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Abstract: Spectroscopic and thermoactivation methods were used to study the processes of accumu-
lation of electron and hole trapping centers and energy transfer of electronic excitations to impurities
in CaSO4-Mn and BaSO;-Mn. It is shown that electronic trapping centers are created during the
excitation of an anionic complex as a result of charge transfer from O?~ — SO?[ to closely spaced
anionic complexes SO?[ in CaSO,4 and BaSO,. In CaSO,4 and BaSQOy, energy transfer from the host to
impurities occurs at the moment of charge transfer from the excited anionic complex to the combined
radiative electronic state at 2.95-3.1 eV. This combined state is formed from electronic trapping centers
Mn*-50; and SOi_-SOZ. It was found that the emerging combined radiative states at 2.95-3.1 eV
of sulfates, which are formed as a result of charge transfer from the excited anionic complexes to
the excited state of impurities, TI'*, Cu*,and Mn?", occupy the same energy levels as the intrinsic
electronic trapping center SOE_ of the host at 2.95-3.17 eV. Experimental results show that during
UV photon irradiation, anionic complexes are excited mainly near impurities in sulfates.

Keywords: intrinsic emission; recombination; electron-hole trapping centers; sulfate; phosphor

1. Introduction

The practical use of these materials as phosphors, dosimeters, detectors, etc. is con-
nected to the research of the mechanism of the formation of electron and hole trapping
centers in irradiated sulfates of alkaline earth metals [1-3]. In irradiated sulfates of alkaline
earth metals, the electronic excitations produced at trapping sites [4-6] relax as intrinsic
and recombination emissions.

The creation of electron and hole trapping centers is related to the practical use of
these crystals as dosimeters and detectors. The concentration of accumulated electron
and hole trapping centers in TL (Thermo-luminescent) dosimeters is used to quantify the
absorbed dosage in crystals [7-10]. Stability is a key issue for dosimeters. Stability may be
enhanced by implementation difference impurities. Stability of ionic compounds [11,12]
and perovskites [13] doped with impurities studied in term of continuous illumination with
UV light. Local levels below the conduction band and above the top of the valence band
correspond to intrinsic trapping centers in the host transparency region. Special impurities
are added to concentrate accumulated defects and radiate the energy of recombination
processes [14-16].

Experimental evidence has demonstrated that accumulated defects in practically all
sulfates are associated with long-wavelength recombination emission bands at 3.0-3.1 eV,
2.6-2.7 eV, and 2.3-2.4 eV. At photon energies between 6 and 12.4 eV, free electron-hole
pairs are formed, which results in the formation of these recombination emissions. It has
been experimentally shown that, upon excitation in the recombination emission bands at
3.0-3.1eV and 2.6-2.7 eV, excitations appear corresponding to 3.94.0 eV and 4.454.5 eV [17-20]
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in the transparency region of the host. These excitation energies must correspond to the local
levels of electron SOi_ and hole SO, trapping centers.

When impurities capture electrons in irradiated K,SO,-T1* and NaySO4-Cu* crystals,
it leads to the formation of electron trapping centers such as T1° [21] and Cu® [18]. These
centers are associated with SO, and as a result create a hole trapping centers located under
the conduction band. Within the 2.9-3.0 eV spectral range, the recombination emission
bands that correspond to the impurity trapping centers are located below the conduction
band. They are closely situated to the recombination emission of the host which is observed
at 3.0-3.17 eV. In contrast to the emission band of the electronic impurity trapping centers,
the emission centers of these impurities in sulfates, TI* (4.2 eV), and Cu* (2.6-2.7 eV), are
in distinct spectral ranges.

The formation of electron trapping centers complementary to hole trapping centers
has been investigated in other similar ionic-molecular compounds. In these works, possible
mechanisms for the creation of electronic trapping centers during the excitation of anionic
complexes are discussed. For example, in the work [22] in the compounds KSrPO4-Eu’t,
the formation of electronic trapping centers Eu*" is assumed because of charge transfer
from the anionic complex -Eu®* impurities Eu®*. As a result, electronic trapping centers
Eu”" are formed. It is possible that a similar mechanism for the formation of impurity
electron trapping centers is realized in activated sulfates of alkali and alkaline earth metals.

