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Abstract In this paper, we study the various cylindrical so-
lutions (cosmic strings) in gravity’s rainbow scenario. In
particular, we calculate the gravitational field equations cor-
responding to energy-dependent background. Further, we
discuss the possible Kasner, quasi-Kasner and non-Kasner
exact solutions of the field equations. In this framework, we
find that quasi-Kasner solutions cannot be realized in grav-
ity’s rainbow. Assuming only time-dependent metric func-
tions, we also analyse the time-dependent vacuum cosmic
strings in gravity’s rainbow, which are completely different
than the other GR solutions.

Keywords Cosmic string · Gravity’s rainbow

1 Overview and motivation

A strong notion of an observer independent minimum length
scale has been found in all theories of quantum gravity, for
instance, in string theory (Amati et al. 1989), noncommu-
tative geometry (Girelli et al. 2005), loop quantum grav-
ity (Rovelli 1998; Carlip 2001) and Lorentzian dynamical
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triangulations (Will 2014; Ambjorn and Loll 1998; Amb-
jorn et al. 2000, 2001). Here we point out that the nascent
GW astronomy (Abbott et al. 2017) could help in dis-
criminating among general relativity or alternative theories
(Corda 2009). There is no harm to assume this minimum
measurable length scale as the Planck scale. The mathe-
matical ground of general theory of relativity is based on
a smooth manifold which breaks down when energies of
probe reaches the order of Planck energy (Maggiore 1993;
Park 2008). Keeping this point in mind, one may expect a
radically new picture of spacetime, which includes depar-
ture from the standard relativistic dispersion relation. A de-
parture from the standard dispersion relation indicates that
the system incorporates a breaking of Lorentz invariance.
Indeed, Lorentz symmetry is one of the most remarkable
symmetries in nature which along with the Poincaré sym-
metry fix the standard form of energy (E)-momentum ( �p)
dispersion relation, i.e., E2 − | �p|2 = m2. A modification
in the standard energy-momentum dispersion relation oc-
curs in the ultraviolet limit of most of the quantum grav-
ity theories (t’Hooft 1996; Kostelecky and Samuel 1989;
Amelino-Camelia et al. 1998; Gambini and Pullin 1999;
Carroll et al. 2001). In fact, a modification in the energy-
momentum dispersion relation is studied in Horava-Lifshitz
gravity in the ultraviolet region (Horava 2009a, 2009b). Al-
though the broken Lorentz invariance is considered in ul-
traviolet limit, the velocity of light c and the Planck en-
ergy Ep should not be modified. The study of such modified
energy-momentum dispersion relation (MDR) is known as
double special relativity (DSR) (or non-linear special rela-
tivity) (Magueijo and Smolin 2002a, 2002b).

An extension of DSR into a general relativity framework
which has at its foundation the proposal that the geometry of
a spacetime runs with the energy scale at which the geome-
try is being probed is known as gravity’s rainbow (or might
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be called “doubly general relativity”) (Magueijo and Smolin
2004). In this regard, they found that the cosmological dis-
tances, in an expanding universe, become energy dependent.
In fact, by considering the energy dependent time, they ad-
dressed the horizon problem without inflation or a varying
speed of light (Magueijo and Smolin 2004). Earlier, it has
been found that the gravity’s rainbow produces a deforma-
tion to the spacetime metric which becomes significant at the
Planck scale of the particle’s energy/momentum. Moreover,
it is realized that quantum corrections can become relevant
not only for particles approaching the Planck energy but,
due to the one loop contribution, even for low-energy parti-
cles as far as Planckian length scales are considered (Garat-
tini and Mandanici 2012). The gravity’s rainbow illustrates a
new mass-temperature relation and define a minimum mass
and maximum temperature for rainbow black hole predict-
ing the existence of black hole remnant (Li et al. 2009;
Ling et al. 2006). It has also been found that the gravity’s
rainbow prevents black holes from evaporating completely
(Ling et al. 2007; Ali 2014), just like the standard uncer-
tainty principle prevents the hydrogen atom from collaps-
ing (Adler et al. 2001; Cavaglia et al. 2003). The quan-
tum corrections due to rainbow functions of the metric
are studied in thermodynamics of the massive BTZ black
holes (Hendi et al. 2017). It has been found there that
in semi-classical/quantum regime, thermodynamics of the
black holes would be modified into a level which differs
from classical case. More precisely, the different orders of
the rainbow functions affect the high energy and asymptoti-
cal behaviors of the solutions and their leading terms (Hendi
et al. 2017).

Moreover, the gravity’s rainbow has also been studied at
various occasions in recent past. For instance, the critical
behavior of the black holes in Gauss-Bonnet gravity’s rain-
bow was discussed and found that the generalization to a
charged case puts an energy dependent restriction on differ-
ent parameters (Hendi et al. 2016d). By considering rainbow
functions in terms of power-law of the Hubble parameter,
the Starobinsky model of inflation, from the perspectives of
gravity’s rainbow, was investigated (Chatrabhuti et al. 2016).
Very recently, the modifications on Hawking-Page phase
transition (Feng et al. 2016; Kim et al. 2016) and wave func-
tion of the universe (Khodadi et al. 2016) are also discussed.
In gravity’s rainbow framework, the Hawking, Unruh, free-
fall and fiducial temperatures of the black hole have also
been investigated (Yadav et al. 2016; Gim and Kim 2016).
In addition, remnants of black objects (Ali et al. 2014),
asymptotic flatness (Hackett 2006), nonsingular universes
in Einstein and Gauss-Bonnet gravities (Awad et al. 2013;
Hendi et al. 2016c) have been studied in the gravity’s rain-
bow background. The zero point energy in a spherically
symmetric background combining the high energy distor-
tion of gravity’s rainbow with the modification induced by a

f (R) theory has been interpreted in Garattini (2013), Hendi
et al. (2016b). Within the context of gravity’s rainbow mod-
ified geometry, motivated from quantum gravity corrections
at the Planck energy scale, it is shown that the distortion of
the metric leads to a Wheeler-DeWitt equation whose solu-
tion admits outgoing plane waves and consequently, a pe-
riod of cosmological inflation may arise without the need
of introducing an inflation field (Garattini and Sakellariadou
2014). In cosmology of early Universe, we investigate the
generally accepted doctrine that the universe is affecting to
what we termed as “topological defects” through exhaus-
tion of all sources of matter, and suggest that by virtue of
a cosmic string mechanism which maintains its available
energy is self-gravitating. Energy is being “degraded” in
objects which are in the cosmos, but “elevated” or raised
to a higher level in strings (Vilenkin and Shellard 2000;
Hindmarsh and Kibble 1995). The modified Friedmann-
Robertson-Walker(FRW) equations are also derived in the
contexts of gravity’s rainbow (Ling 2007). From the astro-
physical perspective, it was shown that the existence of en-
ergy dependent spacetime can modify the hydrostatic equi-
librium equation (or modified TOV) of stars (Hendi et al.
2016a). One main motivation for us to study exact cylin-
drical solutions in gravitational theories is to describe such
topological defects by Riemannian geometry. A simple de-
scription of the above topological defects is to find the cylin-
drical solution by solving highly non linear field equations.
In general relativity (GR), the simplest cylindrical model de-
scribed by the class of exact cylindrical solutions were found
by Kasner and later on studied by several authors (Kasner
1921, 1925; Linet 1985, 1986; Tian 1986).

