO dataset.

VI. EVOLUTION OF COSMOLOGICAL PARAMETERS

The deceleration parameter is crucial in explaining
the dynamics of the Universe’s expansion phase. It is
determined as

q (z) = −1 −
.

H
H2 . (39)

If q > 0, our Universe is in a decelerated stage, else
q < 0 conforms to an accelerated stage.

By using (26) in (39), we have

q (z) = −1 +
3 (1 + z)n

2
(
m + (1 + z)n) . (40)

From Eq. (40) for the deceleration parameter q, we
see that it contains two parameters of the model, m and
n. Fig. (4) shows the variation of the deceleration pa-
rameter versus redshift, and illustrates the evolution of
the Universe from the past to the present and then the
future. Taking the constrained values of the model pa-
rameters from the combined dataset used in this paper,
we can see that q has a transition from positive values in
the past, i.e. early deceleration, to negative values in the
present and future at the transition redshift ztr, which
leads to the current acceleration. Further, the current
value of q gained from the H(z) + SN + BAO dataset
is q0 = −0.38+0.06

−0.06 , which is consistent with the ob-
servational data. The value of the transition redshif is
ztr = 0.68+0.01

−0.01.
Figs. 5 shows the behavior of the energy density of

the Universe. It has been shown that the energy density
of the Universe increases positively with redshift.
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FIG. 5. Evolution of the energy density for the specified model
in line with the parameter values imposed by the combined
H(z) + SN + BAO dataset.
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FIG. 6. Evolution of the EoS parameter for the specified model
in line with the parameter values imposed by the combined
H(z) + SN + BAO dataset.

A good method to understand the existence of DE and
the accelerating phase of the Universe is to determine
the value and evolution of the Equation of State (EoS)
parameter. The EoS parameter is defined as ω = p

ρ ,
where p and ρ represent the isotropic pressure and en-
ergy density of the Universe, respectively. According to
recent Planck data (2018) [42], the present value of EoS
is ω0 = −1.028 ± 0.032. It can be argued that the obser-
vational evidence supports the phantom model of dark
energy (ω < −1). Also, there are other candidates on
dark energy such as the cosmological constant (ω = −1)
and quintessence dark energy (−1 < ω < − 1

3 ). The EoS
parameter can provide information on the history of the
expansion of the Universe over cosmic time, if ω = 1

3
the Universe is dominated by radiation, and if ω = 0
is called the matter-dominated era, while in the case of

ω < 0 it is called the dark energy-dominated Universe.
From Eq. (25), we can see that the EoS parameter of

our cosmological f (Q) model is time-dependent and
converges to ω → −1 as cosmic time increases. In
line with constrained values of model parameters from
the H + SN + BAO dataset, the variation of the EoS
parameter versus redshift z is exhibited in Fig. 6. It
is noted that the EoS parameter of our cosmological
f (Q) model varies in the quintessence region for the
constrained value of the model parameters from the
combined dataset. Further, it is clear that the ω ap-
proaches ΛCDM model in the future. The present value
of EoS parameter is obtained as ω0 = −0.59+0.04

−0.04 for the
H + SN + BAO dataset, which approximates the mea-
sured value from Planck 2018 results [42].

VII. ENERGY CONDITIONS

The energy conditions (ECs), which are based on the
Raychaudhuri equation, are crucial for describing the
behavior of the compatibility of timelike, lightlike, or
spacelike curves and are frequently utilized to compre-
hend terrifying singularities in black holes [52]. Kous-
sour et al. [32] has been used to study the ECs in sym-
metric teleparallel gravity. ECs also help us check the
validity of the model. In particular, the violation of a
strong energy condition leads to an acceleration of the
Universe. The ECs are described as:

• Weak energy condition (WEC): ρ + p ≥ 0 and ρ ≥
0;

• Null energy condition (NEC): ρ + p ≥ 0;

• Dominant energy condition (DEC): ρ ≥
∣∣p∣∣ and

ρ ≥ 0;

• Strong energy condition (SEC): ρ + 3p − 6
.
f QH +

f ≥ 0.

It is evident from Fig. 5 that the WEC condition i.e.
energy density displays favorable behavior. Further, we
observed from Figs. 7, 8 and 9 that the NEC and DEC
conditions are met, but the SEC condition is not. As we
noted previously, violating the SEC condition causes the
Universe to accelerate. The conclusions from our cosmo-
logical model agree with several works in the literature
[28, 29].
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FIG. 7. Evolution of the NEC for the specified model in line
with the parameter values imposed by the combined H(z) +
SN + BAO dataset.
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FIG. 8. Evolution of the DEC for the specified model in line
with the parameter values imposed by the combined H(z) +
SN + BAO dataset.
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FIG. 9. Evolution of the SEC for the specified model in line
with the parameter values imposed by the combined H(z) +
SN + BAO dataset.