The main objective of this work is to study the mechanisms of creation of electronic
Mn™ and hole SO, trapping centers, as well as their sensitizing role in energy transfer to
emitters. According to the intensity of TSL (thermostimulated luminescence), the dose
absorptions are estimated.

2. Materials and Methods

Natural calcium sulfate crystals and extra pure barium sulfate 99.99% (Sigma Aldrich,
St. Louis, MO, USA) were used as investigated samples. CaSO4-Mn and BaSO4-Mn
samples were prepared by mechanical friction method. Powder samples were pressed in
a form of tablet to convenience of measurements. As raw reagents CaSOy4, BaSOy4, and
MnSO, powders with 99.99% (Sigma Aldrich) purity were used.

Thermo activation and vacuum ultraviolet spectroscopic techniques were used. An
irradiation was performed by X-ray source based on BSV-23 X-ray tube with a copper anode.
During the experiments the tube’s current was 10 mA, voltage was 40 kV, and its photon
energy was 10-15 keV. Photoluminescence measurements were performed on XBO 150 W
xenon lamp (OSRAM, Munich, Germany) with a photon energy of 1.5-6.2 eV. Measurements
in VUV area were performed by vacuum monochromator with a photon energy of 6.2-12 eV
based on hydrogen lamp. Vacuum monochromator is assembled according to the Seya—
Namioka scheme. The Solar M 266 with photomultiplier Hamamatsu H 11, 890-110
was used as a recorded monochromator. All measurements were carried out in a wide
temperature range from 15 to 300 K. The excitation spectrum in VUV area was corrected
for the spectral distribution of the excitation emission intensity. XRD analysis is performed
on X-ray Diffraction (XRD) System—SmartLab (Rigaku, Akishima, Tokyo, Japan).

In this work the mechanism of generation of electron and hole trapping centers as
well as the creation of electron and hole trapping centers in CaSO4-Mn and BaSO4-Mn
are investigated.

3. Results

The sample’s XRD pattern is illustrated in Figure 1. The spectrum data shows that
the sample of CaSO4-Mn has orthorhombic structure and corresponds to JCPDS card no.
06-0226. Obtained results confirm the purity and existence of Mn in investigated samples.
Similar results were also obtained for BaSO4-Mn sample.

The emission Figure 2a and excitation Figure 2b spectra for the CaSOy crystal are
shown in Figure 2. When excited by photons with energies from 5.4 eV to 7.75 eV, long-
wavelength emission bands at 2.3-2.4 eV, 2.6-2.7 eV, 3.0-3.1 eV, and short-wavelength at
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3.45-3.8 eV, 4.5-5.0 eV appear. As a result of measuring the excitation spectrum of long-
wavelength emission bands of 3.0-3.1 eV and 2.6-2.7 eV, it was shown that these bands of
recombination emission are excited at photon energies of ~4.0 eV and ~4.5 eV in the region
of transparency CaSOj.

1 ¥ " 1 L & T ¥ L]
[ CaSo,
25,0001 [——CaS0O,-Mn| 4
, 20,000 =
3
o
=
w 45,000} -
5
E i
10,000}
) % ] 7
Ll
10 20 30 40 S0 60 T0 a0

Position 2 theta

Figure 1. XRD spectra of CaSO4 and CaSO,-Mn at room temperature.
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Figure 2. (a) emission spectra of the CaSOjy crystal upon excitation by: 1—7.75 eV at 15 K; 2—7.75 eV
at 300 K; 3—7.3 eV at 15 K; 4—7.3 eV at 300 K; (b) excitation spectrum of the CaSOj crystal at 80 K
after irradiation of 6.2 eV for 10 min: for the band ~3.1 (curve 1) and the band 2.7 (curve 2).

