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We conduct a Bayesian analysis of recent observational datasets, specifically the Cosmic Chronome-
ters (CC) dataset and Pantheon samples, to investigate the evolution of the EoS parameter in dark en-
ergy models. Our study focused on the effective EoS parameter, which is described by the parametric
form ωe f f = − 1

1+m(1+z)n , where m and n are model parameters. This parametric form is applicable
within the framework of f (R, Lm) gravity, where R represents the Ricci scalar and Lm is the matter
Lagrangian. Here, we examine a non-linear f (R, Lm) model characterized by the functional form
f (R, Lm) =

R
2 + Lα

m, where α is the free parameter of the model. We examine the evolution of several
cosmological parameters, including the effective EoS parameter ωe f f , the deceleration parameter q,
the density parameter ρ, the pressure p, and the statefinder parameters. Our analysis revealed that
the constrained current value of the effective EoS parameter, ω0

e f f = −0.68± 0.06 for both the CC and
Pantheon datasets, points towards a quintessence phase. Moreover, at redshift z = 0, the deceleration
parameter, q0 = −0.61+0.01

−0.01, indicates that the present Universe is undergoing accelerated expansion.
Keywords: EoS parameter, f (R, Lm) gravity, Observational constraints, Dark Energy.

I. INTRODUCTION

Recent astrophysical observations and data have pro-
vided compelling evidence for the expanding Uni-
verse. The phenomenon of cosmic acceleration is sup-
ported by various sources such as high redshift Su-
pernovae (SNe), Cosmic Microwave Background Radia-
tion (CMBR), Wilkinson Microwave Anisotropy Probe
(WMAP), Baryonic Acoustic Oscillations (BAOs), and
Large scale Structure (LSS) [1–9]. These observations
have revealed the presence of a mysterious component
known as Dark Energy (DE), which permeates the Uni-
verse and contributes to approximately 70% of its to-
tal energy budget. DE possesses the unique property
of exerting a strong negative pressure, making it dis-
tinct from conventional forms of matter and energy. Its
enigmatic nature adds to the fascination and complex-
ity of understanding the fundamental workings of our
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Universe. DE plays a crucial role in the accelerated ex-
pansion of the Universe and can be characterized by its
Equation of State (EoS) parameter ω = p/ρ, where p
represents the pressure and ρ represents the energy den-
sity. Numerous studies have demonstrated that the Uni-
verse undergoes accelerated expansion when the EoS
parameter approaches ω = −1 [10, 11]. In certain sce-
narios, DE exhibits phantom-like behavior, indicated by
ω < −1. A Universe governed by phantom DE is pre-
dicted to experience a future singularity called cosmic
doomsday or the big rip, where the Universe is torn
apart [12–14]. To understand and explain the nature
of DE and its connection to late-time acceleration, re-
searchers have explored modified theories of gravity.
These theories offer an intriguing alternative to conven-
tional approaches and hold promise in addressing the
puzzles of cosmic acceleration and quintessence [15].

In the past few decades, numerous generalizations of
Einstein’s field equations have emerged, each offering
unique perspectives on the nature of gravity. One such
theory is the f (Q) theory of gravity (where Q is the non-
metricity scalar) [16, 17], which has gained attention in
recent years. This theory represents a generalized ver-
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sion of symmetric teleparallel gravity, where the con-
ventional Levi-Civita connection is replaced with the
Weyl connection. What makes this theory particularly
intriguing is its potential to explain the current cosmic
acceleration without the need for DE. As a result, a sig-
nificant amount of research has been conducted by var-
ious scholars in this field [18–24], furthering our under-
standing of the f (Q) theory of gravity and its implica-
tions for the dynamics of the Universe. In recent years,
researchers have turned their attention to another ex-
tended theory of gravity called the f (R) theory [25–27].
This theory expands upon the standard Einstein-Hilbert
action by introducing a function of the Ricci scalar R. By
incorporating the term 1/R, which becomes significant
at small curvatures, the f (R) theory offers a potential ex-
planation for cosmic acceleration. The cosmological rel-
evance of f (R) models has made the f (R) theory partic-
ularly appealing in understanding the late-time expan-
sion scenario [28–30]. Furthermore, viable f (R) gravity
models have been explored within the framework of so-
lar system tests [31–34]. The observational signatures of
f (R) DE models, as well as the constraints imposed by
the solar system and equivalence principle, have been
extensively investigated [35–39]. Additional f (R) mod-
els have been proposed to unify early inflation with DE
and to satisfy local tests [40–42]. For further insights into
the cosmological implications of f (R) gravity models,
one can refer to the references [43–45]. The ongoing re-
search in this field sheds light on the potential of f (R)
theory in addressing various cosmological phenomena.