On the other hand, the spontaneous symmetry break-
ing mechanism and cosmological phase transitions together
urged us to confront the possibility of topological defects
playing a significant role in cosmology (Vilenkin and Shel-
lard 2000). The cosmic strings, in fact, provide a viable fluc-
tuation spectrum for galaxy formation (Zel’dovich 1980).
The study of topological defects and cosmological impli-
cations of strings are subjects of sustained interest (Hind-
marsh and Kibble 1995). The cylindrical solutions play a
major role in the study gravitational systems. For instance,
cylindrical solutions describe the gravitational waves by an
effective energy tensor, in terms of a gravitational poten-
tial generalizing the Newtonian potential (Hayward 2000).
Also, cylindrical symmetry gets relevance in order to study
the exact solutions in general relativity (not only due to the
theoretical reasons but also for the physical realization in
objects such as cosmic strings). The cylindrical solutions
are discussed from the viewpoint of exact solutions in f (R)

gravity theories (Azadi et al. 2008). Although the substantial
progress has been made in this area but the cosmic string so-
lutions in gravity’s rainbow framework are still unexplored.
This provides an opportunity to us to bridge this gap. One of
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the oldest branch in GR is to find exact solutions of certain
types of gravitational theories as Riemannian metrics gμν

satisfy some types of field equations. Recently, exact solu-
tion finds different interesting applications in other complex
problems of physics (Kramer et al. 1980). A celebrated ap-
plication is found when exact forms for a type of gravity
can be used to probe the quantum theory on the associated
spatial boundary. Generally speaking to proceed with exact
solutions, we need to have two basic choices: first option is
to fixing symmetry of the background metric gμν ; second is
to give the symmetry to the matter contents Tμν . Although,
in gravitational theory, there is no simple and direct relation
between the symmetry of source of the gravitational field
and the symmetry of the metric because of non-linearity
of field equations and breaking of linear approximations,
but still we can probe symmetry very carefully from mat-
ter. As we know, topology is an independent parameter and
can be imposed on geometry after we fix the general form
of metric. It also becomes important when some types of
the topological effects are needed suddenly by assigning
an independent metric. In the context of modified theories
of gravity, cosmic strings are investigated in f (R) gravity
(Azadi et al. 2008; Momeni and Gholizade 2009), teleparal-
lel theories (Baker 1990; Maluf and Goya 2001; Houndjo
et al. 2012), brane worlds (Dvali et al. 2000), Kaluza-
Klein models (Furtado et al. 1999), Lovelock Lagrangians
(Simon 1990), Gauss-Bonnet (Cheng and Liu 2008; Ro-
drigues et al. 2014; Houndjo et al. 2014), Born-Infeld (Gib-
bons and Herdeiro 2001; Ferraro and Fiorini 2011), bimet-
ric theories (Reddy et al. 2006), non-relativistic models of
gravity (Momeni 2011), scalar-tensor theories (Gundlach
and Ortiz 1990; Bezerra et al. 2003; Ferreira et al. 2000;
Barros and Romero 1995; Emília and Guimarǎes 1997),
Brans-Dicke theory (Delice 2006a, 2006b; Baykal et al.
2010; Baykal and Delice 2005; Kirezli et al. 2013; Çiftci
and Delice 2015), dilation gravity (Tseytlin and Vafa 1992;
Gregory and Santos 1997), non-minimally coupled models
of gravity (Harko and Lake 2015a), Mimetic gravity (Mo-
meni et al. 2016) and, recently, in the Bose-Einstein conden-
sate strings (Harko and Lake 2015b). However, the cosmic
string is still unexplored in gravity’s rainbow setting. Here,
we try to bridge this gap.

In this paper, we first briefly review the basics of energy-
dependent Einstein field equations described by a specific
rainbow functions. Following the basic properties of cosmic
strings, we write the metric of the cosmic string in gravity’s
rainbow. Implementation the metric of the cosmic string in
gravity’s rainbow to the Einstein field equations leads to a
set of differential equations in terms of rainbow function.
In order to realize the exact solutions of these differential
equations, we consider the two parametric metric solution
(so-called Kasner solution, which is an unique exact solution

for the Einstein equations with cylindrical symmetry). In ad-
dition to that we also discuss the possibility of the quasi-
Kasner and non-Kasner solutions. In this regard, we find that
the quasi-Kasner solutions cannot be realized in gravity’s
rainbow. In this setting, we further compute the Ricci and
Kretschmann scalars and observe that the gravity’s rainbow
cosmic strings have same singularities as in the standard GR
theory. We discuss the time-dependent cosmic strings also
in gravity’s rainbow. The time-dependent vacuum solutions
are based on the assumption that all metric functions depend
on time only not on space.

We organize this work as follows. In Sect. 2, we discuss
the basic set-up gravity’s rainbow. The equations of motion
for cosmic string in gravity’s rainbow is computed in Sect. 3.
The realization of Kasner’s solution in gravity’s rainbow is
given in Sect. 4. We try to emphasize the spherically sym-
metric solution for gravity’s rainbow by considering energy
as a function of radial coordinate only in Sect. 5. The time
dependent cosmic string solutions are discussed in Sect. 6.
The behavior of cosmic string in gravity’s rainbow is dis-
cussed by considering energy as a function of time only in
Sect. 7. We summarize results in the last section.

2 Basic set-up of gravity’s rainbow

Gravity’s rainbow (doubly general relativity) is an extension
of DSR into a general relativity framework, which justifies a
modified dispersion relation given by (Magueijo and Smolin
2002a, 2002b)

E2f 2(E/Ep) − | �p|2g2(E/Ep) = m2c4, (1)

where Ep refers the Planck energy. Here, functions
f (E/Ep) and g(E/Ep) are known as the rainbow func-
tions. This modification in the energy-momentum relation
due to rainbow functions becomes significant in the ultravi-
olet limit. However, the following constrained are required
to reproduce the standard dispersion relation in the infrared
limit:

lim
E/Ep→0

f (E/Ep) = 1; lim
E/Ep→0

g(E/Ep) = 1. (2)

In order to express the energy-dependent metrics in a one-
parameter family, we write (Magueijo and Smolin 2004)

g(E) = ηabea(E/Ep) ⊗ eb(E/Ep) (3)

where the energy-dependent set of orthonormal frame fields
ea = (e0, ei) are

e0(E/Ep) = 1

f (E/Ep)
ẽ0,

ei(E/Ep) = 1

g(E/Ep)
ẽi .

(4)
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Here, the quantities (ẽ0, ẽi ) are the energy independent
frame fields. Here, we also note that, in the limit E/Ep → 0,
this corresponds to usual general relativity. Eventually, these
gravity’s rainbow functions modify the black hole metrics.
Motivated from loop quantum gravity considerations (Al-
faro et al. 2002; Sahlmann and Thiemann 2006; Smolin
2006), our analysis is based on the following specific rain-
bow functions (Amelino-Camelia et al. 1998):

f (E/Ep) = 1; g(E/Ep) =
√

1 − η

(
E

Ep

)n

(5)

where η refers to the rainbow parameter. We follow the nat-
ural units c = � = kB = 1 throughout the paper.

3 Metric and equations of motion

In this section, we compute the equations of motion for cos-
mic string in gravity’s rainbow. This type of cylindrical solu-
tion has treated popular in the literature for some time with
the name of cosmic string as a model to describe topological
defects of early cosmology and closed time like curves.

According to standard definition, the general cosmic
string metric has the following basic properties:

gμν(t, r, ϕ, z) =

⎧⎪⎪⎨
⎪⎪⎩

gta = 0, a = {r, ϕ, z}
∂tgμν = 0, μ, ν = {t, r, ϕ, z}
∂z, ∂ϕ, symmetries
R3 × S1, topology.

(6)

Inevitably, the cosmic string with cylindrical symmetry de-
scribes an exact solution in general relativity with a met-
ric which presents an interior solution when radius tends to
zero.

