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Consequences of three modified forms of holographic dark
energy models in bulk–brane interaction
Antonio Pasqua, Surajit Chattopadhyay, and Ratbay Myrzakulov

Abstract: In this paper, we study the effects that are produced by the interaction between a brane Universe and the bulk in which
the Universe is embedded. Taking into account the effects produced by the interaction between a brane Universe and the bulk,
we derived the equation of state parameter �D for three different models of dark energy (DE): holographic DE model with
infrared cutoff given by the Granda–Oliveros cutoff, the modified holographic Ricci DE model, and a DE model that is a function
of the Hubble parameter H squared and to higher derivatives of H. Moreover, we have considered two different cases of scale factor
(namely, the power law and the emergent ones). A nontrivial contribution of the DE is observed to be different from the standard
matter fields confined to the brane. Such contribution has a monotonically decreasing behavior upon the evolution of the Universe for
the emergent scenario of the scale factor, while monotonically increasing for the power-law form of the scale factor a(t).
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Résumé : Nous étudions ici les effets produits par l’interaction entre un univers branaire et l’ensemble de l’univers (hyper-
espace) dans lequel il est incorporé. Tenant compte des effets produits par cette interaction, nous dérivons le paramètre �D de
l’équation d’état pour trois modèles différents d’énergie sombre, à savoir, le modèle holographique avec seuil de coupure
infrarouge donné par le seuil de Granda–Oliveros, le modèle de Ricci holographique modifié et un modèle qui est fonction du
carré de la constante de Hubble H et de dérivées d’ordre plus élevé de H. De plus, nous considérons deux cas différents de facteur
d’échelle : en loi de puissance et émergent. Nous observons une contribution non triviale à l’énergie sombre, différente des
champs de matière standard confinés aux branes. Cette contribution a une décroit de façon monotone avec l’évolution de
l’univers dans le scénario émergent, alors qu’elle est croissante dans celui de la loi de puissance. [Traduit par la Rédaction]

Mots-clés : modèles d’énergie sombre, énergie somber holographique, brane d’hyperespace, facteurs d’échelle, paramètre de
l’équation d’état.

1. Introduction
The evidence that our Universe is experiencing a phase of ex-

pansion with accelerated rate has been well demonstrated by cos-
mological data obtained from different independent observations
of type Ia supernovae (SNeIa), cosmic microwave background ra-
diation (CMBR) anisotropies, X-ray experiments, and large scale
structures [1–3]. Three main ideas have been suggested to give a
reasonable explanation of the present-day observed accelerated
expansion of our Universe: the cosmological constant � model,
dark energy (DE) models, and theory of modified gravity models.
Thorough discussions of these three ideas are available in the
reviews of refs. 4–7. The cosmological constant �, which has equa-
tion of state (EoS) parameter � = p/� = –1, represents the earliest
and the simplest theoretical candidate suggested to give a plausi-
ble explanation to the observational evidence of the Universe’s
present day accelerated expansion. It is well known, anyway, that
there are two main problems associated with �: the fine-tuning
and the cosmic coincidence problems. The former mainly asks
why the vacuum energy density is so small (about an order of 10123

lower than what we can observe) while the latter asks why the
vacuum energy and dark matter (DM) give a nearly equal contri-
bution at the present epoch even if they evolved independently

and from mass scales that are different (this fact represents a
really strange coincidence if some internal connections between
them are not taken into account). Till now, many attempts have
been made to find a possible plausible explanation for the coinci-
dence problem [8, 9].

The second idea suggested to possibly explain the observed ac-
celerated expansion of the Universe involves DE models [6, 10]. In
relativistic cosmology, the cosmic acceleration we are able to ob-
serve can be described using a perfect fluid with pressure and
energy density, indicated with p and �, satisfying the relation � +
3p < 0. This kind of fluid is dubbed DE. The relation � + 3p < 0 also
tells us that the EoS parameter of the fluid � must be in agreement
with the condition � < –1/3, while, from an observational point of
view, it is difficult to constrain its exact value. The most direct
evidence we have for the detection of DE is obtained from obser-
vations of SNeIa whose intrinsic luminosities can be safely consid-
ered practically uniform [4]. If we assume that the DE idea is the
right one to explain the present expansion of the Universe with
accelerated rate, the largest amount of the total cosmic energy
density �tot must be concentrated in the two dark sectors (i.e., DE
and DM), which represent, according to recent cosmological ob-
servations, about 70% and 25%, respectively, of the total energy
density �tot of the present day Universe [11]. Moreover, the ordi-
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nary baryonic matter we are able to observe with our scientific
instruments contributes only 5% of �tot. Furthermore, the radia-
tion density gives a contribution to the total cosmic energy den-
sity, which we can safely consider negligible. Many different
models have been carefully studied in recent times to understand
the exact nature of DE. Some of these models include tachyon,
quintessence, k-essence, quintom, Chaplygin gas, agegraphic DE,
non-agegraphic DE, and phantom. The various candidates of DE
have been reviewed in ref. 6, 10.

A model of DE, motivated by the holographic principle, was
proposed by Li [12] and it has been further studied in various
references including ref. 13–22. The energy density of holographic
dark energy (HDE) �D is as follows:

�D � 3c2Mp
2L�2 (1)

with c2 indicating a dimensionless constant parameter with a
value c is evinced by observational data: for a flat Universe (i.e., for
k = 0) it is obtained that c � 0.818�0.097

�0.113 and in the case of a non-flat
Universe (i.e., for k = 1 or k = –1) it is obtained c � 0.815�0.139

�0.179 [23, 24].
Chen et al. [25] used the HDE model to drive inflation in the early
evolutionary phases of the Universe. Jamil et al. [26] studied the
EoS parameter �D of the HDE model considering not a constant
but a time-dependent Newton’s gravitational constant (i.e., G �
G(t)); furthermore, they obtained that �D can be significantly mod-
ified in the low redshift limit.

Recently, the cosmic acceleration has been also well studied by
imposing the concept of modification of gravity [27, 28]. This new
model of gravity (predicted by string or M theory) gives a very
natural gravitational alternative to the idea of the presence
of exotic components. The explanation of the phantom, non-
phantom, and quintom phases of the Universe can be well de-
scribed using modified gravity theories without the necessity of
introducing a negative kinetic term in DE models. The relevance
of modified gravity models for the late acceleration of the Uni-
verse has been recently studied by many researchers. Some of the
most famous and known models of modified gravity are repre-
sented by braneworld models, f(T) modified gravity (where T indi-
cates the torsion scalar), f(R) modified gravity (where R indicates
the Ricci scalar curvature), f(G) modified gravity (where G indicates
the Gauss–Bonnet invariant, which is defined as G = R2 – 4R�	R�	 +
R�	
�R�	
�, with R representing the Ricci scalar curvature, R�	

representing the Ricci curvature tensor, and R�	
� representing
the Riemann curvature tensor), f(R, T) modified gravity, f(R, G)
modified gravity, DGP model, DBI models, Horava–Lifshitz grav-
ity, and Brans–Dicke gravity. Modified theories of gravity have
been reviewed in refs. 7, 29, 30.