A recent advancement in the field of gravity theories
is the proposal by Harko et al. [46] of a new general-
ization called f (R, Lm) theory of gravity. In this theory,
R represents the scalar curvature, while Lm corresponds
to the matter Lagrangian density. This extension intro-
duces a novel approach to understanding gravitational
dynamics by incorporating both the geometric property
of curvature and the energy distribution described by
the matter Lagrangian density. The intriguing connec-
tion between matter and geometry gives rise to an addi-
tional force perpendicular to the four-velocity vector, re-
sulting in the non-geodesic motion of massive particles.
Building upon this concept, the study of arbitrary cou-
plings in both matter and geometry has been extended
[47]. Extensive investigations into the cosmological and
astrophysical implications of these non-minimal matter-
geometry couplings have been carried out [48–52]. It
should be noted that f (R, Lm) gravity models exhibit
an explicit violation of the equivalence principle, which
is rigorously constrained by solar system tests [53, 54].
Recently, Wang and Liao investigated the energy con-
ditions within the framework of f (R, Lm) gravity [55].

Furthermore, Goncalves and Moraes analyzed cosmo-
logical aspects by considering the non-minimal matter-
geometry coupling in f (R, Lm) gravity [56]. Solanki et
al. [57] made a significant contribution to the f (R, Lm)
background by investigating cosmic acceleration within
the framework of an anisotropic space-time with bulk
viscosity. In addition, Jaybhaye et al. [58] conducted
an insightful study focused on constraining the EoS for
viscous DE in the context of f (R, Lm) gravity. Their
research provides valuable insights into understand-
ing the nature of DE within this specific gravitational
framework, contributing to our broader comprehension
of cosmic acceleration and its underlying mechanisms.
These studies shed light on the intriguing implications
and consequences of the interplay between matter and
geometry in the context of f (R, Lm) gravity. Currently,
there is a growing body of literature exploring the in-
triguing cosmological implications of f (R, Lm) gravity
theory. Several studies have emerged that delve into the
various aspects and consequences of this theory [59–62].

In this study, we employ the reconstruction of an ef-
fective EoS parameter to gain insights into late-time cos-
mic acceleration within the framework of f (R, Lm) grav-
ity. This effective EoS is not influenced by the distinct
properties of individual matter field components. In-
stead, it is determined by model parameters that we
constrain based on observational data, specifically tar-
geting the current value of the effective EoS parameter.
Observational cosmology, a discipline dedicated to in-
vestigating the universe’s structure, existence, and evo-
lutionary processes through empirical observations, has
provided a wealth of data supporting the notion of cos-
mic acceleration. Notably, datasets such as CMBR, Type
Ia SNe, BAOs, Planck data [63], and others have offered
robust evidence for this phenomenon. To constrain our
model parameters, we rely on two key datasets: the
cosmic chronometers (CC) dataset and the Pantheon
dataset. The CC dataset comprises 31 data points ob-
tained from the differential age method, spanning the
redshift range 0.07 < z < 2.42 [64, 65]. In addition, we
incorporate the recently introduced SNe Pantheon sam-
ple, consisting of 1048 data points covering the redshift
interval 0.01 < z < 2.26 [66]. To perform parameter es-
timation, we employ the MCMC ensemble sampler, as
provided by the emcee library [67].