The cosmic string metric gμν , μ = {t, xa}, a = 1,2,3,
is supposed to be static (i.e. with vanishing off diagonal
components gta = 0, a = {r, ϕ, z} and time independent
∂tgμν = 0) and cylindrical symmetric. It means we sup-
pose that the distribution of matter fields in such space time
forms a static stress-energy tensor. By symmetry, we will
think about existence of a pair of commuting killing vectors
∂z, ∂ϕ. From kinematical point of view, the classical trajec-
tories (orbits) are closed around the z axis. The unique co-
ordinate to be used to describe the metric gμν is the (semi)
radial coordinate r (because it doesn’t mean distance in gen-
eral). This coordinate r is initiating from the z axis when
r = 0 and it is supposed to be extended smoothly up to the
spatial infinity r = ∞. By definition, the topology of the
space time is uniquely well defined by the R3 × S1, here R
denotes the domain of real numbers and S1 defines a unit
circle.

Let us start by writing the metric of the time-independent
cosmic string in gravity’s rainbow scenario as follows,

ds2 = A(r)

f 2(E/Ep)
dt2 − 1

g2(E/Ep)
dr2 − B(r)

g2(E/Ep)
dϕ2

− C(r)

g2(E/Ep)
dz2, (7)

where A(r),B(r),C(r) are some functions depend on cylin-
drical coordinate r .

The Einstein field equation obtained by varying the usual
Einstein-Hilbert action with respect to the rainbow’s metric
gμν(E/Ep) is given as follows:

R(E/Ep)μν − 1

2
g(E/Ep)μνR = 8πG(E/Ep)Tμν, (8)

whereas the energy dependent Newton’s universal gravita-
tional constant G(E/Ep) becomes the conventional New-
ton’s universal gravitational constant G = G(0) in the limit
E/Ep → 0. We assume that the matter fields fill the space-
time with energy-momentum tensor T ν

μ = diag(ρ,−pr,

−pϕ,−pz), where ρ is energy density and pi corresponds
to different components of pressure field. By substituting (7)
in field equation (8), we obtain the following set of ordinary
differential equations:

B ′2

B2
− B ′C′

BC
+ C′2

C2
− B ′′

B
− C′′

C
= 32πG(E/Ep)

ρ

g2
, (9)

A′B ′

AB
+ A′C′

AC
+ B ′C′

BC
= 32πG(E/Ep)

pr

g2
, (10)

A′2

A2
− A′C′

AC
+ C′2

C2
− 2

A′′

A
+ 2

C′′

C
= −32πG(E/Ep)

pϕ

g2
,

(11)

A′2

A2
− A′B ′

AB
+ B ′2

B2
− 2

A′′

A
− 2

B ′′

B
= −32πG(E/Ep)

pz

g2
.

(12)

In order to discuss the behavior of these equations, we need
to them. We emphasize this in forthcoming sections.

4 Realization of Kasner’s solution in gravity’s
rainbow

Here, to find the exact solution, we focus, in particular, Kas-
ner’s solution in gravity’s rainbow. The two parametric met-
ric, so-called Kasner solution, is an unique exact solution
for the Einstein equations with cylindrical symmetry in GR
(Kasner 1921, 1925; Kramer et al. 1980). This is given by
following line element:

ds2 = (kr)2adt2 − dr2 − β2(kr)2(b−1)r2dϕ2 − (kr)2cdz2,

(13)

here k defines an appropriate length scale and β is a con-
stant and it is related directly to the deficit angle of the con-
ical space-time. By solving Einstein equations (8), we are
considering not only the form of metric functions for which
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Rμν = 0 but also every possible value of the parameters
{a, b, c} satisfying,

a + b + c = a2 + b2 + c2 = 1. (14)

In Kasner metric, Ricci scalar vanishes (i.e. R = 0), how-
ever, for quasi-Kasner solution one can have non-vanishing
Ricci scalar (i.e. R �= 0). We will show that the Kasner met-
ric is a trivial solution in gravity’s rainbow. A possible ques-
tion will be, “does the quasi-Kasner solution with R �= 0
solves our gravity’s rainbow system described by the equa-
tions Eqs. (9)–(12) or not?”. We address this problem in the
following situations:

• Quasi-Kasner solutions in Rainbow scenario: A = (kr)2a ,
B = β2r2(kr)2(b−1), C = (kr)2c:

The condition Tμν �= 0 in (9)–(12) would not harm us
to find the quasi-Kasner’s solutions. It will be interesting
enough to find something similar to GR solutions. Substi-
tuting these values of solutions in Eqs. (9)–(12), we observe
that for particular values of parameters (a, b, c) the quasi-
Kasner is a solution for field equations in gravity’s rainbow.
These are

ds2 = dt2

f 2(E/Ep)
− dr2

g2(E/Ep)
− β2k2dϕ2

g2(E/Ep)

− (kr)2dz2

g2(E/Ep)
, (15)

ds2 = dt2

f 2(E/Ep)
− dr2

g2(E/Ep)
− β2r2dϕ2

g2(E/Ep)

− dz2

g2(E/Ep)
, (16)

ds2 = (kr)2dt2

f 2(E/Ep)
− dr2

g2(E/Ep)
− β2k2dϕ2

g2(E/Ep)

− dz2

g2(E/Ep)
. (17)

From the above expressions, it is obvious that if we put the
values of parameters (a, b, c) into the metric (13), we obtain
a class of Kasner metrics with R = 0. This implies that the
quasi-Kasner solutions cannot be realized in gravity’s rain-
bow.

• Non-Kasner family of the exact solutions:

In order to study the non-Kesner type of solution, we first
eliminate A, C and B respectively from Eqs. (9)–(12) and,
as a result, we obtain:

B′′′ = −B′2B′′ − 2 B′′2B
B′ B

(18)

C′′ = −2 B′′ BB′C − B′3C + B′′ B2C′

B′ B2
(19)

A′ = −B′ C′ AB − 2 B′2AC + 4 B′′B AC

−BC′2 + B ′BC
, (20)

along with the following constraint:

−B ′2BC′C − B ′3C2 + B ′B2C′2

+ 2B ′′B2BC′ + 2B ′′B ′BC2 = 0. (21)

Now, it is possible to solve these three differential equations
given in (18)–(20). In this way, we found the following exact
solutions for system of equations:

A(r) = l3 exp

[
−l1

∫
dr

l4(l1 + n
3 − 2)(r − r0)

n
2 + 3l5(l1 − n

3 − 2)(r − r0)
− n

2

l4(l1 − n
3 − 2

3 )(r − r0)
1+ n

2 + l5(lC1 + n
3 − 2

3 )(r − r0)
1− n

2

]
, (22)

B(r) = l̃3(r − r0)
l1 , (23)

C(r) = l4(r − r0)
− 1

2 l1+1+ 1
2 n + l5 (r − r0)

− 1
2 l1+1− 1

2 n, (24)

where l̃3 = l3e
iπl1 , n =

√
−3l2

1 + 4l1 + 4, l3 > 0, l1 ∈
[− 2

3 ,2], n ∈R and r ≥ l2.
Here we note that for n = 0 the metric converts to the

following form:

ds2 = ρ2dt̃2

f 2(E/Ep)
− dρ2

g2(E/Ep)
− μdϕ2

g2(E/Ep)

− dz̃2

g2(E/Ep)
, (25)

where we defined μ = l4 + l5, ρ = r − l2, t̃ = t

√
l̃3, z̃ =

z
√

l3. In fact, this metric corresponds to the vacuum Levi-

Civita metric and it coincides with the cosmic string. Here,

we also mention that the azimuthal angle ϕ �=∈ (0,2π], but

the geometry still remains close to flat space. The deficit

angle, in this case, is 1 − 4η(E/Ep) = μ(E/Ep), where

η(E/Ep) is the gravitational mass per unit length of the

spacetime.
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We compute Ricci scalar and get

R = g2(E/Ep)
[
eiπ(1+ l1)n2l1 l4 l5

]
ρ−1+2 l1 . (26)

Here we notice that the Ricci scalar R �= 0. The
Kretschmann scalar K = RμναβRμναβ corresponding to
this metric is a non-singular function for ρ ∈ R, how-
ever, the Kretschmann scalar has singularity at ρ = 0, ρ =
(±i

√
l4(−2+3l1−n)
l5(3l1+n−2)

)−2/n (with l5 �= 0), ρ = exp(− 1
n

log l4
l5

)

(with l4
l5

> 0). Thus, we can conclude that gravity’s rainbow
cosmic strings have same singularities as in the standard GR
theory.