The emission Figure 3a and excitation Figure 3b spectra for the BaSO, powder sample
are shown in Figure 3. When excited by photons with energies from 5.4 eV to 7.75 eV, long-
wavelength emission bands appear at 2.3-2.4 eV, 2.6-2.7 eV, 3.0-3.1 eV, and short-wavelength
at 3.45-3.8 eV, 4.0-4.5 eV. The excitation spectrum of recombination emission 2.6-2.7 eV and
3.0-3.1 eV was measured. It can be seen that the bands of recombination emission are excited
at photon energies of 4.0 eV and 4.5 eV in the BaSO, transparency region.

In order to clarify the correspondence between the values of the excitation spectra at
4.0 eV and 4.5 eV for recombination emissions of 3.0-3.1 eV and 2.6-2.7 eV, the samples
were excited by photons with an energy of 4.0 eV and 4.5 eV.
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Figure 3. (a) emission spectrum of BaSO, powder at 80 K upon excitation by: 1—5.64 eV; 2—5.4 eV;
(b) the excitation spectrum of the BaSO, powder after irradiation with 6.2 eV for 10 min: for the band
~3.1 (curve 1—80 K) and the band 2.7 (curve 2—300 K).

The emission spectrum of an irradiated CaSO;, crystal and BaSO4 powder is shown
in Figure 4. Under excitation by photons with the energies of 4.0 eV and 4.5 eV the
recombination emissions reappear at 3.0-3.1 eV and 2.6-2.7 eV in the CaSOj crystal (curves
1, 2) and BaSOy (curves 3, 4). The experimental fact proves that recombination emission
at 3.0-3.1 eV and 2.6-2.7 eV in CaSO, and BaSOj is associated with tunneling electronic
transitions between local electronic levels at trapping centers.

Thus, according to emission and excitation spectra the mechanisms of accumulation
of electron-hole trapping centers in pure CaSO; and BaSO, are studied. It is shown
that in irradiated crystals, electrons are trapped by the anionic complex SOﬁ*, and holes
are localized in the form of the radical SO, . Electronic trapping centers are created by
the reaction: SOi* +e” —>SOi*. When electron-hole trapping centers SOZ* and SO,
in irradiated crystals are excited with an energy of 5.5-6.2 eV, tunneling recombination
emission ~3.1 eV and ~2.6-2.7 eV occurs. These bands are excited in the transparency region
of the host ~4.0 eV and ~4.5 eV. These bands are bands of the absorption and excitation
spectra of electron and hole trapping centers.

At the next stage, the mechanisms of accumulation of trapping centers and their
recombination decay in CaSO4-Mn and BaSO4-Mn were studied.

The photoluminescence of CaSO4-Mn and BaSO4-Mn irradiated (curves 1 and 4) and
unirradiated (curves 2 and 3) with x-rays upon excitation by 5.6 eV photons at a temperature
of 80 K is shown in Figure 5. It can be seen that emission associated with with an impurity
of Mn?" at ~2.3-2.4 eV and emission bands at ~2.95 eV and ~3.1 eV are arisen. The emission
bands at 2.95 eV and 3.1 eV refer to intrinsic and impurity electron-hole trapping centers.

Following this, an analysis on the excitation spectra (as shown in Figure 6) of the
emission center of Mn?* impurity for the 2.3-2.4 eV band at 80 K, for CaSO4-Mn (curve 2)
and BaSO4-Mn (curve 1) was conducted. As can be observed, excitation occurs in three
spectral ranges: near 3.35 eV, 4.0 eV, 4.5 eV and the spectral interval 5.0-6.2 eV. The
fundamental spectral area of the host is defined as 5.0-6.2 eV. New electron-hole trapping
centers are formed in this region.

Figure 6 also displays the BaSO4-Mn powder’s recombination emission excitation
spectra at 3.1 eV (curve 3) and 2.7 eV (curve 4). The excitation bands observed in the
~4.0 eV and ~4.5 eV was found to be analogous to pure BaSO, samples (as shown in
Figures 2 and 3).
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Figure 4. The emission spectrum after irradiation by photons of 7.3-7.75 eV for 20 min at 80 K: CaSOy4
crystal (curves 1, 2) and BaSO,4 powder (curves 3, 4) excited photons 4.5 eV and 4.0 eV, respectively.
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Figure 5. The emission spectrum of crystals upon excitation of 5.6 eV, 80 K. For BaSO4-Mn (curve 2)
and CaSO4-Mn (curve 3) and pre-irradiated with X-rays for 10 min (curve 1 and 4, respectively).
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Figure 6. Excitation spectra in 1—for the emission band of 2.3-2.4 eV at 80 K in BaSO4-Mn; 2—for
the emission band of 2.3-2.4 eV at 80 K in CaSO4-Mn; 3—for the emission band 3.1 eV at 80 K in
BaSO4-Mn; 4—for the emission band 2.7 eV at 80 K in BaSO4-Mn.