The structure of this paper is as follows: In Sec. II, we
introduce the formalism of f (R, Lm) gravity. Sec. III fo-
cuses on a cosmological f (R, Lm) model, where we de-
rive expressions for the Hubble parameter and the de-
celeration parameter using a parametric form of the ef-
fective EoS parameter. Next, in Sec. IV, we determine
the optimal values for the model parameters by using
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the observational datasets CC and Pantheon. We also
examine the behavior of cosmological parameters for
these constrained model parameter values. In addition,
in Sec. V, we investigate the statefinder parameters to
discern our cosmological model from other DE models.
Finally, in Sec. VI, we discuss our findings and provide
concluding remarks.

II. THE THEORY OF GRAVITY WITH f (R, Lm)

FORMALISM

The f (R, Lm) gravity theory, originally proposed as an
expansion of f (R) theories, introduces a novel approach
by incorporating both the Ricci scalar R and the mat-
ter Lagrangian term Lm as general functions within the
gravitational part of the model action [46],

S =
∫

f (R, Lm)
√
−gd4x, (1)

where g represents the determinant of the metric, while
f (R, Lm) refers to an arbitrary function that incorporates
both R and Lm as its variables. Furthermore, in this ar-
ticle, we will adopt natural units as our choice of mea-
surement.

The Ricci scalar R can be derived by performing a con-
traction of the Ricci tensor Rµν using the metric tensor
gµν. This contraction yields the following expression for
R,

R = gµνRµν, (2)

where the definition of the Ricci tensor is given by

Rµν = ∂λΓλ
µν − ∂µΓλ

λν + Γλ
µνΓσ

σλ − Γλ
νσΓσ

µλ, (3)

where the components Γα
βγ refer to the well-known Levi-

Civita connection.
The field equation for the metric tensor gµν can be ob-

tained by varying the action (1),

fRRµν +(gµν□−∇µ∇ν) fR − 1
2
( f − fLm Lm)gµν =

1
2

fLm Tµν.
(4)

In this context, the notations fR ≡ ∂ f
∂R and fLm ≡ ∂ f

∂Lm
are introduced. In addition, Tµν denotes the energy-
momentum tensor for a perfect type fluid, which is de-
fined by

Tµν =
−2√−g

δ(
√−gLm)

δgµν . (5)

The relation between the trace of the energy-
momentum tensor T, the Ricci scalar R, and the La-
grangian density of matter Lm can be derived by con-
tracting the field equation (4),

R fR + 3□ fR − 2( f − fLm Lm) =
1
2

fLm T, (6)

where □F represents the d’Alembertian of a scalar func-
tion F, given by □F = 1√−g ∂α(

√−ggαβ∂βF).
Furthermore, by taking the covariant derivative of Eq.

(4), we obtain the following result,

∇µTµν = 2∇µln( fLm)
∂Lm

∂gµν . (7)

In consideration of the spatial isotropy and homo-
geneity of our Universe, we adopt the following flat
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric
for our analysis,

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2], (8)

where a(t) represents the scale factor that quantifies the
cosmic expansion at a given time t. By considering the
line element (8), we have computed the Ricci scalar as

R = 6(Ḣ + 2H2), (9)

where H = ȧ
a represents the Hubble parameter, ȧ de-

notes the derivative of the scale factor a with respect to
time.

The energy-momentum tensor, which describes the
matter content of the Universe modeled as a perfect
fluid, exhibits the following non-zero components with
respect to the line element (8),

Tµν = (ρ + p)uµuν + pgµν. (10)

In the given context, the symbols ρ represent the
matter-energy density, p denotes the spatially isotropic
pressure, and uµ = (1, 0, 0, 0) represents the compo-
nents of the four-velocity vector for the cosmic perfect
fluid.