VIII. DIAGNOSTIC ANALYSIS

A. Statefinder diagnostic

For analyzing or characterizing cosmic acceleration,
more and more DE models are being built. A sensitive
and reliable diagnostic for DE models is necessary to be
able to distinguish between these conflicting cosmolog-
ical scenarios employing DE. For this reason, Sahni et
al. developed a diagnostic approach that utilizes the pa-
rameter pair (r, s), the so-called ”statefinder” [53]. It is
simple to see that the statefinder is a logical progression
from H and q and probes the dynamics of the Universe’s
expansion through higher derivatives of the scale fac-
tor. The statefinder diagnostic is a helpful tool for differ-
entiating these DE models since different cosmological
models including DE exhibit qualitatively distinct evo-
lution paths in the r − s plane. The statefinder parame-
ters for the spatially flat ΛCDM model are (r = 1, s = 0).
In addition, Quintessence model relates to (r < 1, s > 0),
Chaplygin gas model to (r > 1, s < 0), and Holographic
DE model to (r = 1, s = 2

3 ). The following definition
applies to the statefinder pair (r, s):

r =
...
a

aH3 , (41)

s =
(r − 1)

3
(

q − 1
2

) . (42)

The parameter r can be rewritten as

r = 2q2 + q −
.
q
H

.

Fig. 10 represents the r − s plane by consider-
ing parameters constrained using the H(z)+SN+BAO
dataset. The provided model currently belongs to the
quintessence zone. We can see that in the future, the tra-
jectories of the r − s graph will pass via the ΛCDM fixed
point.

B. Om diagnostic

In this subsection, we explore the Om diagnostic, an-
other crucial tool for examining the dynamical nature of
cosmological models that deal with the problem of dark
energy [54]. Since it only employs the Hubble parameter
H, it is a simpler diagnostic than the statefinder diagnos-
tic explained in the previous section. The Om diagnostic
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FIG. 10. Evolution of the r − s plane for the specified model
in line with the parameter values imposed by the combined
H(z) + SN + BAO dataset.

is defined as the following in a spatially flat Universe:

Om (z) =

(
H(z)
H0

)2
− 1

(1 + z)3 − 1
(43)

where H0 is the current value of the Hubble constant.
The model exhibits quintessence behavior with a nega-
tive slope of Om(z), whereas a positive slope denotes
the model’s phantom behavior. Lastly, the constant
Om(z) behavior alludes to the ΛCDM model. From
Fig. 11, it is clear that Om(z) has a negative slope
which indicates that our cosmological model represents
quintessence-type behavior.

IX. CONCLUSION

The problem of late-time cosmic acceleration could
not be adequately addressed in the context of GR, but
geometrically modified gravity might be able to shed
some light on this contemporary cosmology problem.
According to GR, this acceleration results from the
dark energy, or strongly negative pressure, fulfilling
ρ (1 + 3ω) < 0. This article examined a cosmological
model in which the phenomenon of cosmic acceleration
was described without the necessity for dark energy. By
using the parametrization method, the dynamical equa-
tion of the Hubble parameter is presumed i.e. Eq. (26) in
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FIG. 11. Evolution of the Om(z) diagnostic for the specified
model in line with the parameter values imposed by the com-
bined H + SN + BAO dataset.

modified f (Q) gravity with the FLRW background. The
model we looked at, f (Q) = −Q + α

Q , comprises both
a linear and a non-linear type of non-metricity, where α

is the free model parameter. In addition, we used the
combined H(z) + SN + BAO dataset to find the best-fit
values of the model parameters. The results of the best
fit are H0 = 65.9+1.3

−1.3, m = 1.43+0.25
−0.23 and n = 2.04+0.27

−0.27.
In addition, we have discussed the behavior of the var-
ious cosmological parameters obtained in order to an-
alyze the detailed evolution of the Universe in various
periods. The evolution of the deceleration parameter in
Fig. 4 shows that the Universe recently switched from
a decelerated to an accelerated stage, while the energy
density in Fig. 5 behaves as expected. The current value
of the deceleration parameter is q0 = −0.38+0.06

−0.06 for the
H(z) + SN + BAO dataset. Also, the value of the tran-
sition redshif is ztr = 0.68+0.01

−0.01. In Fig. 6, the evolution
of the equation of state parameter is depicted. The nega-
tive value of the ω0 = −0.59+0.04

−0.04 for the H + SN + BAO
dataset is seen to remain in the quintessence zone and
approach to −1 in the far future, resulting to the ΛCDM
model (i.e., it does not pass the phantom division line
at ω < −1). The evolution of the energy conditions has
been covered. It is clear that while NEC and DEC (see
Figs. 7 and 8) do satisfy the model but SEC (see Fig. 9) is
not satisfied, creating an attractive force that places the
Universe in an accelerating phase. Finally, an examina-
tion of the statefinder parameters and the Om diagnosis
has been performed as well as compared to the ΛCDM
model.

The model described here is a straightforward
explanation of how cosmic evolution behaves in
the late Universe under modified gravity. It shows
quintessence-like behavior in the present and shows
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a nice fit to some observational datasets, making our
model a suitable alternative to standard lore.
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