It was experimentally shown that the excitation spectra of 4.0 eV and 4.5 of the
recombination emission of an electron-hole trapping center in CaSO4-Mn and BaSO4-Mn
coincide with the excitation energies of the Mn?* impurity in these hosts.

The temperature dependency of the emission spectra of 2.3-2.4 eV Mn?* impurities as
well as 2.95 eV and 3.1 eV recombination emissions are illustrated in Figure 7. The exciting
energy of bands was 4.5 eV and 5.6-5.9 eV for CaSO4-Mn and BaSO4-Mn. From Figure 7,
one could observe that:

(a) In CaSO4- Mn and BaSO4-Mn crystals, emission ~2.95 eV and 3.1 eV are steady
up to 200220 K (curve 4, 2). The band’s intensity starts to decline at a temperature of
200220 K. It is presumable that after the electron delocalizes from the Mn* trapping centers
at this temperature. The intensity of the recombination emission band gradually diminishes
until it reaches a minimum value.

(b) the impurity is ionized from the Mn™*-SO; trapping centers in accordance with the
following reaction: Mn™ — e~ — Mn?", i.e., the Mn?* impurity is restored (curves 1, 3);
the intensity of the emission band ~2.3-2.4 eV corresponding to the emission of Mn?*
increases. The delocalization of SO; holes from Mn3*- centers, which occurs in the temper-
ature range of 350-360 K, is linked to an increase in the Mn2* impurity’s emission intensity.
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Figure 7. Temperature dependence for emission bands: 1—2.3-2.4 eV upon excitation of 5.9 eV
CaS0O4-Mn; 2—2.95-3.1 eV upon excitation of 4.5 eV in CaSO4-Mn; 3—2.95-3.1 eV upon excitation of
5.9 eV BaSO4-Mn; 4—2.3-2.4 eV upon excitation of 4.5 eV BaSO4-Mn.
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4. Discussion

The excitation spectrum of recombination emission at 2.95-3.1 eV and 2.6-2.7 eV was
measured. It is shown that emission is excited at photon energies of 4.5 eV and 4.0 eV.
Under reverse excitation of CaSO4 and BaSO4 samples with induced trapping centers, with
photon energy of 4.5 eV and 4.0 eV recombination emission 2.95-3.1 eV and 2.6-2.7 eV
are detected. Based on the obtained results, a mechanism of the formation of trapping
centers is proposed. We propose a band scheme for the arrangement of local states of
trapping centers. Electron trapping centers are produced in accordance with the reaction
SOif +e — SOif when electrons are trapped by anionic complexes or during charge
transfer OZ—SOi* during excitation of the anionic complex SO?[. The hole excitation
component is localized in the form of the radical SO, . The formation of the radical SOz_ in
irradiation sulfates was established by the authors of [23] using the EPR technique. This is
how electron and hole trapping centers are formed in the form -SO, . The trapping centers
correspond to recombination emission.

Based on theoretical calculations by the authors of [24], it was predicted that holes exist
in various local states from the top of the valence band. These calculations revealed that
the ground state of the unpaired electron in the SO, radical will differ in each of the three
crystallographic directions. Additionally, experimental evidence shows that the thermal
decollation of a SO, hole of two types in CaSO, occurs at various temperatures [25]. All
these data indicate the existence of three local states from the top of the valence band, cor-
responding to localized holes SO, —differ—crystallographic directions in the transparency
region of the crystal. As a result, the produced holes are localized at distinct distances of
3.35eV, 4.0 eV, and 4.5 eV from the local level of electronic trapping centers.