Recently, the idea that our Universe is a brane that is embedded
in a higher-dimensional space obtained a lot of attention from the
scientific community [31–38]. The Friedmann equation on the
brane has some corrections with respect to the usual four-
dimensional equation [15]. Binétruy et al. [33] found a term H � �,
which is problematic from an observational point of view. The
model is consistent if the tension on the brane and a cosmological
constant in the bulk are considered. This leads to a cosmological
version of the Randall–Sundrum scenario of warped geometries
[15]. Bruck et al. [15] considered an interaction between the bulk
and the brane, which can be considered as another non-trivial
aspect of braneworld theories. The main aim of this paper is to
outline the effects produced by the energy exchange between the
brane and the bulk on the evolutionary history of the Universe by
taking into account the flow of energy onto (or away) from the
brane. In this paper, we will focus our attention to three particular
DE models, that is, the HDE model with infrared (IR) cutoff given
by the recently proposed Granda–Oliveros (GO) cutoff, the modi-
fied holographic Ricci DE (MHRDE) model, and a DE model that is
proportional to the Hubble parameter H squared and to higher

time derivatives of H. Moreover, we will consider two different
scale factors (i.e., the power law and the emergent ones) to study
the cosmological properties of the DE models in the bulk–brane
interaction. Both the DE models and the scale factors considered
will be described in detail in the following sections. This study is
motivated by refs. 39–42. In an interaction between the bulk and
the brane, Setare [39] considered the holographic model of DE in
non-flat Universe under the assumption that the cold DM energy
density on the brane is conserved while the HDE energy density
on the brane is not conserved because of to brane–bulk energy
exchange. Sheykhi [40] considered the agegraphic models of DE in
the framework of a braneworld scenario with brane–bulk energy
exchange under the assumption that the adiabatic equation for
the DM is satisfied, but it is violated for the agegraphic DE model
because of the energy exchange between the brane and the bulk.
In the paper of Sheykhi [40], it was obtained that the EoS param-
eter can evolve from the quintessence regime to the phantom
regime. Myung and Kim [41] introduced the brane–bulk interac-
tion to discuss a limitation of the cosmological Cardy–Verlinde
formula, which is useful for the holographic description of brane
cosmology. They also showed that if brane–bulk interaction is
present, it is not possible to derive the entropy representation of
the first Friedmann equation.

Saridakis [38] studied a generalized version of the HDE model
arguing that it must be taken into account in the maximally sub-
space of a cosmological model; moreover they showed that, in the
framework of brane cosmology, it leads to a bulk HDE, which
transfers its holographic nature to the effective 4D DE. Further-
more, Saridakis [43] applied the bulk HDE in general 5D two-brane
models and also extracted the Friedmann equation on the physi-
cal brane, showing that in the general moving-brane case the
effective 4D HDE has quintom-like behavior for a large parameter-
space area of a simple solution subclass.

In this paper, we consider an interaction between the bulk and
the brane, which represents a non-trivial aspect of the braneworld
theories. We also discuss the flow of energy onto or away from the
brane-Universe. We then apply this idea to a braneworld cosmol-
ogy under the assumption that the DE energy density on the brane
is conserved, but the DE energy density on the brane is not con-
served because of the brane–bulk energy exchange.

The plan of the paper is the following. In Sect. 2, we describe the
main features of bulk–brane interaction. In Sect. 3, we describe
the main features of the DE models considered in this paper;
moreover, we derive the expression of the EoS parameter �D and
the evolutionary form of the parameter u (defined as �/(�m + �D))
for the DE models we are considering. In Sect. 4, we consider two
different models of scale factors, (in particular, the power law and
the emergent ones) to study the behavior of the expression of u̇
derived in the previous section. Finally, in Sect. 5, we write the
conclusion of this work.

2. Bulk–brane energy exchange
In this section, we want to describe the main features of the

bulk–brane interaction, introducing the main quantities useful
for the following part of the work.

The bulk–brane action S is given by the following expression
[39, 44]:

S � � d5x��G� R5

2
5
2

� �5 � LB
m� � � d4x��g��� � Lb

m� (2)

where R5 represents the 5D curvature scalar, �5 denotes the bulk
cosmological constant, 
5 stands for the 5D coupling constant, �
indicates the brane tension, G and g denote the determinant of the
5D and of the 4D metric tensors, respectively, while LB

m and Lb
m are
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the matter Lagrangian in the bulk and the matter Lagrangian in
the brane.

We here consider the cosmological solution with a metric given
by [39, 44]

ds2 � �n2(t, y)dt2 � a2(t, y)�ijdxidyj � b2(t, y)dy2 (3)

where �ij represents the metric for the maximally symmetric
three-dimensional space. The nonzero components of Einstein
tensor are given by [39, 44]

G00 � 3�ȧ

a
(ȧa � ḃb) �

n2

b2
	a ′′

a

a ′

a
�a ′

a
�

b ′

b
�
 �

kn2

b2 � (4)

Gij �
a2

b2
�ij	a ′

a
�a ′

a
�

2n ′

n
� �

b ′

b
�n ′

n
�

2a ′

a
� �

2a ′′

a
�

n ′′

n



�
a2

n2
�ij	ȧ

a
��

ȧ

a
�

2ṅ

n
� �

2ä

a
�

ḃ

b
��

2ȧ

a
�

ṅ

n
� �

b̈

b

 � k�ij (5)

G05 � 3�n ′

n

ȧ

a
�

a ′

a

ḃ

b
�

ȧ′

a
� (6)

G55 � 3�a ′

a
�a ′

a
�

n ′

n
� �

b2

n2
	ȧ

a
�ȧ

a
�

ṅ

n
� �

ä

a

 �

kb2

a2 � (7)

where k denotes the curvature parameter of space with possible
values k = 0, 1, –1, which correspond to flat, closed, and open
Universe, respectively. Moreover, the primes and the dots indicate
a derivative with respect to the variable y and a derivative with
respect to the variable t, respectively. The 4D braneworld Universe
is assumed to be at y = 0. The Einstein equations are given by

G�	 � 
5
2T�	 (8)

where we have that the stress–energy momentum tensor T�	 has
both bulk and brane components and it can be also written as
follows [39, 44]:

T	
� � T	

�|�,b � T	
�|m,b � T	

�|�,B � T	
�|m,B (9)

where

T	
�|�,b �

�(y)

b
diag(��, ��, ��, ��, 0) (10)

T	
�|�,B � diag(��5, ��5, ��5, ��5, ��5) (11)

T	
�|m,b �

�(y)

b
diag(��, p, p, p, 0) (12)

where p and � represent, respectively, the total pressure and the
total density on the brane.