5 When E = E(r)

In this section, we consider the general f (R) case, where
modified Einstein equations become (Azadi et al. 2008),

FRμν − ∇μ∇νF = 1

4
gμν(FR −�F), (27)

where F(R) = df (R)
dR

. From above, we can write

FRμμ − ∇μ∇μF

gμμ

= 1

4
(FR −�F) = 1

4
gμν(FR −�F)

:= Aμ. (28)

This means that the combination Aμ is independent of the
index μ and therefore Aμ = Aν for all μ,ν. Now, in case
E = E(r), the metric (7) becomes

ds2 = A(r)

f 2(E(r)/Ep)
dt2 − 1

g2(E(r)/Ep)
dr2

− B(r)

g2(E(r)/Ep)
dϕ2 − C(r)

g2(E(r)/Ep)
dz2. (29)

The nonzero components of the metric tensor have the fol-
lowing expressions:

g00 = A(r)

f 2(E(r)/Ep)
, g11 = − 1

g2(E(r)/Ep)
,

g22 = − B(r)

g2(E(r)/Ep)
, g33 = − C(r)

g2(E(r)/Ep)
.

It is easy to find the inverse of the above components as

g00 = f 2(E(r)/Ep)

A(r)
, g11 = −g2(E(r)/Ep),

g22 = −g2(E(r)/Ep)

B(r)
, g33 = −g2(E(r)/Ep)

C(r)
.

With these metric components, it is straightforward to calcu-
late the Christoffel symbols Γ

μ
νδ with following definition:

Γ
μ
νδ = 1

2
gμθ

(
∂gθν

∂xδ
+ ∂gθδ

∂xν
− ∂gνδ

∂xθ

)
. (30)

The calculation leads to the expressions of nonzero compo-
nents as

Γ 0
10 = A′

2A
− fEE′

f Ep

, Γ 1
00 = g2A′

2f 2
− Ag2fEE′

f 3Ep

,

Γ 1
11 = −gEE′

gEp

, Γ 1
22 = −1

2
B ′ + BgEE′

hEp

,

Γ 1
33 = −1

2
C′ + CgEE′

gEp

, Γ 2
21 = 1

2

B ′

B
− gEE′

gEp

,

Γ 3
31 = 1

2

C′

C
− gEE′

gEp

.

(31)

The Ricci tensor is defined by

Rμν = ∂Γ δ
μν

∂xδ
− ∂Γ δ

μδ

∂xν
+ Γ δ

μνΓ
θ
δθ − Γ θ

μδΓ
δ
νθ . (32)

With the help of above definition, the different components
are calculated by

R00 = 1

2

g2

f 2
A′′ + g2A′B ′

4Bf 2
+ g2A′C′

4Cf 2
− g2A′2

4Af 2
− gA′gEE′

2f 2Ep

− g2A′fEE′

f 3Ep

− Ag2B ′fEE′

2Bf 3Ep

− Ag2C′fEE′

2Cf 3Ep

+ 2Ag2f 2
EE′2

f 4E2
p

− Ag2fEEE′2

f 3E2
p

− Ag2fEE′′

f 3Ep

+ AgfEgEE′2

f 3E2
p

, (33)

R11 = −A′′

2A
+ A′fEE′

Af Ep

− A′gEE′

2AgEp

+ A′2

4A2
− B ′′

2B
+ B ′gEE′

2BhEp

+ B ′2

4B2
− C′′

2C
+ C′gEE′

2CgEp

+ C′2

4C2
+ fEEE′2

f E2
p

+ fEgEE′2

fgE2
p

+ fEE′′

f Ep

− 2f 2
EE′2

f 2E2
p

+ 2gEEE′2

gE2
p

+ 2gEE′′

gEp

− 2g2
EE′2

g2E2
p

, (34)

R22 = −A′B ′

4A
+ BA′gEE′

2AgEp

− B ′′

2
− B ′C′

4C
+ B ′fEE′

2f Ep

+ B ′gEE′

gEp

+ B ′2

4B
+ BC′gEE′

2CgEp

− BfEgEE′2

fgE2
p

+ BgEEE′2

gE2
p

+ BgEE′′

gEp

− 2Bg2
EE′2

g2E2
p

, (35)
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R33 = −A′C′

4A
+ CA′gEE′

2AgEp

− B ′C′

4B
+ CB ′gEE′

2BgEp

− C′′

2
+ C′fEE′

2f Ep

+ C′gEE′

hEp

+ C′2

4C

− CfEgEE′2

fgE2
p

+ CgEEE′2

gE2
p

+ CgEE′′

gEp

− 2Cg2
EE′2

g2E2
p

. (36)

The mixed Ricci tensor is computed as

R0
0 = g2A′′

2A
+ g2A′B ′

4AB
+ g2A′C′

4AC
− g2A′fEE′

Af Ep

− gA′gEE′

2AEp

− g2A′2

4A2
− g2B ′fEE′

2Bf Ep

− g2C′fEE′

2Cf Ep

− g2fEEE′2

f E2
p

− g2fEE′′

f Ep

+ gfEgEE′2

f E2
p

+ 2g2f 2
EE′2

f 2E2
p

, (37)

R1
1 = g2A′′

2A
− g2A′fEE′

Af Ep

+ gA′gEE′

2AEp

− g2A′2

4A2
+ g2B ′′

2B
− gB ′gEE′

2BEp

− g2B ′2

4B2

+ g2C′′

2C
− gC′gEE′

2CEp

− g2C′2

4C2
− g2fEEE′2

f E2
p

− g2fEE′′

f Ep

− gfEgEE′2

f E2
p

+ 2g2f 2
EE′2

f 2E2
p

− 2ggEEE′2

E2
p

− 2ggEE′′

Ep

+ 2g2
EE′2

E2
p

, (38)

R2
2 = g2A′B ′

4AB
− gA′gEE′

2AEp

+ g2B ′′

2B
+ g2B ′C′

4BC
− g2B ′fEE′

2Bf Ep

− gB ′gEE′

BEp

− g2B ′2

4B2

− gC′gEE′

2CEp

+ gfEgEE′2

f E2
p

− ggEEE′2

E2
p

− ggEE′′

Ep

+ 2g′2E′2

E2
p

, (39)

R3
3 = g2A′C′

4AC
− gA′gEE′

2AEp

+ g2B ′C′

4BC
− gB ′gEE′

2BEp

+ g2C′′

2C
− g2C′fEE′

2Cf Ep

− gC′gEE′

CEp

− g2C′2

4C2
+ gfEgEE′2

f E2
p

− ggEEE′2

E2
p

− ggEE′′

Ep

+ 2g2
EE′2

E2
p

. (40)

The Ricci scalar is defined by

R = gijRij (41)

We utilize above definition and get the following expression
for Ricci scalar:

