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Abstract: The features of using the acoustic method for accurately determining the concentration
of components in two-component composite materials by measuring the speed of sound of long
waves are described in this paper. Furthermore, explicit expressions for the volume concentrations of
the matrix material and reinforcing particles or fibers of composite materials obtained by acoustic
measurements are found. In addition, the advantages, features, and limits of the application of
acoustic quality control of composite materials of various compositions and purposes are described.
It is established that the methods for determining the concentration of components are valid for
all types of composite materials, which are conveniently considered as phonon crystals. These
results make it possible to more accurately determine or select a measuring cell for the experimental
determination of the speed of sound. The mathematical problem to be solved is a purely exact
inverse problem.

Keywords: boundary conditions; wave equation; acoustic waves; inhomogeneous medium;
composites; phonon crystal

1. Introduction

In this paper the acoustic properties of composite and nonhomogeneous and heteroge-
neous two-component media are investigated with the help of 1D theory. Phononic crystals
are composite media, with two different elastic materials modulated in a periodic fashion.
Composite materials have been introduced into almost every industry in some form or
fashion. This is due to the acceptance and transfer of finished products and the principles
of total quality control. To solve this problem, special non-destructive methods of quality
control of composite materials are required. A significant difficulty is the structure of
the composite, which is an essentially heterogeneous material, which consists of a matrix
and a reinforcing material (fibers as in carbon fiber plastics or particles as in damascus
steel). The concept of the propagation velocity of small perturbations for displacements
or longitudinal stresses in composite materials is not entirely common and requires a
special explanation. Throughout the work, it is assumed that the composite material can
be described with the help of a fundamental cell, which, repeating periodically, forms
or describes, with some accuracy, the entire composite. In this case, for a simple wave,
oscillations in each fundamental cell are conveniently considered an amplitude factor,
and the phase shift of oscillations in adjacent fundamental cells of the composite material
describes a traveling simple wave in the composite.
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This paper describes acoustic non-destructive testing methods for determining the
concentration of components (matrix and reinforcing material) in a two-component hetero-
geneous composite material.

The peculiarities of acoustic methods of non-destructive testing are low cost, efficiency,
and the ability to automate measurements. Acoustic measurements are a very important
method and an example of methods for non-destructive testing of the composition of
heterogeneous media.

These results make it possible to more accurately determine or select a measuring cell
for experimental determination of the speed of sound. The mathematical problem that
needs to be solved is a purely exact inverse problem. In this paper, within the framework
of a one-dimensional theory, using an exact inverse problem, methods for determining the
concentration of components of a two-component heterogeneous continuous medium—a
composite material by a known sound velocity for long waves or low frequencies—are
developed. The essential features of wave propagation in inhomogeneous one-dimensional
periodic media are [1-4]: strong dispersion; the presence of an infinite number of pass-
bands and locking; and the presence of an infinite number of propagating modes. All
these features are essential for the development of methods for acoustic sounding of an
inhomogeneous medium. In this paper, based on the results of [1-4], a method for solving
exact inverse problems for determining the structure of an inhomogeneous medium from
a known sound velocity is proposed. As an example, a study was conducted to deter-
mine the concentration of air bubbles in water or to determine the porosity of a gas-filled
porous medium. The waveguide, decelerating, and resonant properties of inhomogeneous
one-dimensional periodic permeable media such as a chain of gas bubbles in a liquid or
a structured composite were studied in [1,2]. In the framework of the two-dimensional
theory, the propagation of waves near one-dimensional periodic chains of permeable and
impenetrable obstacles is studied in [3].

This article uses the results and is a continuation and generalization of the work [3,4]
presented below. The papers [5,6] below contain the results of research that make it possible
to determine the transmission and reflection coefficients of acoustic waves from interfaces
of the phonon crystal—phonon crystal, phonon crystal—continuous medium type.

The method proposed in this paper can serve as a basis for the development and
creation of new technologies for the acoustic method of quality control of composite
materials at the input and output.