By integrating (4) and (5) with respect to the variable y around
the point y = 0 and assuming the Z2 symmetry around the brane,
we derive the following jump conditions:

a�
′ � �a�

′ � �

5

2

6
a0b0(� � �) (13)

n�
′ � �n�

′ �

5

2

6
b0n0(�� � 2� � 3p) (14)

The two subscripts, + and –, correspond to y > 0 and y < 0, respec-
tively, which represent the two sides of the brane embedded in
the bulk. Moreover, the subscript 0 indicates quantities that are
evaluated at y = 0.

Starting from the results of (6) and (7), we can obtain the follow-
ing expressions:

n0
′ ȧ0

n0a0

�
a0

′ ḃ0

a0b0

�
ȧ0

′

a0

�

5

2

3
T05 (15)

3�a0
′

a0
�a0

′

a0

�
n0

′

n0
� �

b0
2

n0
2	ȧ0

a0
�ȧ0

a0

�
ṅ0

n0
� �

ä0

a0

 � k

b0
2

a0
2�

� �
5
2�5b0

2 � 
5
2T55 (16)

where the terms T05 and T55 represent, respectively, the 05 and 55
components of T�	|m,b when evaluated on the brane.

Moreover, using (13) and (14), we obtain

�̇ � 3
ȧ0

a0

(� � p) � �
2n0

2

b0

T5
0 (17)

1

n0
2	ä0

a0

� �ȧ0

a0
�2

�
ȧ0ṅ0

a0n0

 �

k

a0
2

�

5

2

3
��5 �


5
2�2

6
�

�

5

4

36
[�(3p � �) � �(3p � �)] �


5
2

3
T5

5 (18)

Considering an appropriate gauge with the coordinate frame n0 =
b0 = 1, (17) and (18) can be also expressed in the following equiva-
lent forms:

�̇ � 3H(1 � �)� � �2T5
0 (19)

�ȧ

a
�2

� � �



a2
� ��2 � 2�(� � �) (20)

�̇ � 4H� � 2��

�
� 1�T5

0 �
12


5
2

H

�
T5

5 (21)

where � � 
5
4/36 and � � �
5

4/36. The effective 4D cosmological
constant � on the brane, the bulk cosmological constant �5, and
the brane tension � are well known to be constrained by the
fine-tuning relation [45–48]

� �

5

2

2
� 1

6

5

2�2 � �5� (22)

If we assume that the bulk matter (relative to bulk vacuum en-
ergy) is much less than the ratio of the brane matter to the brane
vacuum energy, we can neglect the T5

5 term: this can lead to the
derivation of a solution that is largely independent of the bulk
dynamics. If we take into account this approximation and we
concentrate on the low-energy region with �/� �� 1, (17) and (18)
can be simplified, leading to the following system of equations:

�̇ � 3H(1 � �)� � �2T5
0 � T (23)

H2 �
8�G4

3
(� � �) �

k

a2
� � (24)
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�̇ � 4H� ≈ 2T5
0 � �T (25)

The auxiliary field � (which appears in (24) and (25)) incorporates
non-trivial contributions of DE, which differ from the standard
matter fields confined to the brane. Hence, with the energy ex-
change T between the bulk and brane, the usual energy conserva-
tion is violated. We shall denote the energy density of DE �D.
Because we will consider two dark components in the Universe,
namely, DM and DE, we will have � = �D + �m.

In Sect. 3, three different DE models are concerned, namely, the
HDE model with GO cutoff, the MHRDE model, and the DE model
proportional to the Hubble parameter H squared and to higher
time derivatives of H in the framework of bulk–brane interaction.
It is accomplished by using some of the concepts introduced in
this section and two choices of the scale factor, namely, power law
and emergent.

3. MHRDE and GO DE MODEL in the bulk–brane
interaction

We now want to give a description of the DE models considered
in this work and to find some relevant cosmological quantities.
We will also introduce some relevant equations that will be useful
for the understanding of the work.

The bulk–brane interaction has been studied for various as-
pects, where in particular the effective DE of the braneworld Uni-
verse is dynamical, as a result of the non-minimal coupling, which
gives a mechanism for bulk–brane interaction through gravity
[39, 44, 49]. We assume here that the adiabatic equation for the
DM is satisfied, while it is violated for DE because of the energy
exchange of between the brane and the bulk [39, 44]. Then, we
obtain the following continuity equations:

�̇m � 3H�m � 0 (26)

�̇D � 3H(1 � �D)�D � T (27)

We define the fractional energy densities for DM, DE, and �, re-
spectively, as follows:

�m �
�m

�cr

(28)

�D �
�D

�cr

(29)

�� �
�

�cr

(30)

�k �
k

a2H2
(31)

The Planck data provide the values �m ≈ 0.3089 and �D ≈ 0.6911 at
68% CL [50]. The critical energy density �cr (i.e., the energy density
required for flatness) is defined as follows:

�cr �
3H2

8�G4

(32)

or, assuming units of 8�G4 = 1, as

�cr � 3H2 (33)

Using the definition of �cr given in (33), we can write the fractional
energy densities given in (28), (29), and (30), respectively, as follows:

�D �
�D

3H2
(34)

�m �
�m

3H2
(35)

�� �
�

3H2
(36)

The interaction between bulk and brane is given by the relation
T = ��D, where the parameter � represents the rate of interaction.
The Wilkinson microwave anisotropy probe (WMAP) satellite is
well known to have measured the curvature parameter �k in (31),
and, along with baryon acoustic oscillation (BAO) and Hubble
parameter measurement, it constrained the fractional energy
density of the curvature parameter k as –0.0133 < �k < –0.0084, in
95% CL [51]. Equation (31) for �k is hence equal to zero in this
context. Considering the parameter u = �/(�D + �m), the preceding
equations lead to [39]

u̇ � � 3Hu�D

�D � �m
�	�D �

1

3��m

�D

� 1� � �1 � u

u
�� �

3H
�
 (37)

In this paper, we decided to consider the particular case corre-
sponding to � = 0. Furthermore, following ref. 39, we have chosen
the following expression for �:

� � 3b2(1 � u)H (38)

where b2 represents a coupling parameter between DM and DE,
also known as transfer strength [52–55]. From the observational
data of the gold SNeIa samples, CMBR data obtained from the
WMAP and Planck satellites and the BAO obtained thanks to the
Sloan Digital Sky Survey, the coupling parameter between DM
and DE is estimated to assume a small positive value, satisfying
the requirement for solving the cosmic coincidence problem and
the constraints given by the second law of thermodynamics [56].
Cosmological observations of the CMBR anisotropies and of clus-
ters of galaxies indicate that b2 < 0.025 [57]. This evidence is in
agreement with the fact that b2 must be taken in the range of
values [0, 1] [58], with b2 = 0 representing the non-interacting
Friedmann–Lemaître–Robertson–Walker (FLRW) model.