R = g2A′′

A
+ g2A′B ′

2AB
+ g2A′C′

2AC
− 2g2A′fEE′

Af Ep

− gA′gEE′

AEp

− g2A′2

2A2
+ g2B ′′

B
+ g2B ′C′

2BC

− g2B ′fEE′

Bf Ep

− 2gB ′gEE′

BEp

− g2B ′2

2B2
+ g2C′′

C

− g2C′fEE′

Cf Ep

− 2gC′gEE′

CEp

− g2C′2

2C2
− 2g2fEEE′2

f E2
p

− 2g2fEE′′

f Ep

+ 2gfEgEE′2

f E2
p

+ 4g2f 2
EE′2

f 2E2
p

− 4ggEEE′2

E2
p

− 4ggEE′′

Ep

+ 6g2
EE′2

E2
p

. (42)

The covariant derivative for a vector Bμ is defined by

∇μBν = ∂μBν − Γ α
μνBα. (43)

From the above definition, we can compute the components
of ∇μ∇μF

∇t∇tF = F̈ − Γ r
ttF

′, (44)

∇r∇rF = F ′′ − Γ r
rrF

′ = F ′′, (45)

∇ϕ∇ϕF = Fϕϕ − Γ r
ϕϕF ′ = −Γ r

ϕϕF ′, (46)

∇z∇zF = Fzz − Γ r
zzF

′ = −Γ r
zzF

′. (47)

Now, we are able to calculate the all four components of
quantity Aμ defined in (28) as

At = g2F ′A′

2A
− f 2F̈

A
− g2F ′fEE′

f Ep

+ Fg2A′′

2A
+ Fg2A′B ′

4AB
+ Fg2A′C′

4AC
− Fg2A′fEE′

Af Ep

− FgA′gEE′

2AEp

− Fg2A′2

4A2
− Fg2B ′fEE′

2Bf Ep

− Fg2C′fEE′

2Cf Ep

− Fg2fEEE′

f E2
p

− Fg2fEE′′

f Ep
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+ FgfEgEE′2

f E2
p

+ 2Fg2f 2
EE′2

f 2E2
p

, (48)

Ar = g2F ′′ + gF ′gEE′

Ep

+ Fg2A′′

2A
− Fg2A′fEE′

Af Ep

+ FgA′gEE′

2AEp

− Fg2A′2

4A2
+ Fg2B ′′

2B

− FgB ′gEE′

2BEp

− Fg2B ′2

4B2
+ Fg2C′′

2C
− FgC′gEE′

2CEp

− Fg2C′2

4C2
− Fg2f ′′E′2

f E2
p

− Fg2fEE′′

f Ep

− FgfEgEE′2

f E2
p

+ 2Fg2f 2
EE′2

f 2E2
p

− 2FggEEE′2

E2
p

− 2FggEE′′

Ep

+ 2Fg2
EEE′2

E2
p

, (49)

Aϕ = g2F ′B ′

2B
− gF ′gEE′

Ep

+ Fg2A′B ′

4AB
− FgA′gEE′

2AEp

+ Fg2B ′′

2B
+ Fg2B ′C′

4BC
− Fg2B ′fEE′

2Bf Ep

− FgB ′gEE′

BEp

− Fg2B ′2

4B2
− FgC′gEE′

2CEp

+ FgfEgEE′2

f E2
p

− FggEEE′2

E2
p

− FggEE′′

Ep

+ 2Fg2
EE′2

E2
p

, (50)

Az = g2F ′C′

2C
− gF ′gEE′

Ep

+ Fg2A′C′

4AC
− FgA′gEE′

2AEp

+ Fg2B ′C′

4BC
− FgB ′gEE′

2BEp

+ Fg2C′′

2C

− Fg2C′fEE′

2Cf Ep

− FgC′gEE′

CEp

− Fg2C′2

4C2
+ FgfEgEE′2

f E2
p

− FggEEE′2

E2
p

− FggEE′′

Ep

+ 2Fg2
EE′2

E2
p

. (51)

This enables us to write the following independent field equations:

g2F ′A′

2A
− f 2F̈

A
− g2F ′fEE′

f Ep

− g2F ′′ − gF ′gEE′

Ep

+ Fg2A′B ′

4AB
+ Fg2A′C′

4AC

− FgA′gEE′

AEp

− Fg2B ′′

2B
− Fg2B ′fEE′

2Bf Ep

+ FgB ′gEE′

2BEp

+ Fg2B ′2

4B2
− Fg2C′′

2C
− Fg2C′fEE′

2Cf Ep

+ FgC′gEE′

2CEp

+ Fg2C′2

4C2
+ 2FgfEgEE′2

f E2
p

+ 2FggEEE′2

E2
p

+ 2FggEE′′

Ep

− 2Fg2
EE′2

E2
p

= 0, (52)

g2F ′A′

2A
− f 2F̈

A
− g2F ′B ′

2B
− g2F ′fEE′

f Ep

+ gF ′gEE′

Ep

+ Fg2A′′

2A
+ Fg2A′C′

4AC
− Fg2A′fEE′

Af Ep

− Fg2A′2

4A2
− Fg2B ′′

2B
− Fg2B ′C′

4BC
+ FgB ′gEE′

BEp

+ Fg2B ′2

4B2
− Fg2C′fEE′

2Cf Ep

+ FgC′gEE′

2CEp

− Fg2fEEE′2

f E2
p

− Fg2fEE′′

f Ep

+ 2Fg2f 2
EE′2

f 2E2
p

+ FggEEE′2

E2
p

+ FggEE′′

Ep

− 2Fg2
EE′2

E2
p

= 0, (53)

g2F ′A′

2A
− f 2F̈

A
− g2F ′C′

2C
− g2F ′fEE′

f Ep

+ gF ′gEE′

Ep

+ Fg2A′′

2A
+ Fg2A′B ′

4AB

− Fg2A′fEE′

Af Ep

− Fg2A′2

4A2
− Fg2B ′C′

4BC
− Fg2B ′fEE′

2Bf Ep

+ FgB ′gEE′

2BEp

− Fg2C′′

2C
+ FgC′gEE′

CEp

+ Fg2C′2

4C2
− Fg2fEEE′2

f E2
p

− Fg2fEE′′

f Ep

+ 2Fg2f 2
EE′2

f 2E2
p

+ FggEEE′2

E2
p

+ FggEE′′

Ep

− 2Fg2
EE′2

E2
p

= 0. (54)

corresponding to At = Ar,At = Aϕ and At = Az respectively.
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6 Time-dependent cosmic strings

In this section, we discuss the time-dependent solutions
(cosmic strings) in gravity’s rainbow. Although many differ-
ent mass configurations lead to static and time-independent
metrics, there are some examples with time-dependent re-
sults and, therefore, it is worth studying. In this non-static
case, the most important difference with the static one is
the structure of the spacetime, as in the former case there
are only two parameters in the metric gϕϕ(E/Ep) reduc-
ing to cosmic strings. One more reason to study the cylin-
drical solutions with time-dependent fields could be exis-
tence of a challenge between spherically and cylindrically
symmetries. In GR, according to the Birkhoff theorem, we
know that there always exist a timelike Killing vector ∂t in
the spherically symmetric vacuum metrics. Consequently,
we easily conclude that the spherically symmetric vacuum
gravitating system is necessarily static, i.e., time indepen-
dent. However, a dramatic change occurs when one consid-
ers the cylindrically symmetric systems because there is no
such theorem in case of cylindrical symmetry analogous to
Birkhoff’s theorem. Propagation of gravitational waves dur-
ing the gravitational collapse of a cylindrically symmetric
system could be a reason to study time-dependent cylindri-
cal objects (Delice 2006c). In the gravity’s rainbow scenario,
if we can find a static solution with time dependent mass
(energy) factor f 2(E(t)/Ep), g2(E(t)/Ep), then our solu-
tion could be a subset of the most general class of Einstein-
Rosen (ER) gravitational wave solutions in gravity’s rain-
bow in comparison with the similar GR solutions obtained
in Akyar and Delice (2014), Delice (2006c).