The Friedmann equations, which describe the dynam-
ics of the Universe within the framework of f (R, Lm)
gravity, can be expressed as

3H2 fR +
1
2
(

f − fRR − fLm Lm
)
+ 3H ˙fR =

1
2

fLm ρ, (11)

and

Ḣ fR + 3H2 fR − f̈R − 3H ˙fR +
1
2
(

fLm Lm − f
)
=

1
2

fLm p.
(12)

III. THE f (R, Lm) COSMOLOGICAL MODEL

For our analysis, we consider the following functional
form within the framework of the f (R, Lm) cosmological
model [68],

f (R, Lm) =
R
2
+ Lα

m, (13)
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where α is the free parameter of the model. In partic-
ular, when α = 1, the standard Friedmann equations
of GR are recovered. In the specific case of this f (R, Lm)
model, where Lm = ρ [69], the Friedmann equations (11)
and (12) can be expressed as

3H2 = (2α − 1)ρα, (14)

and

2Ḣ + 3H2 =
[
(α − 1)ρ − αp

]
ρα−1. (15)

The effective EoS parameter (we f f ) is defined in terms
of the total energy density (ρ) and pressure (p) as

ωe f f =
p
ρ

. (16)

The quantities ρ and p account for the density and
pressure, respectively, encompassing all forms of mat-
ter present in the Universe. By using Eqs. (14) and (15),
the effective EoS parameter can be expressed as

ωe f f = −1 +
(2 − 4α)Ḣ

3αH2 . (17)

In order to find a solution for Eq. (17) and deter-
mine the value of H, an additional equation is required.
To tackle this, we employ a carefully chosen paramet-
ric form for the equation of state parameter, which
is expressed as a function of redshift z [70], ωe f f =

− 1
1+m(1+z)n , where m and n represent two model pa-

rameters. The form of ωe f f can be viewed as a phe-
nomenological approach, providing a convenient and
flexible parameterization of the EoS. This allows for
model-independent analyses and enables investigations
of a wide range of cosmological scenarios. As z becomes
very large (in the early Universe), the term (1+ z)n dom-
inates the denominator, leading to ωe f f ≈ − 1

m(1+z)n .
Depending on the values of m and n, the effective EoS
can take different values in this high redshift regime.
At moderate redshifts, where (1 + z)n is still signifi-
cant, but not dominant, the effective EoS is given by
ωe f f = − 1

1+m(1+z)n . This phase of the Universe is typi-
cally characterized by matter dominance, and ωe f f will
be close to zero, representing non-relativistic matter be-
havior. As z approaches zero (current epoch), the term
(1 + z)n becomes negligible, and ωe f f ≈ − 1

1+m . In this
phase, if m > 0, the effective EoS will be negative, in-
dicating accelerated expansion and behavior character-
istic of DE domination. The specific values and behav-
ior of ωe f f at different phases of the Universe are de-
termined by the parameters m and n. In the forthcom-
ing section, we will aim to constrain these parameters
using the most recent observational data available. By

comparing the theoretical predictions based on the ωe f f
model with the observational constraints, we can deter-
mine the range of values that are consistent with the
data. Finally, it is important to note that this form of the
equation of state parameter, ωe f f , has been widely em-
ployed in numerous studies exploring various modified
theories of gravity [71–73].

From Eq. (17), we have

Ḣ +
3αH2

2(2α − 1)
− 3αH2

2(2α − 1)(1 + m(1 + z)n)
= 0. (18)

By using the relation 1
H

d
dt =

d
dln(a) , we can express the

given equation as a first-order differential equation,

dH
dln(a)

+
3αH

2(2α − 1)
=

3αH
2(2α − 1)(1 + m(1 + z)n)

. (19)

By integrating the aforementioned equation, we can
obtain the expression for the Hubble parameter in terms
of redshift as

H(z) = H0
[
A + B(1 + z)n]l , (20)

where H0 represents the current value of the Hubble pa-
rameter. It quantifies the rate of expansion of the Uni-
verse at the present cosmic epoch. In addition, A =

1
1+m , B = m

1+m , and l = 3α
2n(2α−1) . It is worth mention-

ing that in the standard ΛCDM model, the parameters
α = 1 and n = 3 correspond to the specific case, with the
present matter density parameter Ωm = B = (1 − A).
As such, the values of the model parameters α and n
serve as indicators of the deviation of the current model
from the ΛCDM model. These parameters allow us
to quantify and compare the differences between the
present model and the well-established ΛCDM frame-
work, providing valuable insights into any potential
modifications or extensions to the standard cosmolog-
ical paradigm