Using the definitions of the fractional energy densities given in
(34), (35), and (36), we can rewrite the first Friedmann equation
defined in (24) as follows:

�m � �D � �� � 1 (39)

which has the main property of relating all the fractional energy
densities considered in this work.

Moreover, using (34), (35), and (36) along with the definition of u
and the relation �m + �D = �m + �D, we can easily obtain the
following relation between the parameter u and the fractional
energy densities:

u �
1 � �D � �m

�D � �m

(40)

We now want to introduce three different energy density models
for DE, (i.e., the HDE with GO cutoff, the MHRDE model, and the
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DE model proportional to H2 and to higher time derivatives of H).
Before proceeding with calculations, we briefly describe these
three models.

Recently, Granda and Oliveros introduced a new IR cutoff based
on purely dimensional grounds, which includes a term propor-
tional to Ḣ and one term proportional to H2. This new IR cutoff is
known as GO scale, indicated with the symbol LGO and it is given
by [59, 60]

LGO � (�H2 � �Ḣ)�1/2 (41)

where � and � represent two constant parameters. In the limiting
case corresponding to � = 2 and � = 1, the GO scale LGO becomes
proportional to the average radius of the Ricci scalar curvature
(i.e., LGO � R–1/2) in the case the curvature parameter k assume the
value of zero (i.e., k = 0), corresponding to a flat Universe. Recently,
Wang and Xu [61] constrained the new HDE model in non-flat
Universe using observational data. The best fit values of the two
parameters (�, �) they found, with their confidence levels, are
given by � � 0.8824�0.1163

�0.2180�1���0.1378
�0.2213�2�� and � � 0.5016�0.0871

�0.0973

�1���0.1102
�0.1247�2�� for non-flat Universe, while for flat Universe they

found � � 0.8502�0.0875
�0.0984�1���0.1064

�0.1299�2�� and � � 0.4817�0.0773
�0.0842

�1���0.0955
�0.1176 �2��.

We decided to consider the GO scale LGO as infrared cutoff for
some specific reasons. If the IR cutoff is given by the particle
horizon, the HDE model cannot produce an expansion of the
Universe with accelerated rate. If we consider the future event
horizon as the cutoff, the HDE model has a causality problem. The
DE models, which consider the GO scale LGO, depend only on local
quantities, thus it is possible to avoid the causality problem, more-
over, it is also possible to obtain the accelerated phase of the
Universe.

Granda and Oliveros considered that, because the origin of the
HDE model is still not known exactly up to now, the consideration
of the term with the time derivative of the Hubble parameter in
the expression of the energy density of DE may be expected be-
cause this term appears in the curvature scalar and it has the right
dimension.

The expression of the HDE energy density with LGO cutoff is
given by

�DGO
� 3c2(�H2 � �Ḣ) (42)

We must underline here that we are considering the Planck mass
Mp equal to one.

Contrary to the HDE model based on the event horizon, the DE
models, which consider the GO scale, depend only on local quan-
tities, thus it is possible to avoid in this way the causality problem.

The second model we consider in this paper is the MHRDE
model, which is given by the following expression:

�DMHRDE
�

2

� � �
	Ḣ � �3�

2
�H2
 (43)

where � and � are the model parameters. Hereupon, we shall
denote by Ao any quantity AMHRDE related to the MHRDE model.
This DE model was studied for the non-interacting case in ref. 62,
and Chimento et al. have analyzed this this type of DE in interac-
tion with DM as Chaplygin gas [63, 64]. In the limiting case corre-
sponding to � = 4/3 and � = 1, the DE energy density model given
in (43) leads to the DE energy density with Ricci scalar curvature
for a spatially flat FLRW space–time as IR cutoff.

The use of the MHRDE is motivated by the holographic princi-
ple because we can relate the DE with an ultraviolet cutoff for the

vacuum energy with an IR scale, such as the one given by the Ricci
scalar curvature R. Moreover, it is possible to proceed in a differ-
ent way, taking into account that the Ricci scalar curvature R is a
new kind of DE, for example, a geometric DE instead of evoking
the holographic principle. Irrespective of the origin of the DE
component, it modifies the Friedmann equation leading to a
second-order differential equation for the scale factor.

In this work, we decided to consider also a DE energy density
model that was recently proposed by Chen and Jing [65]. This new
model is a function of the Hubble parameter squared H2 and of the
first and second derivatives with respect to the cosmic time t of the
Hubble parameter H and it is given by the following expression:

�D,higher � 3c2	�H2 � �Ḣ � ��Ḧ

H
�
 (44)

where �, �, and � represent three arbitrary dimensionless param-
eters. The inverse of the Hubble parameter (i.e., H−1) is introduced
in the first term of (44) so that the dimensions of each of the three
terms are the same.

The behavior and the main cosmological features of the DE
energy density model defined in (44) strongly depend on the three
parameters of the model (i.e., �, �, and �). Equation (44) can be
considered as a generalization of two previously proposed energy
density models of DE. In fact, in the limiting case corresponding
to � = 0, we recover the energy density of DE in the case the IR
cutoff of the system, which is given by the GO cutoff. Moreover, in
the limiting case corresponding to � = 0, � = 1, and � = 2, we obtain
the expression of the energy density of DE with IR cutoff propor-
tional to the average radius of the Ricci scalar (i.e., L � R–1/2) in the
case where curvature parameter k is zero (k = 0).

Using the expressions of the energy densities of DE given in (42),
(43), and (44) in (34), we obtain the following expressions for
�DGO

, �Do
, and �D,higher:

�DGO
�

�DGO

3H2
(45)

�Do
�

�Do

3H2
(46)

�D,higher �
�D,higher

3H2
(47)

The final expression of �m can be derived by first solving the
continuity equation for �m given in (26), yielding

�m � �m0a�3 (48)

where �m0 indicates the present day of the energy density of DM.
Using the expression of �m given in (48), we can write the frac-

tional energy density of DM as follows:

�m �
�m0a�3

3H2
(49)

We now want to find the final expressions of the EoS parameter
�D and of u̇ for all the DE models considered in this work.