With the help of these technologies, it is possible to determine not only the composition,
but also the quality of composites. It should be noted that acoustic methods determine the
volume concentration of components with high accuracy.

The frequency range of acoustic studies is determined by the characteristic size of the
inhomogeneities of the composite or the size of the fundamental cell of the one-dimensional-
periodic structure of the composite.

2. Mathematical Formulation, Photonic Crystal Method

It is convenient to assume that all composite materials and the corresponding hetero-
geneous media are one-dimensional-periodic. An essential feature of wave propagation
in one-dimensional periodic media is that the phase of vibrations propagates through the
fundamental cells through the medium, and the vibrations in the fundamental cells are the
amplitude factor.

Let the composite material—the reinforcing material in the composite matrix—be
described using an inhomogeneous one-dimensional periodic medium that consists of
two components:

M1 = {cy, p1} u M1 = {c, pp}—the speed of sound and the density at rest, let p(!)
and p? acoustic perturbation of pressure (or voltage in a longitudinal wave) in the 1st
and 2nd media, respectively. It is considered that the environment M1 and M2 completely
fill the environment M in this way; M + L = M—the displacement of the medium by L
translates it into itself. Further, for clarity and convenience of presentation, it is assumed
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that the medium M1 is denser than the medium M2 [1-10]. An example of such media is
all composite materials reinforced with a woven preform. It is assumed that the woven
preform always has a spatial periodicity. Let L be the smallest spatial period of a one-
dimensional periodic medium. Further, the following notation is used: T = p,/p;—the
ratio of densities,

k = ¢/ cp—the ratio of sound velocities,

w—circular oscillation frequency,

A = wL/c;—dimensionless oscillation frequency. Dimensionless spatial variables
X = x/L are used £ = x/L, next, the cover over x is lowered. In these variables, the
smallest spatial period of the medium is equal to one.

Everywhere in the work, the index j refers to the Mj, j = 1, 2. environment. A part of
the medium (composite) having a length equal to one is called a fundamental cell.

2.1. Equations and Boundary Conditions

The steady-state acoustic pressure fluctuations with a circular frequency in the media
M1 and M2 and are described using the equations:

PN 422 =0, p? 4 A%2p@ =0 (1)

At the boundaries of the media contact, the conditions of continuity of pressure and
velocity (dynamic and kinematic conditions) must be met:
1 2
pV =p@, pll) = p? @)
The Equations (1) and (2) are further called the problem T, the transmission problem.
This problem fully describes the distribution of acoustic waves in inhomogeneous one-
dimensional periodic composites.

2.2. Symmetry Properties

Since the wave equation is invariant with respect to any locally flat symmetries, the
symmetry of the problem T is determined by the symmetry of the woven preform of a
composite material for fiber reinforcement with glass, basalt, carbon fiber, or discrete rein-
forcement. By definition, all one-dimensional periodic structures admit a group of transfers
along the spatial line {T;} generated by the shift operator by 1 dimension, so the space
of permissible solutions can be decomposed into subspaces invariant with respect to this
group [2]. Functions p(x) that belong to such subspaces for some §, —7 < § < 7 satisfy:

Ti{p(x)) = p(x+1) = eu(x) ®)

As a result, we can assume that they have the form, which hereafter will be called an
elementary wave packet following [7-15]:

p<x)e—iwt _ A(x)ei(—wt + ¢x) @)

A(x+1) = A(x)

Here i— is an imaginary unit, ¢ describes the phase shift of oscillations in neighboring
fundamental regions of the translation group, A(x) the amplitude factor, and ¢ is the
wave number for an elementary wave packet in the composite. Next, the problem T with
condition (4) will be called the problem T(¢).

It should be noted that the elementary wave packet (4) completely describes the
fine structure of the dispersing acoustic wave in a phonon crystal. The solution of the
Equations (1) and (2) in the form of an elementary wave packet (1.3) exists only for some
values of the circular frequency and the wave number w = w({).