The deceleration parameter is a fundamental param-
eter that plays a crucial role in describing the dynamics
of the expansion phase of the Universe. It is defined as
the negative ratio of the second derivative of the scale
factor to its first derivative with respect to cosmic time,

q = −1 − Ḣ
H2 . (21)

By substituting Eq. (20) into Eq. (21), we obtain the
following expression,

q(z) = −1 +
Bln(1 + z)n

A + B(1 + z)n . (22)
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IV. CONSTRAINTS FROM OBSERVATIONAL DATA

In this section, we conduct a Bayesian analysis of the
observational aspects of our cosmological model. We
utilize two datasets, namely the CC dataset, and the
Pantheon dataset, to determine the optimal ranges for
the model parameters H0, m, n, and α. To constrain these
parameters, we employ the standard Bayesian tech-
nique, utilizing the likelihood function and the Markov
Chain Monte Carlo (MCMC) method implemented in
the emcee Python library [67]. The probability func-
tion used in this analysis aims to maximize the best-
fit ranges of the model parameters, L ∝ exp(−χ2/2),
where the chi-squared function χ2 is employed to as-
sess the goodness-of-fit between the model predictions
and the observed data [74]. The specific form of the χ2

function varies depending on the dataset under consid-
eration. Below, we provide the expressions for the χ2

functions used for different datasets.

A. CC dataset

In our analysis, we utilize Hubble parameter mea-
surements obtained through the differential age method
in the redshift range 0.07 < z < 2.42 [75–78], com-
monly referred to as CC data. Specifically, we con-
sider a dataset consisting of 31 data points compiled
in [64, 65]. These measurements provide valuable in-
formation about the expansion history of the Universe
and serve as important constraints for our cosmological
model. In order to determine the best-fit values of the
model parameters H0, m, n, and α, we define the chi-
square function as

χ2
CC(H0, m, n, α) =

31

∑
k=1

[Hth(zk, H0, m, n, α)− Hobs(zk)]
2

σ2
H(zk)

,

(23)
where, Hth corresponds to the theoretical value of the
Hubble parameter derived from our model, while Hobs
represents its observed value. The standard deviation,
denoted as σH(zk)

, quantifies the uncertainty associated
with the Hubble parameter measurements. Fig. 1 il-
lustrates the likelihood contours for the model param-
eters H0, m, n, and α based on the CC dataset, specifi-
cally showing the 1 − σ and 2 − σ contours. The best-
fit values obtained for the model parameters are H0 =

67.86+0.75
−0.75, m = 0.48+0.14

−0.14, n = 5.8+3.8
−3.7, and α = 1.33+0.45

−0.45.
B. Pantheon dataset

In recent studies, a comprehensive compilation of
Pantheon SNe Ia data has been made available. The
Pantheon dataset comprises 1048 data points, incor-
porating observations from various surveys such as
PanSTARSS1 Medium, SDSS, SNLS, and Deep Survey,
as well as low redshift and HST surveys. Scolnic et al.
[66] have meticulously assembled this extensive dataset
covering a wide redshift range of z ∈ [0.01, 2.3]. Con-
sidering a spatially flat Universe based on the findings
of the Planck collaboration [63], the luminosity distance
can be expressed as

DL(z) = c(1 + z)
∫ z

0

dz′

H(z′)
, (24)

where c is the speed of light.
To perform statistical analysis, we employ the χ2 func-

tion to assess the agreement between the observed su-
pernovae samples and the theoretical predictions. The
χ2 function is expressed as

χ2
Pantheon(H0, m, n, α) =

1048

∑
i,j=1

∆µi

(
C−1

Pantheon

)
ij

∆µj, (25)

where CPantheon represents the covariance metric [66],
and

∆µi = µth(zi, H0, m, n, α)− µobs
i . (26)

Here, the symbol µth represents the theoretical value
of the distance modulus, while µobs corresponds to its
observed value. The distance modulus is calculated the-
oretically as

µth(z) = 5log10DL(z) + µ0, (27)

with

µ0 = 5log(1/H0Mpc) + 25, (28)

Fig. 2 illustrates the likelihood contours for the model
parameters H0, m, n, and α based on the Pantheon data
sample, specifically showing the 1 − σ and 2 − σ con-
tours. The best-fit values obtained for the model param-
eters are H0 = 67.89+0.80

−0.78, m = 0.48+0.14
−0.14, n = 5.4+4.0

−3.8,
and α = 1.33+0.50

−0.47.