Differentiating (24) with respect to the cosmic time t and using
(23)–(25), we obtain (considering units of 8�G4 = 1) the following

116 Can. J. Phys. Vol. 96, 2018

Published by NRC Research Press

C
an

. J
. P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
82

.2
00

.1
68

.9
0 

on
 0

8/
10

/2
2

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



expression of the time derivative of the Hubble parameter for the
flat Universe:

Ḣ � �
1

6
[3�D(1 � �D) � 3�m � 4�] (50)

Moreover, using (24) and (50) in (42), (43), and (44), we obtain the
following expressions for the EoS parameters of the DE models we
are dealing with:

�DGO
�

2

3
�� � 2�

�
� �

�DGO

� 	1 �
2

3
��

�
� �

2

3c2�

 � �2� � 3�

3�
� �m

�DGO

(51)

�Do
� (� � 1)��m

�Do

� � �� �
4

3
� �

�Do

� � � 1 (52)

�D,higher �
2

3
�� � 2�

�
� �

�D,higher

� 	1 �
2

3
��

�
� �

2

3c2�



� �2� � 3�

3�
� �m

�D,higher

� � 2�

��D,higher
�Ḧ

H
(53)

Using the relation between u and � given by u = �/(�m + �D), we can
find the following expression for �/�D:

�

�D

�
u(�m � �D)

�D

� u�1 �
�m

�D
� (54)

Then, inserting (54) in the expressions of the EoS parameters ob-
tained in (51), (52), and (53), along with the relation �m/�D = �m/�D,
we can rewrite (51), (52), and (53) as follows:

�DGO
�

2uGO

3
�� � 2�

�
��1 �

�m

�DGO

� � 	1 �
2

3
��

�
� �

2

3c2�



� �2� � 3�

3�
� �m

�DGO

(55)

�Do
� (� � 1)��m

�Do

� � �� �
4

3
�u�1 �

�m

�Do

� � � � 1 (56)

�D,higher �
2uhigher

3
�� � 2�

�
��1 �

�m

�D,higher
� � �1 �

2

3

�

�
�

2

3c2�
�

� �2� � 3�

3�
� �m

�D,higher

� � 2�

3��D,higher
� Ḧ

H3
(57)

We must underline that in (57) we used the main definition of
�D,higher given in (47).

Moreover, using the relation �D + �m = (1 + u)−1 (which can be
obtained from (40)) in (55), (56), and (57), we can write

�DGO
�

2uGO

3
�� � 2�

�
�	 1

(1 � uGO)�DGO


 � �1 �
2

3

�

�
�

2

3c2�
�

� �2� � 3�

3�
�	 1

(1 � uGO)�DGO

� 1

� 	2uGO

3
�� � 2�

�
� �

2

3

�

�
� 1
	 1

(1 � uGO)�DGO


 �
2

3c2�

(58)

�Do
� (� � 1)	 1

(1 � uo)�Do
� 1
 � �� �

4

3
�u�1 �

�m

�Do

� � � � 1

(59)

�D,higher �
2uhigher

3
�� � 2�

�
�	 1

(1 � uhigher)�D,higher

 � �1 �

2

3

�

�
�

2

3c2�
� � �2� � 3�

3�
�	 1

(1 � uhigher)�D,higher

� 1
 �
2�

3��D,higher

Ḧ

H3

� 	2uhigher

3
�� � 2�

�
� �

2

3

�

�
� 1
	 1

(1 � uhigher)�D,higher

 �

2

3c2�
� � 2�

3��D,higher
� Ḧ

H3
(60)

Using (26) and (27) along with the expression of � we have chosen,
we obtain the following expression for the time evolution of u for
the three different DE models we are dealing with:

u̇GO � �3HuGO�DGO

�DGO
� �m

�	�DGO
�

1

3��m � �DGO

�DGO

� �
b2(1 � uGO)2

uGO

 (61)

u̇o � � 3Huo�Do

�Do
� �m

�	�Do
�

1

3��m � �Do

�Do

� �
b2(1 � uo)

2

uo

 (62)

u̇higher � �3Huhigher�D,higher

�D,higher � �m
�	�D,higher �

1

3��m � �D,higher

�D,higher
�

�
b2(1 � uhigher)

2

uhigher

 (63)

Inserting the expressions of the EoS parameters obtained in (58),
(59), and (60) into (61), (62), and (63) and using the relation �D +
�m = (1 + u)−1, we obtain the following expressions for the three
different DE models considered:

u̇GO �
3HuGO(1 � uGO)

�DGO

�	2

3
uGO�� � 2�

�
� �

2�

3�
�

4

3



× 	 1

(1 � uGO)�DGO


 �
2

3c2�
�

b2(1 � uGO)2

uGO
� (64)

u̇o �
3Huo(1 � uo)

�Do

��� �
4

3
�� 1

�Do

� � � � � �
b2(1 � uo)

2

uo
� (65)

u̇higher �
3Huhigher(1 � uhigher)

�D,higher
�	2

3
uhigher�� � 2�

�
� �

2�

3�
�

4

3



× 	 1

(1 � uhigher)�D,higher

 �

2�

3��D,higher

Ḧ

H3
�

2

3c2�

�
b2(1 � uhigher)

2

uhigher
� (66)

In the following section, we will study the behavior of the evolu-
tionary forms of u̇GO, u̇o, and u̇higher obtained in (64), (65), and (66),
respectively, for two different choices of the scale factor (i.e., the
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power law and the emergent ones). Using the reconstructed ex-
pressions of u, we will use them to study the behavior of the EoS
parameters for the three DE models we are considering and ob-
tained, respectively, in (55), (56), and (57). We must also emphasize
that we will find the final expression of the term Ḧ/�DH3 according
to the choice of the scale factor we will make.

4. Scale factors
In this section, we want to study the behavior of the recon-

structed expressions of u, determined from u̇GO, u̇o, and u̇higher
obtained in (64), (65), and (66), respectively, for two different
choices of the scale factor (i.e., power law and emergent).

To find the final expressions of u̇ for the different choices of
scale factor, we need to calculate the expressions of �DGO

, �Do
, and

�D,higher (defined in (45), (46), and (47), respectively) and H for the
relevant case of the scale factor (remembering that H � ȧ/a). We
will then plot the reconstructed expressions of u derived from u̇for
some range of values of the parameters involved. Thanks to the
reconstructed expression of u, we can plot the behavior of the EoS
parameter �D for the relevant model and the specific scale factor.

4.1. Power law form of the scale factor
We start the study of the different scale factors taking into

account the power law scenario.
Following Setare [66], we consider the power law case of the

scale factor in the following form:

a(t) � a0(ts � t)n (67)

where a0, ts, and n are three constants. The term ts indicates the
finite future singularity time and the scale factor defined in (67) is
often used in scientific literature to check the type II (sudden
singularity) or type IV (which corresponds to Ḣ) for positive values
of the power law index n.