It is sufficient to investigate the problem T () in some fundamental cell of the transla-
tion group (some period of the structure), for example, in between 0 < x < 1. The solution
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on the entire straight line can be obtained by continuing the solution of the problem in one
period using (4).

2.3. Wave Guide Modes and Common-Mode Oscillations

At the physical level of rigor, the waveguide modes of oscillations correspond to
traveling waves propagating through the composite without attenuation. For further
presentation, it will be necessary to clarify the terminology.

Definition 1. A nontrivial solution of the problem T () for { # 0 is called an elementary wave
packet for a composite material if ¢ # 0 [7—-12]. The corresponding parameter value A = A(() is
called the dispersion relation for the dimensionless wavenumber ¢ and dimensionless frequency
A. For dimensional quantities of the angular frequency and wavenumber, the following relations
are valid:

a):@ and K:% 5)

Elementary wave packet (4) for dimensional variables (x, t) has the form

Pmetrics (x/ t) = Ametrics (x)ei(fiw(g)t)/ (6)

Ametrics(x + L) = A(x)metrics
Prietrics (x +L, t) = Pmetrics(x/ t)eig

It should be noted that the wavelength A of an elementary wave model in a phonon crystal is
determined by the relation A = % Fair.

Lemma 1. The smallest value of the wavelength of an elementary wave packet for any phonon
crystal is equal to 2L—double the length of the fundamental cell. In this case, oscillations in the
neighboring fundamental regions of the translation group occur in antiphase.

Proof. Because —7t < ¢ < 71, then the smallest value of the wavelength of an elementary
wave packet for any phonon crystal is equal to 2L—twice the elementary length. Due
to the fact that the wavelength of an elementary wave packet has the form A = 2L,
the minimum wavelength of this wave is 2L when the phase of circular oscillations in

neighboring fundamental cells is shifted by 7r, which was required to be proved. [

3. Determination of the Component Concentration of a Monodisperse Composite

The problem T(¢) for a chain of identical inhomogeneities (monodisperse chain)
(Figure 1) [6] is typical. Let the linear concentration of one connected layer of the M1
medium be equal to ki, then the linear concentration of the M2 medium is equal to
kry =1—k;.

Figure 1. Monodisperse chain of composite inhomogeneities.

Conditions at the boundaries of the fundamental cell
PN (—k/2) exp(ig) = p? (1 -k/2),

tpM (—k/2) exp(ic) = pP (1~ k/2) @)
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are equivalent (3).

Here and after (1), (2) and (7) called a problem TM(¢).

It should be noted that the family of problems TM(¢) fully considers the possible
interactions of all inhomogeneities in a one-dimensional periodic chain.

3.1. Dispersion Relations

Following [1], the dispersion relations for all waveguide modes of the TM () problem
have the form:

4Tk[1 4 c0s(28)]  — (T + k)*{cos[A(k — kk + «) + &] + cos[A(k — kk + k)
—&]} +cos[A(k — kk + 1) — &)} + (T + k)*{cos[A (k + xk ®)
—x) +G] + cos[A(k + xk — k) — &] + cos[A(k + xk — k)
g} =0

The passbands {0, },,_1, = and cutoffs are fully described by this ratio.

The mode corresponding to the lowest (first) passband will be called creeping. It
should be noted that the wavelength of the creeping mode exceeds the dimensions of
the inhomogeneities. In [1], an approximate dispersion relation was obtained for low
frequencies from the first passband:

M(T, ) = \/Zr[l — cos(@’)]/\/(k + 7 — kt) (kT — kK?). ©)

3.2. Long Wave Approach

For the acoustic sounding technique, it is advisable to consider the asymptotic behavior
of the waveguide frequencies and phase velocities of the creeping mode, provided that
the wavelength is significantly greater than the spatial period of the bubble chain. The
wavelength L, of the creeping waveguide mode corresponding to the waveguide frequency
M (€, k, T), has the form L, = 271/¢.