The evolution of the effective EoS, density, pressure,
and deceleration parameters is shown below, consider-

ing the constrained values of the model parameters.
The EoS parameter plays a crucial role in determin-
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FIG. 1. Likelihood contours for model parameters using CC dataset: 1 − σ and 2 − σ confidence intervals.

ing the relationship between energy density and pres-
sure in different phases of the Universe. Some com-
mon phases observed through the EoS parameter in-
clude the dust phase (ω = 0), the radiation domi-
nated phase (ω = 1/3), and the vacuum energy phase
(ω = −1) corresponding to the ΛCDM model. In ad-
dition, there is the accelerating phase of the Universe,
which is a topic of recent discussion, and is character-
ized by ω < −1/3. This phase includes the quintessence
regime (−1 < ω ≤ −1/3) and the phantom regime
(ω < −1). In this study, we consider an effective EoS pa-
rameter that depends on two model parameters, m and
n. Based on the constrained values of these parameters
from the CC and Pantheon datasets, the behavior of the
effective EoS parameter is shown in Fig. 3. At z = 0,
the value of the effective EoS parameter is determined
to be ω0

e f f = −0.68 ± 0.06 for both the CC and Pan-

theon datasets [73, 79], indicating a quintessence phase.
This value is obtained through the analysis of observa-
tional data and represents the behavior of the cosmic ex-
pansion at the present epoch. The quintessence phase
is characterized by −1 < ω ≤ −1/3, indicating the
presence of a form of DE that drives the accelerated ex-
pansion of the Universe. It is important to note that
both datasets exhibit similar behavior, as indicated by
the consistent values of the effective EoS parameter ob-
tained from the analysis.
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FIG. 2. Likelihood contours for model parameters using Pantheon data sample: 1 − σ and 2 − σ confidence intervals.
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FIG. 3. Evolution of the effective EoS parameter with cosmic
redshift for constrained model parameters using CC and Pan-
theon datasets.

Figs. 4 and 5 illustrate the evolution of the energy
density and pressure, respectively. It is noteworthy that
the energy density exhibits the expected positive behav-
ior, indicating a contribution to the Universe’s expan-
sion. On the other hand, the pressure displays a nega-
tive behavior both in the present and future, suggesting
a driving force for the expansion. This observation sug-
gests that the effective EoS parameter, augmented by the
additional terms in the f (R, Lm) gravity, contributes to
the accelerated expansion of the Universe.
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FIG. 4. Evolution of the energy density parameter with cos-
mic redshift for constrained model parameters using CC and
Pantheon datasets.
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FIG. 5. Evolution of the pressure with cosmic redshift for con-
strained model parameters using CC and Pantheon datasets.

In Fig. 6, we observe that the Universe follows a spe-
cific evolution pattern. It starts its history in a decel-
erating phase (q > 0), indicating a slowing down of
the expansion. However, after a transition redshift ztr
(i.e. at q = 0), the Universe enters an accelerating phase
(q < 0), characterized by an increasing rate of expan-
sion. This behavior aligns with the observed dynamics
of the recent Universe, which has gone through distinct
stages including a decelerating dominated phase, an ac-
celerating expansion phase, and a late-time accelerating
phase. It is important to note that the evolution of the
Universe eventually leads to a de Sitter expansion, char-
acterized by a constant and asymptotically lower value
of the deceleration parameter at lower redshifts (i.e. at
z → −1).