We have that the derivative of the scale factor given in (67) with
respect to the cosmic time t is given by

ȧ(t) � �na0(ts � t)n�1 (68)

Using the results of (67) and (68), we obtain that the expression of
the Hubble parameter and its first and second time derivatives are
given, respectively, by

H �
ȧ

a
� �

n

ts � t
(69)

Ḣ �
Ḣ

dt
� �

n

(ts � t)2
(70)

Ḧ �
Ḧ

dt2
� �

2n

(ts � t)3
(71)

Using the expression of H obtained in (69) and the expressions of
�DGO

, �Do
, and �higher, obtained by inserting in (45), (46), and (47)

the expressions of �DGO
, �Do

and �higher defined in (42), (43), and (44),
calculated for H, Ḣ, and Ḧ given in (69), (70), and (71), we derive the
following expressions for u̇GO, u̇o and uhigher:

u̇GO � 3uGO(1 � uGO)	 n2

c2(ts � t)(� � n�)

�	2

3
u�� � 2�

�
� �

2�

3�
�

4

3



×
n

c2(�� � n�)(1 � uGO)
�

2

3c2�
�

b2(1 � uGO)2

uGO
� (72)

u̇o � 3uo(1 � uo)	 3n2(�� � �)

(ts � t)(3n� � 2)
�	�� �
4

3
� 3n(� � �)

�2 � 3n�



� � � � �
b2(1 � uo)

2

uo
� (73)

u̇higher � 3uhigher(1 � uhigher)	 n2

c2�ts � t�(� � n�)



× �	2

3
u�� � 2�

�
� �

2�

3�
�

4

3

 n

c2(�� � n�)(1 � uhigher)

�
4�

3c2��n(n� � �) � 2�

�

2

3c2�
�

b2(1 � uhigher)
2

uhigher
� (74)

By using numerical integration, the evolutions of uGO, uo, and
uhigher are depicted in Figs. 1, 2, and 3, respectively. For the case
pertaining to the HDE model with GO cutoff, we considered three
different cases (i.e., for � = 4.4 (plotted in red), � = 4.6 (plotted in
green), and � = 4.8 (plotted in blue)), while the other parameters
involved have been chosen as � = 4, n = 1.4, c2 = 0.818, b2 = 0.025,
and ts = 7. It is worthwhile to emphasize that uGO has a monoton-
ically increasing behavior for all of the three cases considered.

For the MHRDE model, three different cases are examined,
namely, � = 2.5 (plotted in red), � = 3 (plotted in green), and � = 3.5
(plotted in blue), while the other parameters involved have been
chosen as � = 4, n = 1.4, c2 = 0.818, b2 = 0.025, and ts = 7. As for the
previous case, an increasing profile of uo can be observed, for all
three cases considered.

For the model proportional to higher time derivatives of the
Hubble parameter H, we have considered three different cases,
corresponding to � = 4.4 (plotted in red), � = 4.6 (plotted in green),
and � = 4.8 (plotted in blue), while the other parameters involved
have been chosen as � = 4, � = 5, n = 1.4, c2 = 0.818, b2 = 0.025, and
ts = 7. We can observe in Fig. 3 that uhigher monotonically increases

Fig. 1. Plot of uGO for power-law scale factor against time t. The
increasing pattern indicates that the non-trivial contribution of DE
increases with the evolution of the Universe. [Colour online.]
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for all the cases considered, as also found for the other two DE
models considered.

These increasing behaviors of uGO, uo, and uhigher shown in
Figs. 1, 2, and 3, respectively, clearly indicate a non-trivial contri-
bution of DE, a contribution that increases with the temporal
evolution of the Universe.

Using the reconstructed expressions of uGO, uo, and uhigher ob-
tained from (72), (73), and (74), respectively, and plotted in Figs. 1,

2, and 3, we can also derive and plot the profile of the EoS param-
eters obtained in (55), (56), and (57) for the three DE models con-
cerned.

For the DE model with GO cutoff, we obtain that, for � = 4.4, the
EoS parameter �DGO

starts being >–1, while with the passage of the
time, it decreases and asymptotically reaches the value –1 and can
eventually cross it. For the other two cases, we obtain that �DGO

has
a decreasing behavior, always being lower than –1 (see Figs. 4 and 5).

Instead, for the MHRDE model, we obtain that the EoS param-
eter �D has a slowly decreasing behavior for all the three cases
considered, staying always greater than –1.

For the model proportional to higher time derivatives of the
Hubble parameter H, we observe a slowly decreasing behavior of
the EoS parameter �D,higher, with �D,higher > –1 for the range of
time considered. It is possible that, for sufficiently high time, the
three models can cross the value �D = –1 (see Fig. 6).

We now consider some particular values of the parameters in-
volved.

For the DE model with GO cutoff, we study the case correspond-
ing to the Ricci scale, which is recovered for � = 2 and � = 1 (plotted
in green) and we will also consider the case corresponding to � =
0.8502 and � = 0.4817 (plotted in red). Instead, for the MHRDE
model, we will consider the case corresponding to the Ricci scale,
which is recovered for � = 4/3 and � = 1. The values of the other
parameters have been taken as in the previous cases considered.

We can clearly see in Figs. 7 and 8 that, for both limiting cases,
uGO has decreasing behavior while �DGO

has a slowly increasing
behavior. Moreover, we have that for the case pertaining to the
Ricci scale, �DGO

is always greater than –1 while for the case with
� = 0.8502 and � = 0.4817 it is always lower than –1.

For the limiting case of the MHRDE, we observe that uo has an
increasing behavior while �D slowly decreases, being always
greater than –1 (see Figs. 9 and 10).

Fig. 2. Plot of uo for power-law scale factor against time t. The
increasing pattern indicates that the non-trivial contribution of DE
increases with the evolution of the Universe. [Colour online.]

Fig. 3. Plot of uhigher for power-law scale factor against time t. The
increasing pattern indicates that the non-trivial contribution of DE
increases with the evolution of the Universe. [Colour online.]

Fig. 4. Plot of �DGO
against time t for power-law scale factor. We

observe a decreasing behavior for all cases considered. For � = 4.4
(plotted in red), �DGO

starts being >–1, then it decreases, and it can
eventually cross �D = –1. For the other two cases, we obtain that �DGO

is always lower than –1. [Colour online.]
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4.2. Scale factor pertaining to emergent scenario
We now consider the second scale factor chosen in this work,

that is, the emergent one.
This form of scale factor a(t), as stated in refs. 67–69 is given by

a(t) � a0(e
�t � 
)m (75)

where a0, 
, �, and m represent four positive constant parameters.
We can make some assumptions about the parameters from (75):

• if both a and m are negative, then the emergent scenario pro-
duces the Big Bang singularity at the infinity paste time, that is,
for t = –∞;

• a0 must be a positive quantity if we want to have the scale factor
of the emergent scenario as a positive quantity;

• a or m must be positive to obtain an expanding model of the
Universe; and

Fig. 5. Plot of �Do
against time t for the emergent scale factor. For

all the cases considered, we have that �Do
has a slowly decreasing

pattern and it is always greater than –1. [Colour online.]

Fig. 6. Plot of �D,higher against time t for power-law scale factor. For
all the cases considered, we have that �D,higher has a decreasing
pattern and it is always greater than –1. [Colour online.]