Let us to start our analysis by writing the field equations
for the following time-dependent metric,

ds2 = A(t, r)

f 2(E/Ep)
dt2 − 1

g2(E/Ep)
dr2 − B(t, r)

g2(E/Ep)
dϕ2

− C(t, r)

g2(E/Ep)
dz2. (55)

By implementing metric (55) to (8), we obtain the following
set of field equations:

g2

4

[(
B ′

B

)2

+
(

C′

C

)2

− B ′C′

BC
− 2

B ′′

B
− 2

C′′

C

]

+ 1

4

ḂĊ

BC
= ρ, (56)

A′Ḃ
AB

+ A′Ċ
AC

− 2
Ḃ ′

B
+ B ′Ḃ

B2
− 2

Ċ′

C
+ C′Ċ

C2
= 0, (57)

1

4

(
A′B ′

AB
+ 1

4

A′C′

AC
+ 1

4

B ′C′

BC

)
+ 1

4

f 2

A

[
ȦḂ

AB
+ ȦĊ

AC
(58)

− ḂĊ

BC
+

(
Ḃ

B

)2

+
(

Ċ

C

)2

− 2
B̈

B
− 2

C̈

C

]
= pr, (59)

1

4

[
A′C′

AC
+ 2

A′′

A
+ 2

C′′

C
−

(
A′

A

)2

−
(

C′

C

)2]

+ 1

4

f 2

Ag2

[
ȦĊ

AC
− 2

C̈

C
+

(
Ċ

C

)2]
= pϕ

g2
, (60)

1

4

[
A′B ′

AB
+ 2

A′′

A
+ 2

B ′′

B
−

(
A′

A

)2

−
(

B ′

B

)2]

+ 1

4

f 2

Ag2

[
ȦḂ

AB
− 2

B̈

B
+

(
Ḃ

B

)2]
= pz

g2
. (61)

Here “prime” and “dot” indicate the derivative with respect
to r and t respectively. A solution can possibly be obtained
in vacuum when T ν

μ = 0 with the assumption that all metric
functions depend on time only, this means that all primed
functions will vanish. With these assumptions, we can show
that the second field equation is satisfied identically and
other equations reduce to have following form:

ḂĊ

BC
= 0, (62)

ȦḂ

AB
+ ȦĊ

AC
− ḂĊ

BC
+

(
Ḃ

B

)2

+
(

Ċ

C

)2

− 2
B̈

B
− 2

C̈

C
= 0,

(63)

ȦĊ

AC
− 2

C̈

C
+

(
Ċ

C

)2

= 0, (64)

ȦḂ

AB
− 2

B̈

B
+

(
Ḃ

B

)2

= 0. (65)

Here, we found three class of exact solutions for time-
dependent gravity’s rainbow.

• The first class of exact solutions is given by

ds2 = A(t)

f 2(E/Ep)
dt2 − 1

g2(E/Ep)
dr2

− B0

g2(E/Ep)
dϕ2 − C0

g2(E/Ep)
dz2, (66)

where A(t) is an arbitrary function of time and B0, C0 are
arbitrary constants.

• The second family of exact solutions is as following:

ds2 = c1Ċ
2

C(t)f 2(E/Ep)
dt2 − 1

g2(E/Ep)
dr2

− B(t)

g2(E/Ep)
dϕ2 − C(t)

g2(E/Ep)
dz2, (67)

where C(t),B(t) are arbitrary time functions and c1 is a
constant.

• The last member of exact solutions is given by the follow-
ing metric:

ds2 = c1Ḃ
2

B(t)f 2(E/Ep)
dt2 − 1

g2(E/Ep)
dr2

− B(t)

g2(E/Ep)
dϕ2 − C0

g2(E/Ep)
dz2. (68)

Importantly, we note that here E = E(t) and metrics are
completely different from any other GR solutions.
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7 When E = E(t)

The line element in this case of gravity’s rainbow is given
by

ds2 = A(t, r)

f 2(E(t)/Ep)
dt2 − 1

g2(E(t)/Ep)
dr2

− B(t, r)

g2(E(t)/Ep)
dϕ2 − C(t, r)

g2(E(t)/Ep)
dz2. (69)

It is clearly evident that the expressions of the nonzero com-
ponents of the metric tensor are

g00 = A(t, r)

f 2(E(t)/Ep)
, g11 = − 1

g2(E(r)/Ep)
,

g22 = − B(t, r)

g2(E(t)/Ep)
, g33 = − C(t, r)

g2(E(t)/Ep)
.

The inverse metric components are,

g00 = f 2(E(t)/Ep)

A(t, r)
, g11 = −g2(E(t)/Ep),

g22 = −g2(E(t)/Ep)

B(t, r)
, g33 = −g2(E(t)/Ep)

C(t, r)
.

With these values of metric components, it is easy to calcu-
late the Christoffel symbols of the second kind

Γ i
jl = 1

2
gim

(
∂gmj

∂xl
+ ∂gml

∂xj
− ∂gjl

∂xm

)
. (70)

The calculation leads to the following expressions:

Γ 0
00 = Ȧ

2A
− fEĖ

f Ep

, Γ 1
10 = A′

2A
, Γ 0

11 = −f 2gEĖ

Ag3Ep

,

Γ 1
22 = f 2Ḃ

2Ag2
− Bf 2gEĖ

Ag3Ep

, Γ 1
33 = f 2Ċ

2Ag2
− Cf 2gEĖ

Ag3Ep

,

Γ 1
00 = g2A′

2f 2
, Γ 1

10 = −gEĖ

gEp

, Γ 1
22 = −1

2
B ′,

Γ 1
33 = −1

2
C′, Γ 2

20 = Ḃ

2B
− gEĖ

gEp

, Γ 2
21 = B ′

2B
,

Γ 3
30 = Ċ

2C
− gEĖ

gEp

, Γ 3
31 = C′

2C
.

(71)

Exploiting definition of Ricci tensor (32), the components
are calculated by

R00 = g2A′B ′

4Bf 2
+ ȦḂ

4AB
+ g2A′C′

4Cf 2
+ ȦĊ

4AC
+ g2A′′

2f 2
− g2A′2

4Af 2
− 3ȦgEĖ

2AgEp

− ḂfEĖ

2Bf Ep

+ ḂgEĖ

BgEp

− B̈

2B
+ Ḃ2

4B2
− ĊfEĖ

2Cf Ep

+ ĊgEĖ

CgEp

− C̈

2C
+ Ċ2

4C2
+ 3fEgEĖ2

fgE2
p

+ 3gEEĖ2

gE2
p

+ 3gEË

gEp

− 6g2
EĖ2

g2E2
p

, (72)

R10 = A′B ′

4AB
+ A′Ċ

4AC
− A′gEĖ

AgEp

− Ḃ ′

2B
+ B ′Ḃ

4B2
− Ċ′

2C
+ C′Ċ

4C2
, (73)

R11 = −A′′

2A
+ f 2ȦgEĖ

2A2g3Ep

+ A′2

4A2
− f 2ḂgEĖ

2ABg3Ep

− f 2ĊgEĖ

2ACg3Ep

− B ′′

2B

+ B ′2

4B2
− C′′

2C
+ C′2

4C2
+ 4f 2g2

EĖ2

Ag4E2
p

− f 2gEEĖ2

Ag3E2
p

− f 2gEĖ

Ag3Ep

− ffEgEĖ2

Ag3E2
p

, (74)

R22 = −A′B ′

4A
− f 2ȦḂ

4A2g2
+ Bf 2ȦgEĖ

2A2g3Ep

+ f 2ḂĊ

4ACg2
+ f 2B̈

2Ag2
− f 2Ḃ2

4ABg2
− 2f 2ḂgEĖ

Ag3Ep

+ f ḂfEĖ

2Ag2Ep

− Bf 2ĊgEĖ

2ACg3Ep

− B ′C′

4C
+ B ′2

4B
− 1

2
B ′′ + 4Bf 2g2

EĖ

Ag4E2
p

− Bf 2gEEĖ2

Ag3E2
p

− Bf 2gEË

Ag3Ep

− BffEgEĖ2

Ag3E2
p

, (75)