The transition redshifts, determined by the con-
strained values of the model parameters using the CC
and Pantheon datasets, are found to be zt = 0.50+0.04

−0.04

and zt = 0.54+0.02
−0.04, respectively [80, 81]. This indicates a

shift in the dynamics of the Universe from a decelerating
phase to an accelerating phase at this particular redshift.
Furthermore, the present value of the deceleration pa-
rameter is estimated to be q0 = −0.61+0.01

−0.01 for both the
CC and Pantheon datasets [82, 83]. This negative value
suggests that the Universe is currently experiencing an
accelerating expansion.

CC

Pantheon

-0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

z
q

FIG. 6. Evolution of the deceleration parameter with cosmic
redshift for constrained model parameters using CC and Pan-
theon datasets.

V. STATEFINDER PARAMETERS

To analyze and characterize cosmic acceleration, var-
ious models of dark energy (DE) have been developed.
To distinguish between these different cosmological sce-
narios involving DE, it is important to have a sensitive
and reliable diagnostic tool. One such diagnostic ap-
proach is the ”statefinder” introduced by Sahni et al.
[84]. The statefinder is designed to probe the dynamics
of the Universe’s expansion by utilizing higher deriva-
tives of the scale factor, building upon the information
provided by the Hubble parameter and the deceleration
parameter. The statefinder diagnostic, represented by
the parameter pair (r, s), offers a valuable tool for distin-
guishing between different DE models. Various cosmo-
logical models, including DE, exhibit distinct evolution-
ary paths in the r − s plane. For instance, the spatially
flat ΛCDM model corresponds to (r = 1, s = 0). The
quintessence model is characterized by (r < 1, s > 0),
the Chaplygin gas model corresponds to (r > 1, s < 0),
and the holographic DE model is represented by (r =
1, s = 2

3 ).
The statefinder parameters, (r, s), are defined as

r =
...
a

aH3 , (29)
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s =
(r − 1)

3
(

q − 1
2

) . (30)

The parameter r can be rewritten as

r = 2q2 + q −
.
q
H

.

In view of Figs. 7 and 8, the evolution of the
statefinder pairs s − r and q − r exhibits a trajectory that
starts in the quintessence regime at early times, transi-
tions through the Chaplygin gas region, and ultimately
approaches the ΛCDM point. In the s − r plane, the
fixed point (0, 1) represents the spatially flat ΛCDM
model, while in the q − r plane, the point (−1, 1) corre-
sponds to the de Sitter (dS) point. This behavior demon-
strates that the statefinder diagnostic is a more effective
quantity than the EoS for distinguishing between differ-
ent DE models in this scenario.

CC

Pantheon

PAST

PRESENT

FUTURE

ΛCDM

Quintessence

Chaplygin Gas

-0.3 -0.2 -0.1 0.0 0.1 0.2
0.8

0.9

1.0

1.1

1.2

1.3

1.4

s

r

FIG. 7. Evolution of the s − r plane for constrained model pa-
rameters using CC and Pantheon datasets.

CC

Pantheon

ΛCDM
dS

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
0.8

1.0

1.2

1.4

1.6

q

r

FIG. 8. Evolution of the q − r plane for constrained model pa-
rameters using CC and Pantheon datasets.

VI. CONCLUSION

Although numerous observations have confirmed the
existence of DE, its underlying nature still eludes us.
The EoS parameter plays a crucial role in characteriz-
ing various DE models. It serves as a significant method
for understanding and distinguishing the nature of DE
and its effects on the expansion of the Universe. The
condition for accelerating expansion is characterized by
an EoS parameter ω < −1/3. Understanding the gravi-
tational and dynamic aspects of the Universe hinges on
unraveling the fundamental physics behind DE, which
directly influences EoS.