Fig. 7. Plot of uGO for power-law scale factor against time t for the
limiting cases of � = 2 and � = 1 (plotted in green) and � = 0.8502
and � = 0.4817 (plotted in red). [Colour online.]

Fig. 8. Plot of �DGO
against time t for power-law scale factor for the

limiting cases of � = 2 and � = 1 (plotted in green) and � = 0.8502
and � = 0.4817 (plotted in red). [Colour online.]
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• 
 must be a positive if we want to avoid singularities (like the
Big Rip) at finite time t.

Consequences of this choice are discussed in refs. 67–70.
The emergent scenario of the Universe in the framework of DE

has been taken into account in many recent papers. Ghosh et al.
[71] studied the generalized second law of thermodynamics for the
emergent scenario of the Universe for some particular models of
f(T) modified gravity theory. Mukherjee et al. [72] studied a general
context for an emergent Universe scenario and they derived that

the emergent Universe scenarios do not represent isolated solu-
tions but they can occur for different combinations of matter and
radiation. del Campo et al. [73] considered the emergent model of
scale factor in the framework of a self-interacting Jordan–Brans–
Dicke modified gravity theory: they derived that this model is able
to lead to a stable past eternal static solution that eventually is
able to enter a phase where the stability is broken, which leads to
a period of inflation.

The first time derivative of the scale factor for the emergent
scenario given in (75) is

ȧ(t) � a0m�e�t(
 � e�t)m�1 (76)

Using the definition of the scale factor given in (75) along with its
time derivative given in (76), we can easily derive that the Hubble
parameter H and its first and second derivatives with respect to
the cosmic time t are given, respectively, by the following expres-
sions:

H �
ȧ

a
�

e�tm�

e�t � 

(77)

Ḣ �
Ḣ

dt
�

m
�2e�t

(e�t � 
)2
(78)

Ḧ �
Ḧ

dt2
�

m
�3e�t(
 � e�t)

(e�t � 
)3
(79)

Using the expression of H obtained in (77) and the expressions of
�DGO

, �Do
, and �higher, obtained by inserting in (45), (46), and (47)

the expressions of �DGO
, �Do

, and �higher defined in (42), (43), and
(44), calculated for H, Ḣ, and Ḧ given in (77), (78), and (79), we
derive the following expressions for u̇GO, u̇o, and uhigher:

u̇GO � 3uGO(1 � uGO)	 e2t�m2�

c2(et� � 
)(et�m� � �
)

�	2

3
u�� � 2�

�
�

�
2�

3�
�

4

3

 et�m

c2(et�m� � �
)(1 � uGO)
�

2

3c2�
�

b2(1 � uGO)2

uGO
� (80)

u̇o � 3uo(1 � uo)	 3e2�tm2�(� � �)

(e�t � 
)(3et�m� � 2
)

�	�� �

4

3
�

×
3et�m(� � �)

3et�m� � 2


 � � � � �

b2(1 � uo)
2

uo
� (81)

u̇higher � 3uhigher(1 � uhigher)	 e2t�m2�

c2(et� � 
)(et�m� � �
)



× �	2

3
u�� � 2�

�
� �

2�

3�
�

4

3

 et�m

c2(et�m� � �
)(1 � uhigher)

�
2�(et� � 
)


3c2��m2�e2t� � et�(m� � �)
 � �
2

�

2

3c2�
�

b2(1 � uhigher)
2

uhigher
� (82)

As accomplished for the previous model studied, we use a numer-
ical integration to obtain the evolutionary forms of uGO, uo, and
uhigher and we plot them in Figs. 11, 12, and 13, respectively.

For the to the HDE model with GO cutoff, three different cases
have been considered, namely, {� = 4, � = 8} (plotted in red), {� =
5, � = 5.8} (plotted in green), and {� = 3, � = 5} (plotted in blue),
while the other parameters involved have been chosen as m =

Fig. 9. Plot of uo for power-law scale factor against time t for the
limiting case of � = 4/3 and � = 1. [Colour online.]

Fig. 10. Plot of �Do
against time t for the emergent scale factor for

the limiting case of � = 4/3 and � = 1. [Colour online.]
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0.03, � = 6, 
 = 5, c2 = 0.818, and b2 = 0.025. We can clearly observe
that uGO has a decreasing behavior for all three cases considered.

For the MHRDE model, we consider three different cases: (� = 3,
� = 1.5) (plotted in red), (� = 4, � = 2.5) (plotted in green), and (� =
6, � = 4.5) (plotted in blue), while the other parameters involved
have been chosen as m = 0.03, � = 6, 
 = 5, c2 = 0.818, and b2 = 0.025.

Similarly to uGO, uo has a decreasing behavior for all three cases
considered.

For the model proportional to higher time derivatives of the
Hubble parameter H, we considered three different models, one
with � = 3 (plotted in red), one with � = 3.5 (plotted in green), and
one with � = 4 (plotted in blue). The other parameters have been
chosen as follows: � = 3.5, � = 3, � = 1.1, 
 = 5, m = 5, c = 0.818, and
b2 = 0.025. We can observe in Fig. 13 that uhigher has a decreasing
behavior for all the cases considered.

Therefore, we conclude that we find a decreasing behavior for
all three DE models considered for all the range of values we
considered.

Using the expressions for uGO, uo, and uhigher obtained from (80),
(81), and (82), respectively, and plotted in Figs. 11, 12, and 13, we can
also plot the EoS parameters for the three DE models considered
in this paper derived in (55), (56), and (57). The EoS parameter of
the DE model with GO cutoff �DGO

has decreasing behavior (see
Fig. 14), staying always in the region corresponding to �D > –1.
Moreover, �DGO

assumes a constant value of [–0.3, –0.5] (according
to the values of the parameters considered) for t ≈ 1.5.

Studying the plot of �Do
, we observe increasing behavior of the

EoS parameter for all three cases considered. Therefore, we have
that �Do

can go beyond the phantom phase of the Universe in all
cases we considered (see Figs. 15 and 16).

For the case pertaining to the DE model proportional to H2 and
to higher time derivatives of the Hubble parameter H, we observe
that all the cases considered have decreasing behavior. Moreover,
we observe that only the case with � = 4 and plotted in blue can
cross the line �D = –1, while the other two models always stay in
the region �D > –1.

As for the power law scale factor studied in the previous section,
we now consider some particular values of the parameters in-
volved. For the DE model with GO cutoff, we study the case corre-
sponding to the Ricci scale, which is recovered for � = 2 and � = 1
(plotted in green), and we also consider the case corresponding to
� = 0.8502 and � = 0.4817 (plotted in red). Instead, for the MHRDE
model, we consider the case corresponding to the Ricci scale,

Fig. 11. Plot of uGO for scale factor emergent scenario. The
decreasing pattern indicates that the non-trivial contribution of DE
decreases with the evolution of the Universe. [Colour online.]