At large values Ly, the wave number of the waveguide mode is close to zero. For
small ¢ (6) takes the form:

M(EKT) = EVT/ [ (k+ T — ko) (kT — ke +R2). (10)

Dimensionless phase velocity Cﬁl) (¢, k, ) in the propagation of a long wave in the

first bandwidth is defined as Cﬁ) (& k,T) = M(E Kk, T)/E, and for small values of ¢, the
dimensionless wavenumber and small values of 7, have the form:

Cl (@ k) =T/ {k\/k(l k)J = (ca/er)y/T/k(1 —k) (11)

The phase velocity of the creeping mode depends only on the concentration, the ratio
of the speeds of sound, and the ratio of the densities of the two media forming the chain.
This allows using the known phase velocity of long waves and the known properties of the
components of the medium to determine the concentration of the components using the
relation [10]:

k(1 —k) = 7[C (@ kT)/(e2/ 1) N (12)

3.3. Determination of the Concentration of Components from the Known Acoustic Phase Velocity of
Long Waves in Composite Materials

Let one period of the chain contain two inclusions of the medium M1 (water) with
sizes k1 and k3 (k1 + k3 = k), distances between them—¥k; and k4 (Figure 2) [6].
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Figure 2. Polydisperse chain of inclusions.

Elementary wave packets are described in one spatial period by relations (1), (2),
and phase shift conditions (4) or equivalent (7), which are equivalent to a system of eight
equations for eight unknowns.

The smallest waveguide frequency of oscillations of a polydisperse chain is found by
direct calculation; for small values of frequency, this frequency has the form:

(&K, T) = \/21[1 = cos(&)]/[(k + T — k) (kt — k2 +K2)] (13)

The expression for the phase velocity is obtained by direct calculation using dispersion
relations for low frequencies and for long waves in a polydisperse phonon crystal with two
and three different dimensions of the reinforcement and, accordingly, the matrix:

U T
phase =\ (kt — k — 1) (k%k — kT — £2)

(14)

This means that the concentration of component 1 in the composite material is fully
determined by the quadratic equation for its calculation:

(KZT — k> -T2+ T) K+ (—2K2T + 5% + T2)k + %7 — 27 =0. (15)
phase

Since the phase velocity Uy, is known, this relationship allows one to determine
the concentration of the components from the known phase velocity of long waves in the
composite material.

It should be noted that the influence of the polydispersity of the distribution of the
components of the matrix and reinforcing material in this case is insignificant.

4. Example of Numerical Analytical Studies

Water and air. This section describes studies of the effect of polydispersity on the
accuracy of quality control of composites, in which it is shown that for low frequencies and
long waves, polydispersity does not affect the acoustic measurement of the concentration of
composite components. For small values of the dimensionless frequency w, using a direct
calculation from the dispersion relations, one can obtain an approximate or simplified
dispersion relation [14]. Numerical studies were carried out for a polydisperse two-
component water—air mixture.

It is assumed that in the SI system at a temperature of +20 °C, the speed sound in air
is 343 m per second, the density of air is 1.2 kg per meter cubed.

For water, the speed of sound is 1400 m per second, the density of water is 1000 kg
per cubic meter. The ratio is:

K — Swuter (16)
Sair

For the values of velocities described above, the ratio of air-to-water densities T = 0.0012

has the form K := 4.081632653.
For the values of scabs described above, the ratio of air to water densities has the form

K :=4.081632653: 1400-¢
. T
“TTL \/kr— k—Dk2(k— 1)t —k 17)
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The wave number k [wave] for an elementary wave packet in dimensional variables
has the form k[wave| = %

For these values of parameters, in the approximation of long waves, the linear concen-
tration of water in the air and the phase velocity of acoustic waves in the water—air mixture

are related by the relation, an analogue of which is given in Section 3.

249400021609  » , 249400020609 5 1, 1

—_ k _——_ =
70,589,400,000,000 ~P""  70,589,400,000,000 P! * 235,298 Uph 2 0

From this relationship, an explicit expression can be obtained for the phase velocity of
long waves in a water—air mixture for 0 <k <1.