The authors of [18-20] studied the mechanisms of energy transfer to impurities in alkali
metal sulfates, in activated CaSO4-Mn and Na;SO,-Cu crystals. The excitation spectra of
impurities and intrinsic recombination emissions of the host were measured. In these
and our previous works, the relation between the excitation spectra of the recombination
emission of the host and impurities was not specified.

It is assumel that in the irradiated crystals and powders of CaSO4-Mn and BaSO4-Mn
in the spectral region of 2.95-3.1 eV, corresponding to the recombination emission of the
host, a combined band appears, including the emission of its intrinsic recombination emis-
sion and the emission arising on impurity electron-hole trapping centers. The combined
emission band 2.95-3.1 eV is excited in the same way at photon energies of 3.9-4.0 eV
and 4.5-4.6 eV as shown on Figure 6. It is assumed that in the Ca5O4-Mn and BaSO4-Mn
powders irradiated with UV photons, upon excitation of the SOﬁ* anionic complex, a
combined radiative state of 2.95-3.1 eV is created by two mechanisms:

- during charge transfer from oxygen to impurities (O?~-Mn?");

- when electron-hole pairs are trapped by Mn*" impurities.

In both cases, an impurity electron-hole state Mn™-50O, is created.
Parallel in the host:

- when charge is transferred from oxygen (Ozf—SOZ_) to the next to anionic complex
SOZ*, intrinsic electron-hole trapping centers SO?[—SO; are created near the impurity;

- when an electron is captured by an anionic complex SO3~ +e~ — SO3~ and a hole
is localized in the form of SO, , similar capture centers SOi_—SOZ can be created.

Recombination decays of emerging trapping centers occur:

during the decay of SOT-SOE, emission of 2.95-3.1 eV occurs;

during the decay of Mn"-SO,, an electron recombines with a hole located near the
impurity Mn*>" and the energy of the recombination process excite impurities, emission of
impurities is observed at 2.3-2.4 eV.

The formation of combined states 2.95-3.1 eV appear during the measurement of the
temperature dependence of the recombination emission band and the intracenter emission
of Mn*". At a temperature of 220-250 K, where electron delocalization from Mn™ centers
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occurs, an increase in the intensity of the intra-center emission band corresponding to Mn2+

ions (MnT — e~ — Mn?") is observed.

The exhibition of combined states is also characteristic of other alkali metal sulfates
activated by Cu* and TI* impurities. We have shown the formation of such states in the
band diagram in Figure 8.

Conduction band -
—_— e — |l — —— —SOE'
TP Cu? (8] Mo e | — 503
il
39-4.0eV 4.5- 4.6V
Mo~ i
R etk e B e s _
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Figure 8. Band scheme of impurity (Mn +-SO4_) and intrinsic (SOZ‘—SO;) electron and hole trap-
ping centers.

We have experimentally shown that impurity emission at 2.3-2.4 eV and recombination
emission of 2.95-3.1 eV are excited at the same energies 4.0 eV and 4.5 eV. The pattern
of formation of electron and hole trapping centers with different energy states in the
transparency region of the host should be a characteristic feature of sulfates of alkali and
alkaline earth metals. A distinctive characteristic of these hosts is the creation of T1°, Cu®,
SO?[, and Mn* electronic trapping centers in both pure and doped sulfates, which possess
local radiative energy states of approximately 2.95-3.17 eV.

5. Conclusions

1. The charge transfer by anionic complexes occurs during the excitation of SOi*. Trap
centers SOi_ are created as a result of charge transfer from OZ*—SOZ_. The alternative
mechanism of formation SOi_ occurs as trapping free electrons on SOi_.

2. Energy transfer to impurities occurs at the time of charge transfer O~ -Mn?". A
common combined electronic state of 2.95-3.1 eV is created. The combined radiative
state 2.95-3.1 eV consists of the radiative levels of SOZ* and Mn™ trapping centers.

3.  Insulfates with TI*, Cu*, and Mn%* impurities, the combined radiative state 2.95-3.17 eV
is formed during charge transfer -M*" (M-metall).

4. Insulfates, anionic complexes SOﬁ* are excited mainly near impurities.
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