In this study, we have pursued a novel approach to
the gravitational theory known as f (R, Lm) gravity. This
alternative framework offers a promising avenue for ex-
ploring modified theories of gravity. To analyze the cos-
mological implications of this theory, we have adopted
a parametric form for the EoS parameter that depends
on the redshift z, ωe f f = − 1

1+m(1+z)n . This choice al-
lows us to investigate the behavior of EoS and its im-
pact on the evolution of the Universe within the context
of f (R, Lm) gravity. At the epoch of recent acceleration,
the effective EoS parameter in our model takes a nega-
tive value, indicating a driving force behind the acceler-
ated expansion of the Universe. Specifically, ωe f f is less
than −1/3, which is a characteristic condition for cos-
mic acceleration. As we move towards higher redshifts,
the value of ωe f f tends to approach zero. This behav-
ior is observed when the model parameters m and n are
positive, and the specific value of ωe f f at z = 0 is deter-
mined by these model parameters. Using the paramet-
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ric form mentioned above, we have obtained the solu-
tion for the Hubble parameter in a non-linear f (R, Lm)
model. In this particular model, the functional form is
given by f (R, Lm) = R

2 + Lα
m, where α represents a free

model parameter.
In addition, we used two datasets, namely the CC

dataset with 31 data points and the Pantheon dataset
with 1048 data points, to determine the optimal values
for the model parameters (H0, m, n, α), which are found
to be: H0 = 67.86+0.75

−0.75, m = 0.48+0.14
−0.14, n = 5.8+3.8

−3.7,
α = 1.33+0.45

−0.45 for the CC dataset and H0 = 67.89+0.80
−0.78,

m = 0.48+0.14
−0.14, n = 5.4+4.0

−3.8, α = 1.33+0.50
−0.47 for the Pan-

theon dataset. Furthermore, we have examined the dy-
namics of the effective EoS, density, pressure, and decel-
eration parameters, taking into account the constrained
values of the model parameters. Based on the analy-
sis presented in Fig. 3, the effective EoS parameter at
present (z = 0) is found to be ω0

e f f = −0.68 ± 0.06 for
both the CC and Pantheon datasets. This result suggests
that the Universe is currently in a quintessence phase.
Figs. 4 and 5 depict the evolution of energy density
and pressure. The energy density exhibits a positive be-
haviour, whereas the pressure displays a negative be-
havior, acting as a driving force for the expansion. The
deceleration parameter in Fig. 6 shows a recent transi-
tion of the Universe from deceleration to acceleration.
The transition redshifts determined by the constrained
model parameters are zt = 0.50+0.04

−0.04 for the CC dataset
and zt = 0.54+0.02

−0.04 for the Pantheon dataset. More-
over, the present values of the deceleration parameter
are q0 = −0.61+0.01

−0.01 for both data sets.
Furthermore, we investigated the statefinder param-

eters for our model, taking into account observational
constraints. The results, shown in Figs. 7 and 8, in-
dicate that our cosmological f (R, Lm) model exhibits a
trajectory starting in the quintessence regime at early
times, transitioning through the Chaplygin gas region,
and eventually approaching the ΛCDM point. This be-

havior highlights the effectiveness of the statefinder di-
agnostic in distinguishing between different DE mod-
els in this particular scenario. In this study, our pri-
mary focus has been on the non-linear f (R, Lm) model,
specifically the minimal coupling case represented by
f (R, Lm) =

R
2 + Lα

m. This particular model has provided
valuable insights into understanding the dynamics of
the Universe within the context of modified gravity the-
ories. However, it’s crucial to acknowledge that our
exploration is not exhaustive, and there are numerous
uncharted models within the realm of f (R, Lm) gravity
that merit investigation. One intriguing example is the
non-minimal coupling case, characterized by the func-
tional form f (R, Lm) = R

2 + (1 + αR)Lm. This alterna-
tive model, as discussed in a previous study [60], offers
a unique perspective on how the Universe’s evolution
is influenced by non-linear f (R, Lm) gravity. Future re-
search endeavors can extend their inquiries to this spe-
cific model, delving into its complexities and implica-
tions. By doing so, we can gain a more comprehensive
understanding of cosmic dynamics, considering various
facets of matter-geometry interactions and their role in
shaping the Universe’s behavior. Exploring different
models within the framework of f (R, Lm) gravity is a
promising avenue for advancing our knowledge of the
Universe’s fundamental processes.
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