10,290,000
u —

h - —
g —749,046,042,327k> + 748,200,064,827k+
-+900,000,000

The dependence of the acoustic phase velocity in a water-air mixture can be described
using the graph (Figure 3).

5-"| |

Figure 3. Graph of acoustic velocity versus low air concentrations. SI speeds. For low concentrations
of water in the air (fog).

It should be noted that using the above expressions, the concentration is determined
using the speed of the sound in the mixture in two digits. For an unambiguous selection,
weighing a unit volume of the mixture is required. This allows one to make a one-off choice

of determining the concentration for mixtures with a higher volume concentration of water
in air or air in water.

4.1. Main Anomaly of Sound Speed Value in Water-Air Mixtures

For a heterogeneous water—air mixture, there is a minimum acoustic velocity Uy, in
the mixture. For the above parameters, this speed is expressed in meters per second.

U,in = 23.74862126

The value of the minimum speed of sound in the mixture for long waves is achieved
at the value of the linear concentration k* of water in the mixture k* = 0.4994352967.
The minimum speed of sound U,,;, in the mixture is an order of magnitude less than

the speed of sound in air and two orders of magnitude less than the speed of sound in
water (Figure 3).
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The authors are not aware of any theoretical or experimental studies of this anomaly
in the speed of sound in a mixture of acoustically contrasting materials [16].

4.2. Marginal Anomalies of the Sound Velocity Values in Water—Air Mixtures for Small and
Large Concentrations

Small and large linear concentrations of water in air are very common, e.g., fog shows
a low linear concentration of water in the air (Figure 4).

Figure 4. Graph of acoustic velocity versus low water concentrations. SI speeds. For low concentra-

tions of water in the air (fog).

Here, the extreme concentration on the graph is 1.5 mm of water per meter of air.
Examples:
e k=1/10 mm of water in 1 m of the mixture, the speed of sound of the mixture is

330 m per second;
e k=1.0mm of water in 1 m of the mixture, the speed of sound of the mixture is 253 m

per second;
e k=15mm of water in 1 m of the mixture, the speed of sound of the mixture is 229 m

per second.
When the speed drops, the fog layer begins to work as a waveguide (Figure 4). This is

the reason for the good distribution of “fog beeps”.
Carbonated or aerated water layer.. This phenomenon occurs in the upper layers of

open water (aeration), in layers of algae or organisms (Figure 5).

140075 |

100 .'HI ‘l|'

E004

6004

D5Fas DeFn E ol 1

Figure 5. Graph of acoustic velocity versus low air concentrations in water. SI speeds. For low air

concentrations in water.
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Examples:

o k=0.9999,1/10 mm of air in 1 m of the mixture, the speed of sound of the mixture is
906 m per second;

e k=0.999, 1.0 mm of air in 1 m of the mixture, the speed of sound of the mixture is
363 m per second;

e k=0.9985,1.5 mm of air in 1 m of the mixture, the speed of sound of the mixture is
230 m per second.

It should be noted that the mixture has a strong effect on the speed of sound (Figure 5).

5. Band Width and Locking Bands

The effect of concentration on dispersion relations for the zero frequency band (the
bandwidth adjacent to 0) versus water concentration is shown in Figure 6 and description
for Figure 6 in Table 1.

[l “Eln
0.141 fnﬁ "o
2}
o
o
o -]
0.121 # .
e”g Ebﬂ
0.104 ng %
E o
2% 8
0081 i f“w ., Y
W 8 00 % %
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0.064 5 f e Y 3
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g j’ *‘ﬂ-' w0 % .
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nf',ﬂ’; +"+ A nn
002 gdi¥ e

=
[
[
-
L

=}

Figure 6. Dimensionless coordinates show the dependence, in the bandwidth adjacent to 0, for the

dimensionless frequency on the wave number for different values of water concentration.