R33 = −A′C′

4A
− f 2ȦĊ

4A2g2
+ Cf 2ȦgEĖ

2A2g3Ep

+ f 2ḂĊ

4ABg2
− Cf 2ḂgEĖ

2ABg3Ep

+ f 2C̈

2Ag2
− f 2Ċ2

4ACg2

− 2f 2ĊgEĖ

Ag3Ep

+ f ĊfEĖ

2Ag2Ep

− B ′C′

4B
+ C′2

4C
− 1

2
C′′ + 4Cf 2g2

EĖ2

Ag4E2
p

− Cf 2gEEĖ2

Ag3E2
p

− Cf 2gEË

Ag3Ep

− CffEgEĖ2

Ag3E2
p

. (76)
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Now, we compute the expression for Ricci scalar R = gμνRμν as following:

R = g2A′B ′

2AB
+ g2A′C′

2AC
+ g2A′′

A
+ f 2ȦḂ

2A2B
+ f 2ȦĊ

2A2C
− 3f 2ȦgEĖ

A2gEp

− g2A′2

2A2
− f 2ḂĊ

2ABC

+ 4f 2ḂgEĖ

ABgEp

− f 2B̈

AB
− f ḂfEĖ

ABEp

+ f 2Ḃ2

2AB2
+ 4f 2ĊgEĖ

ACgEp

− f 2C̈

AC
− f ĊfEĖ

ACEp

+ f 2Ċ2

2AC2

+ g2B ′C′

2BC
+ g2B ′′

B
− g2B ′2

2B2
+ g2C′′

C
− g2C′2

2C2
+ 6f 2gEEĖ2

AgE2
p

+ 6f 2gEË

AgEp

− 18f 2g2
EĖ2

Ag2E2
p

+ 6ffEgEĖ2

AgE2
p

. (77)

Now, following Sect. 5, the independent field equation corresponding to At = Ar is

4Fg2
EĖ2f 2

Ag6E2
p

+ FḂ2f 2

4AB2
+ FĊ2f 2

4AC2
+ 3FĖ2gEEf 2

AgE2
p

+ 3FgEËf 2

AgEp

+ FgEĖȦf 2

2A2g5Ep

+ FgEĖḂf 2

ABgEp

+ FȦḂf 2

4A2B
+ FgEĖĊf 2

ACgEp

+ FȦĊf 2

4A2C
+ ȦḞ f 2

2A2
− F̈ f 2

A
− FB̈f 2

2AB

− FC̈f 2

2AC
− 3FgEĖȦf 2

2A2gEp

− FgEËf 2

Ag5Ep

− FgEĖḂf 2

2ABg5Ep

− FgEĖĊf 2

2ACg5Ep

− 6Fg2
EĖ2f 2

Ag2E2
p

− FĖ2gEEf 2

Ag5E2
p

− gEĖḞ f 2

Ag5E2
p

+ 3FfEgEĖ2f

AgE2
p

− FfEĖḂf

2ABEp

− FfEĖĊf

2ACEp

− FfEgEĖ2f

Ag5E2
p

+ FA′2

4A2g2
+ FB ′2

4B2g2
+ FC′2

4C2g2
+ Fg2A′B ′

4AB
+ Fg2A′C′

4AC

+ g2A′F ′

2A
+ Fg2A′′

2A
− Fg2A′2

4A2
− F ′′

g2
− FA′′

2Ag2
− FB ′′

2Bg2
− FC′′

2Cg2
= 0, (78)

The independent equations corresponding to At = Aϕ and At = Az are given respectively by,

4Fg2
EĖ2f 2

Ag6E2
p

+ FḂ2f 2

4AB2
+ FĊ2f 2

4AC2
+ 3FĖ2gEEf 2

AgE2
p

+ 3FgEËf 2

AgEp

+ FgEĖȦf 2

2A2g5Ep

+ FgEĖḂf 2

ABgEp

+ F ′Ḃf 2

2ABg4
+ FȦḂf 2

4A2B
+ FgEĖĊf 2

ACgEp

+ FȦĊf 2

4A2C
+ FḂĊf 2

4ABCg4
+ ȦḞ f 2

2A2

+ FB̈f 2

2ABg4
− F̈ f 2

A
− FB̈f 2

2AB
− FC̈f 2

2AC
− FȦḂf 2

4A2Bg4
− FḂ2f 2

4AB2g4
− 3FgEĖȦf 2

2A2gEp

− FgEËf 2

Ag5Ep

− 2FgEĖḂf 2

ABg5Ep

− FgEĖĊf 2

2ACg5Ep

− 6Fg2
EĖ2f 2

Ag2E2
p

− FĖ2gEEf 2

Ag5E2
p

+ 3FfEgEĖ2f

AgE2
p

+ FfEĖḂf

2ABg4Ep

− FfEĖḂf

2ABEp

− FfEĖĊf

2ACEp

− FfEgEĖ2f

Ag5E2
p

+ FB ′2

4B2g2
+ Fg2A′B ′

4AB
+ Fg2A′C′

4AC

+ g2A′F ′

2A
+ Fg2A′′

2A
− Fg2A′2

4A2
− FB ′′

2Bg2
− FA′B ′

4ABg2
− FB ′C′

4BCg2
= 0, (79)

4Fg2
EĖ2f 2

Ag6E2
p

+ FḂ2f 2

4AB2
+ FĊ2f 2

4AC2
+ 3FĖ2gEEf 2

AgE2
p

+ 3FgEËf 2

AgEp

+ FgEĖȦf 2

2A2g5Ep

+ FgEĖḂf 2

ABgEp

+ FȦḂf 2

4A2B
+ FgEĖĊf 2

ACgEp

+ FȦĊf 2

4A2C
+ FḂĊf 2

4ABCg4
+ ȦḞ f 2

2A2
+ FC̈f 2

2ACg4

− F̈ f 2

A
− FB̈f 2

2AB
− FC̈f 2

2AC
− FȦĊf 2

4A2Cg4
− FĊ2f 2

4AC2g4
− 3FgEĖȦf 2

2A2gEp

− FgEËf 2

Ag5Ep

− FgEĖḂf 2

2ABg5Ep

− 2FgEĖĊf 2

ACg5Ep

− 6Fg2
EĖ2f 2

Ag2E2
p

− FĖ2gEEf 2

Ag5E2
p

+ 3FfEgEĖ2f

AgE2
p
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+ FfEĖĊf

2ACg4Ep

− FfEĖḂf

2ABEp

− FfEĖĊf

2ACEp

− FfEgEĖ2f

Ag5E2
p

+ FĊ2

4C2g2
+ Fg2A′B ′

4AB

+ Fg2A′C′

4AC
+ g2A′F ′

2A
+ Fg2A′′

2A
− Fg2A′2

4A2
− C′F ′

2Cg2
− FC′′

2Cg2
− FA′C′

4ACg2
− FB ′C′

4BCg2
= 0. (80)

Here, any set of functions satisfying the above equations
would be a solution of the modified Einstein field equations
for a given F(r) in gravity’s rainbow. Here, we see that to
find a general solution to the above equations are not an easy
task.