Fig. 12. Plot of uo for scale factor emergent scenario. The decreasing
pattern indicates that the non-trivial contribution of DE decreases
with the evolution of the Universe. [Colour online.]

Fig. 13. Plot of uhigher for scale factor emergent scenario. The
decreasing pattern indicates that the non-trivial contribution of DE
decreases with the evolution of the Universe. [Colour online.]
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which is recovered for � = 4/3 and � = 1. The values of all the other
parameters are taken as the previous cases considered.

We can clearly observe in Fig. 17 that uGO has decreasing behav-
ior for both limiting cases considered. Moreover, for the case with
� = 0.8502 and � = 0.4817, uGO starts to assume a constant value for
t ≈ 2. Instead, the EoS parameter �DGO

has an initial increasing
behavior for both cases considered, becoming constant for t ≈ 1.4.
Moreover, for the case corresponding to the Ricci scale, we have

�DGO
staying always greater than –1 while for the case with � =

0.8502 and � = 0.4817, �DGO
is always lower than –1.

For the MHRDE model, we observe that uo has decreasing be-
havior (see Fig. 18) while the EoS parameter �Do

starts with an
increasing behavior and becomes constant from t ≈ 1.8, being
always greater than –1.

Fig. 14. Plot of �DGO
for scale factor emergent scenario. �DGO

has a
decreasing behavior for all three cases considered. [Colour online.]

Fig. 15. Plot of �Do
for scale factor emergent scenario. �Do

can go
beyond the phantom phase of the Universe in all cases. [Colour
online.]

Fig. 16. Plot of �D,higher for scale factor emergent scenario. �D,higher

has decreasing behavior for all three cases considered. Only the case
with � = 4 (plotted in blue) is able to cross �D = –1, instead for the
other two models we always have �D > –1. [Colour online.]

Fig. 17. Plot of uGO for scale factor emergent scenario against time t
for the limiting cases of � = 2 and � = 1 (plotted in green) and � =
0.8502 and � = 0.4817 (plotted in red). [Colour online.]
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5. Conclusion
In this work, we have investigated and studied the effects that

are produced by the interaction between a brane Universe and the
bulk in which the Universe is embedded. We have assumed that
the adiabatic equation for the DM is satisfied, while it is violated
for the DE because of the energy exchange between the brane and
the bulk. Taking into account the effects of the interaction be-
tween a brane Universe and the bulk, we have obtained the EoS
parameter for the interacting HDE model with GO cutoff, the
MHRDE model, and the DE model proportional to H2 and to
higher time derivatives of the Hubble parameter having their
energy densities given by �DGO

� 3c2��H2 � �Ḣ�, �Do
� �2/�� � ��
 ×

�Ḣ � �3�/2�H2
, and �D,higher � 3c2��H2 � �Ḣ � ��Ḧ/H�
, respectively.
Moreover, we must underline that, because we are considering a
flat Universe, k = 0.

We have considered two choices of scale factor, namely, power-
law and emergent. The rate of interaction has been taken as � =
3b2(1 + u)H. We observed that, for the model pertaining to the
power law scale factor, the parameter u has an increasing pattern
for all three DE energy density models considered, while, for the
scale factor pertaining to the emergent case, the parameter u has
a decreasing pattern for all three DE energy density models con-
sidered. These observations are valid for all the values of the pa-
rameters considered.

We have also studied the behavior of the EoS parameter using
the reconstructed parameter u. We first considered the model
with power law scale factor. For the DE model with GO cutoff, we
obtained that, for the case corresponding to � = 4.4, �DGO

starts
as >–1, while with the passing of time, it asymptotically reaches
the point –1 and can eventually cross it. For the other two cases
considered, we obtained that �DGO

has decreasing behavior, being
always lower than –1. Instead, for the MHRDE model, we obtained
that �Do

has a slowly decreasing behavior for all three cases con-
sidered, staying always greater than –1. Moreover, for the model
proportional to higher derivatives of the Hubble parameter H, we
obtain that �D,higher has decreasing behavior for all the cases con-
sidered, staying always in the region �D > –1.

Considering the case corresponding to the emergent scale fac-
tor, we obtained that �DGO

has decreasing behavior (see Fig. 19),
staying always in the region �D > –1. Furthermore, �DGO

assumes a
constant value in the region [–0.3, –0.5] for t ≈ 1.5. Studying the
plot of �Do

, we observed an increasing behavior of �Do
for all three

cases considered (see Fig. 20). Moreover, we have that �Do
can go

beyond the phantom phase of the Universe in all cases. For the
model proportional to higher derivatives of the Hubble parameter
H, we obtain decreasing behavior for �D,higher for all the cases

Fig. 19. Plot of �DGO
for scale factor emergent scenario against time t

for the limiting cases of � = 2 and � = 1 (plotted in green) and � = 0.8502
and � = 0.4817 (plotted in red). [Colour online.]

Fig. 20. Plot of �Do
for scale factor emergent scenario against time t

for the limiting case of � = 4/3 and � = 1. [Colour online.]

Fig. 18. Plot of uo for scale factor emergent scenario against time t
for the limiting case of � = 4/3 and � = 1. [Colour online.]
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considered. Furthermore, only the case with � = 4 (which is plotted
in blue) can cross the phantom divide line corresponding to �D =
–1, instead the other two models always stay in the region �D > –1.

We also considered the limiting cases corresponding to the
Ricci scale for the interacting HDE model with GO cutoff and
for the MHRDE and also the interacting HDE model with GO
cutoff for some particular values of the parameters � and � (i.e.,
� = 0.8502 and � = 0.4817) derived in a recent work of Wang and
Xu [61].

For the case corresponding to the power law scale factor, we
obtained that, for both limiting cases considered, uGO has decreas-
ing behavior while �DGO

has a slowly increasing behavior. More-
over, for the case corresponding to the Ricci scale, �DGO

stays
always greater than –1, while for the case with � = 0.8502 and � =
0.4817 it is always lower than –1. For the limiting case of the
MHRDE, we observe that uo has an increasing behavior while �Do
slowly decreases, being always greater than the value of –1.

For the case corresponding to the emergent scale factor, uGO has
a decreasing behavior for both limiting cases considered. More-
over, for the case with � = 0.8502 and � = 0.4817, uGO starts to
assume a constant value for t ≈ 2. Instead, the EoS parameter
�DGO

has an initial increasing behavior for both limiting cases consid-
ered, becoming constant for t ≈ 1.4. Moreover, for the case corre-
sponding to the Ricci scale, �DGO

stays always greater than –1 while for
the case with � = 0.8502 and � = 0.4817, �DGO

is always lower than –1.
For the MHRDE model, we observe that uo has a decreasing behav-

ior while the EoS parameter �Do
starts with an increasing behavior

and becomes constant from t ≈ 1.8, being always greater than –1.
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