Table 1. This table contains a description for Figure 6.

Concentration k of Water in Air for

Monodisperse Phonon Crystals Symbol on the Chart Color
k=01 Symbol box Color: navy
k=03 Symbol diamond Color: blue
k=05 Symbol circle Color: green
k=07 Symbol cross Color: red

It is necessary to note the significant influence of the concentration of water in the air
on the width of the zero bandwidth. Increasing the concentration of water in the air lowers
the frequencies in the zero passband (pass band). Tables 2 and 3 describe the transmission
frequency bands for the linear concentration of water in air k = 0.5, the speed of sound in
water 1400 m/s, in air 343 m/s, and the density ratio 0.001.
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Table 2. The transmission frequency bands for the linear concentration of water in air.

The]:?ll:;;?; tohf the The %efrtgwﬁlgﬂ?f the End of the Bandwidth
0 0 0.0309848472
1 1.539283157 3.079008535
2 4.617598306 6.157529148
3 6.283059078 7.697552497
4 9.236063954 10.77577809
5 12.31128334 13.85434351

The dependence of the bandwidth boundaries on the concentration of water in the air
is shown in Figure 7. The zero frequency band is adjacent to the origin (k, w).

0.57 N
0.4
w 031
02

011 . . . . . .

3 4 5 6 7 8 9

k

Figure 7. Dependence of the bandwidth boundaries on the concentration of water in the air.

Table 3. Table of dispersion relations in the transmission frequency bands.

Graphs of the Dispersion Relations for the
Frequency Band Number Dimensionless Frequency and the Wavenumber for the
Water Concentration in the Air Equal to 0.5 (k = 0.5)

003
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Table 3. Cont.

Frequency Band Number

Graphs of the Dispersion Relations for the

Dimensionless Frequency and the Wavenumber for the
Water Concentration in the Air Equal to 0.5 (k = 0.5)

1.5398

1.5397

1.5396

15395

1.5394

1.5393

Ne 2

30790

30789

30788

307874

30786

=]

Ne 3

461821

46181

46180

46179

46178

461771
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Table 3. Cont.

Graphs of the Dispersion Relations for the
Frequency Band Number Dimensionless Frequency and the Wavenumber for the
Water Concentration in the Air Equal to 0.5 (k = 0.5)

6.157

6.156 1

6155

W 6154

6.153 1

6.152

6.151

6290

62891

62884

62871

6286

6285

6284+

=
(=]
[y
.
w

o

Ne 6

6.151

[=]
=1
i
o
L

5.1. Similarity of Phonon Crystals

The purpose of this section is to describe the main characteristics of geometrically
similar phonon crystals. Changes in the dispersion relations and phase velocities depend
on the magnitude of the geometric similarity of phonon crystals.
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Definition 2. Phonon crystals are called similar, with a similarity coefficient ¢, if they consist of
media with the same properties and the linear concentrations are geometrically similar. The size of
the fundamental cell decreases by a factor of € (¢ < 1) or increases by a factor of € (1 < ¢).

For a phonon crystal stretched by a factor of ¢, the wavenumber has A (&) the form:

we(C)eL
re(g) = L)L (18)
€1
The relation for the dispersion relations has the form:
w
we(g) = A1), (19)

It should be noted that if the crystals are stretched or increased (compressed or de-
creased) by a factor of ¢, then the corresponding transmission and locking frequency bands
are lowered (increased). For the phase velocity in dimensional variables, the expression
is valid:

. ul,phase

ue,phase = PR

on the basis of which it can be concluded that the phase velocities change according to the
hyperbolic law from the stretching coefficient.

5.2. Polydisperse Phonon Crystals

The description of the propagation of perturbations in inhomogeneous media is a
difficult task, which requires a special approach to solve. Such an approach is the modeling
of an inhomogeneous heterogeneous medium using monodisperse or polydisperse phonon
crystals. A monodisperse phonon crystal contains in the fundamental cell one reinforcing
element and one element of the composite matrix (one bubble and one drop for a water-air
mixture). A polydisperse phonon crystal in its fundamental cell contains several elements
of the reinforcing material and several elements of the matrix (several drops and several
bubbles for a water—air mixture).