8 Concluding remarks

The exact solutions play a central role in gravity theory.
However, a deformed formalism of special relativity, which
modifies the standard dispersion relations in the order of
Planck length (commonly known as DSR), is generalized to
curved-spacetime. This generalization is known as gravity’s
rainbow and has found lots of attention recent days. Keep-
ing these points in mind, in this work, we have investigated
the static cylindrical solutions for Einstein’s field equations
in gravity’s rainbow. The cosmic string metric is supposed
to be static (i.e. with vanishing off diagonal components and
time independent) and cylindrically symmetric. In this set-
ting, we have discussed cosmic strings in energy-dependent
background. The fields equations following this metric lead
to various energy-dependent differential equations. In order
to solve these differential equations, we have considered the
possibility of Kasner’s, quasi-Kasner and non-Kasner solu-
tions. It is well-known that the Kasner solutions are two
parametric metric and unique exact solutions for the Einstein
equations with cylindrical symmetry. It is shown that the
quasi-Kasner solutions cannot be realized in gravity’s rain-
bow. Also, we have found that the gravity’s rainbow cosmic
strings follow same behavior (singularities) to that of stan-
dard GR theory. We also analysed the time-dependent solu-
tions (cosmic strings) in gravity’s rainbow. Here, to discuss
the time-dependent solutions, we have assumed the van-
ishing energy-momentum tensor together with only time-
dependent metric functions. Here, we have observed that the
metric structures are completely different to that of the other
GR solutions.

Appendix: Mathematical details

In this appendix, we present explicit forms of different geo-
metrical quantities which are used to derive field equations.

A.1 Case A = A(r), B = B(r) and C = C(r)

The nonzero components of the metric tensor are as follow-
ing:

g00 = A(r)

f 2(E/Ep)
, g11 = − 1

g2(E/Ep)
,

g22 = − B(r)

g2(E/Ep)
, g33 = − C(r)

g2(E/Ep)
.

The inverse of these metric components are given by

g00 = f 2(E/Ep)

A(r)
, g11 = −g2(E/Ep),

g22 = −g2(E/Ep)

B(r)
, g33 = −g2(E/Ep)

C(r)
.

Utilizing definition (30), the nonzero values of the
Christoffel symbols are as follows,

Γ 0
10 = 1

2

A′

A
, Γ 1

00 = 1

2

A′

f 2
g2, Γ 1

22 = −1

2
B ′,

Γ 1
33 = −1

2
C′, Γ 2

21 = 1

2

B ′

B
, Γ 3

31 = 1

2

C′

C
.

(81)

Exploiting the definition (32), the covariant components
of Ricci tensor are calculated as

R00 = −1

4

g2

f 2

A′2

A
+ 1

4

g2

f 2

A′B ′

B
+ 1

4

g2

f 2

A′C′

C
+ 1

2

g2

f 2
A′′,

(82)

R11 = 1

4

A′2

A2
+ 1

4

B ′2

B2
+ 1

4

C′2

C2
− 1

2

A′′

A
− 1

2

B ′′

B
− 1

2

C′′

C
,

(83)

R22 = −1

4

A′B ′

A
+ 1

4

B ′2

B
− 1

4

B ′C′

C
− 1

2
B ′′, (84)

R33 = −1

4

A′C′

A
− 1

4

B ′C′

C
+ 1

4

C′2

C
− 1

2
C′′, (85)

and similarly the mixed components are computed as

R0
0 = −g2

4

A′2

A2
+ g2

4

(
A′B ′

AB

)2

+ g2

4

(
A′C′

AC

)2

+ g2

2

A′′

A
,

(86)

R1
1 = −g2

4

A′2

A2
− g2

4

B ′2

B2
− g2

4

C′2

C2
+ g2

2

A′′

A
+ g2

2

B ′′

B

+ g2

2

C′′

C
, (87)

R2
2 = g2

4

A′B ′

AB
− g2

4

B ′2

B2
+ g2

4

B ′C′

BC
+ g2

2

B ′′

B
, (88)

R3
3 = g2

4

A′C′

AC
− g2

4

C′2

C2
+ g2

4

B ′C′

BC
+ g2

2

C′′

C
, (89)



Cosmic string in gravity’s rainbow Page 13 of 14 148

Finally, using definition R = gμνRμν , the expression for
Ricci scalar is given by,

R = −g2

2

A′2

A2
+ g2

2

A′B ′

AB
− g2

2

B ′2

B2
+ g2

2

A′C′

AC
+ g2

2

B ′C′

BC

− g2

2

C′2

C2
+ g2 A′′

A
+ g2 B ′′

B
+ g2 C′′

C
. (90)

A.2 Case A = A(t, r), B = B(t, r) and C = C(t, r)

The nonzero components of time-dependent metric tensor
are

g00 = A(t, r)

f 2(E/Ep)
, g11 = − 1

g2(E/Ep)
,

g22 = − B(t, r)

g2(E/Ep)
, g33 = − C(t, r)

g2(E/Ep)
.

The inverse of these metric components are

G00 = f 2(E/Ep)

A(t, r)
, g11 = −g2(E/Ep),

g22 = −g2(E/Ep)

B(t, r)
, g33 = −g2(E/Ep)

C(t, r)
.

The Christoffel symbols of the second kind are,

Γ 0
00 = 1

2

Ȧ

A
, Γ 0

10 = 1

2

A′

A
, Γ 0

22 = 1

2

f 2

g2

Ḃ

A
,

Γ 0
33 = 1

2

f 2

g2

Ċ

A
, Γ 1

00 = 1

2

g2

f 2
A′, Γ 1

22 = −1

2
B ′,

Γ 1
33 = −1

2
C′, Γ 2

20 = 1

2

Ḃ

B
, Γ 2

21 = 1

2

B ′

B
,

Γ 3
30 = 1

2

Ċ

C
, Γ 3

31 = 1

2

C′

C
.

(91)

These induce the following forms of Ricci tensor:

R00 = 1

4

g2

f 2

A′B ′

B
+ 1

4

ȦḂ

AB
+ 1

4

g2

f 2

A′C′

C
+ 1

4

ȦĊ

AC

+ 1

2

g2

f 2
A′′ − 1

4

g2

f 2

A′2

A
− 1

2

B̈

B
+ 1

4

Ḃ2

B2

− 1

2

C̈

C
+ 1

4

Ċ2

C2
, (92)

R10 = 1

4

A′B ′

AB
+ 1

4

A′Ċ
AC

− 1

2

Ḃ ′

B
+ 1

4

B ′Ḃ
B2

− 1

2

Ċ′

C

+ 1

4

C′Ċ
C2

, (93)

R11 = −1

2

A′′

A
+ 1

4

A′2

A2
− 1

2

B ′′

B
+ 1

4

B ′2

B2
− 1

2

C′′

C

+ 1

4

C′2

C2
, (94)

R22 = −1

4

A′B ′

A
− 1

4

f 2

g2

ȦḂ

A2
+ 1

4

f 2

g2

ḂĊ

AC
+ 1

2

f 2

g2

B̈

A

− 1

4

f 2

g2

Ḃ2

AB
− 1

4

B ′C′

C
+ 1

4

B ′2

B
− 1

2
B ′′, (95)

R33 = −A′C′

4A
− f 2ȦĊ

4A2g2
+ f 2ḂĊ

4ABg2
+ f 2C̈

2Ag2
− f 2Ċ2

4ACg2

− B ′C′

4B
+ C′2

4C
− 1

2
C′′. (96)

The Ricci scalar is this case is given by

R = g2

2

A′B ′

AB
+ g2

2

A′C′

AC
+ g2 A′′

A
+ f 2

2

ȦḂ

A2B
+ f 2

2

ȦĊ

A2C

− g2

2

A′2

A2
− f 2

2

ḂĊ

ABC
− f 2 B̈

AB
+ f 2

2

Ḃ2

AB2
− f 2 C̈

AC

+ f 2

2

Ċ2

AC2
+ g2

2

B ′C′

BC
+ g2 B ′′

B
− g2

2

B ′2

B2

+ g2 C′′

C
− g2

2

C′2

C2
. (97)
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