This section describes the results of studies of the influence of polydispersity on the
main averaged characteristics of a heterogeneous continuous medium.

5.3. The effect of Polydispersity on the Dispersion Relations in the First Passband

Influence of the polydispersity of a phonon crystal on the dispersion relations of the
dependence of the dimensionless frequency on the wavenumber in the Oth passband, for a
water concentration in the air is shown in Figure 8.

Figure 8. Influence of the polydispersity of a phonon crystal on the dispersion relations of the
dependence of the dimensionless frequency on the wavenumber in the Oth passband, for a water
concentration in the air equal to 0.5 (k = 0.5).
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Black color: big drop + big bubble + a small drop + a small bubble with dimensions
0.4 +0.4 +0.1 + 0.1 according to the formula “BBmm”, the graph of dispersion relations.

Green color: big drop + medium bubble + a small drop + medium bubble, according
to the Bsms formula with dimensions 0.4 + 0.25 + 0.1 + 0.25, graph of dispersion relations.

Blue color: this is a monodisperse phonon crystal with a concentration of 0.5 water
and 0.5 air.

5.4. The Main Conclusions

1. The polydispersity of phonon crystals has a significant effect on the width of the 0-th
frequency bandwidth, which expands this frequency band upwards.

2. The splitting of droplets and bubbles into similar-sized ones is a stronger disturbance
of the phonon crystal than the appearance of small bubbles and droplets that expand
the 0-th frequency band.

5.5. Effect of Polydispersity on the Phase Velocity in the First Passband

The most important characteristic of a phonon crystal is the phase velocity. This
subsection presents the results of studies of the effect of polydispersity on phase velocities
in the 0-th passband for various wave numbers (Figure 9).
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Figure 9. Graphs of the dependence of the phase velocity u on the wave number |¢| in dimension-
less variables.

Red color: monodisperse phonon crystal 0.5 + 0.5.

Black color: Medium drop + Medium bubble + Medium drop + small bubble with dimen-
sions 0.25 + 0.3 + 0.25 + 0.2, a graph of phase velocities.

Green color: 0.05 + 0.25 + 0.45 + 0.25. The structure of the fundamental cell is drop +
bubble + drop + bubble.

Blue color: 0.4 + 0.4 + 0.1 + 0.1. The structure of the fundamental cell is drop + bubble +
drop + bubble.

Dark blue (navy) 0.3 + 0.3 + 0.2 + 0.2. The structure of the fundamental cell is drop +
bubble + drop + bubble.

5.6. Main Conclusions

1. The polydispersity of phonon crystals has a significant effect on the background
velocities in the 0-th passband.
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2. Taking the above into account, polydispersity increases the phase velocities in com-
parison with the velocities for a monodisperse phonon crystal in the 0-th passband.

6. Conclusions

1. Exactsolutions of the purely inverse problem of determining the linear and volumetric
concentration of components of a heterogeneous two-component medium (a phonon
crystal) using the measured speed of sound in a phonon crystal are obtained.

2. The polydispersity of the components does not significantly affect the results obtained
using long waves.

3. The results obtained show that acoustic measurements make it possible to carry out:
input and output control of the concentration of components for any two-component
product; quality control of products in which chemical processes associated with
gas release may occur during improper storage (for example, fermented meat in
sour milk).

4. Anacoustic velocity anomaly was detected for the water—air mixture under normal
conditions, depending on the concentrations of the components. For a linear concen-
tration of approximately %, the speed of sound reaches a minimum value of 24 m per
second. This speed is 14 times less than the speed of sound in air and 58 times less
than the speed of sound in water.

5. The results of the work can be used to control the quality of composite m materials,
to probe heterogeneous mixtures, and to create new materials with predictable properties.
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