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Solution of one boundary value task of viscoelasticityin
a nonlinear formulation, in the case of a cubic stress-strain relation

Abstract. In this paper, the solution of a boundary value task in the nonlinear formulation is considered by
the authors [1][2]. In spite of its proximity to linear theory, the nonlinear theory of viscoelasticityhas not yet been
fully developed. This issue is far from being fully completed, since the existing calculation methods do not yet
provide a complete answer to the many different questions posedby practice. For this reason, in order to obtain a
nonlinear law relating the strains o;; and deformations &;; a number of conditions are formed:

(1) The specific work of deformation A must be a function of the entire deformation historyfrom the

beginning of deformation to the current time t.

(2) The material of a viscoelastic body is homogeneous and isotropic.
(3) For very small deformations the nonlinear relation law between 0.7 and €;; in the limit should pass to

relations in linear approximation.

Key words: bulk compression modulus, linear integral operator, kernel of integral operator, nonlinear
dependence,quadratic strain intensity, Fourier and Laplace transforms.

Introduction

Formulation of the boundary task of vibrations of
isotropic plates lying on a deformable base with
nonlinear stress-strain relation

Let us assume that the vibrations of the plate lying
on a deformable base can be caused both by external
forces on the surface of the plate and by perturbations
propagating from the base. In addition, we will assume
that at the contact boundaries of the plate with the base,
these contacts are ideal, i.e., there is no friction.

For simplicity, consider the plate and the base in
the (x,z) plane or when the external forces do not
depend on the y-coordinate. In this case the

o = 3K, RS (e [1 + ax$VRS (877)]) + 26,RD {eV

displacements u;, w;are nonzero and the
displacement v; = 0, i.e. is absent.

The case is considered when the base material is
isotropic and the stress-strain relation is linear, and
the stress-strain relation for the plate is assumed to
be cubic. In this case, the Boltzmann type relations

for the base are fulfilled:

2 2 2
o2 = 1, (¢2) + 2M, ¢?)

(2) Mz( (2)) ,j=xzi+j) (1.1

for the plate, the following ratios are satisfied:

—e b e 6P ()

o =GR (el [1+ aysV 6 (w&” )]} (i#)j,ij=x2)

where £(Mis the average volumetric deformation

2
(()1) is the quadratic strain intensity, i.e.
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Solution of one boundary value task of viscoelasticity in a nonlinear formulation

n? _ n? (1)2 (1)2
o - x/§[3 (Exx te

O e 20 (13)
)((()1), y(g ) are functions of elongation and shear, respectively, which are determined by the formulas
2 =1+ B0 () v @) =1+ K (p); £V (0) (14)
At the same time the functions Fo(l)H Fl(l) are decomposed into a degree series

1)2 o
RV (e") = Zio an - (287204 (1.5) K (9§7) = Zitso v ()20

R and R® are linear integral operators of the Volterra type

() =¢(© = [ Fio(t — D3OS (1.6)
t
RO =) - f Fao(t — OC(8)dC
0

are nonlinear viscoelastic operators
(D) (1?2 (1)2
K7 (") =

6O ws) =

Rgl)’ Gl(l)

— [} LRI = €0 — £)1eP (6,)dEdé,

(1.7)
1 2
O~ [ FO e el
0
The constants K; and G, are equal to
2
Ki =4 +5u; 6=y (1.8)
The equations of vibration of the plate as a viscoelastic layer have the form
(KOR® +26,R) 21 4 RO ZY 4 (KRP +16,RD) 22 4 aFD wwy) = p 22 (19)
(KiREV +§GlR(1>)a UG, R(l)a 2t (KRS +356 R(l))a ™1+ aFP (uy, wy) = py a:ﬁl (1.9)
where Fl( ), Fz( ) are nonlinear operators
0
FED (uy, wy) = 3k APVREY {a[ (1)1<,§1)( (1)2)]}+
d a9
F( (ug, wy) = 3K1X(1)R(1){ [ (1)K(1)( (1)2)]}+
L _ (1) €8] W 2 [.W-®
+Yo {61R1 57 [( )G (ll’o )]} +YoG1R ax[ G (Y5 )]
Boundary conditions:
atz=ho = fV t); 6, = 0 (1.11)
atz = —h, O'Z(Zl) = O'Z(?, a,g) =0; 0(2) =0; wy =w,
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The initial conditions are zero, i.e. u; = % =
a
Wl_%—o att =0.(1.12)

Thus, the boundary task of vibrations of isotropic
plates lying on a deformable base taking into account
the physical nonlinearity of the stress from
deformation is reduced to the solution of the integro-
differential equations (1.9) at boundary and initial
conditions (1.11)-(1.12).

2. General and based on them approximate
equations of vibration of a viscoelastic plate lying on
a deformable base in the nonlinear formulation

If relations (1.2) are satisfied for the plate
material, then the displacements u and w of points of

(Gt +
0 (G + 4 (55
() o (5

(Ly + M,) 0"y +M 0"wy +1L 0wy
L Y\ oxoz L\ 9x2 1\ 922

thus the task is reduced to a system of two linear
tasks. Task (2.2) with boundary conditions (1.11) and
(1.12), is a task of vibration of a plate lying on a
deformable base in the flat setting, so it will be
considered solved.
For equations (2.3) the boundary conditions look
like:
atz=hoP=00L =0 (2.4)

@ _ pwy); 0@ =0

atz = —h,o (2.5)
where the operator R is found after the expression is
inverted

(B* + k% + q*)? — 4B (K% + q%)

R, =
" a*(B; —k* = q*)

(2.6)
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the plate will be searched for in the form of a series
on the parameter .

oo

u(x,z,t) = Z a™u,(x,z,t)
n=0
2.1)
w(x,z,t) = z awy(x,z,t)
n=0

In this case, the parameter a will be considered
small, i.e. nonlinearity is considered to be weak. If we
limit ourselves to the first two summands in the series
(2.1), then for uy,wanduq,w; we have the
equations:

E)Zuo MY ’wo\  0%ug
0z2 ) T VT P\ Bxaz ) T P e

2.2)
%w, 2w,
) il <a—> =P
0%w, 0%u
> + (L + Ml)( %07 > + Fi(ug, wo) = py (')tzl
2.3)
02w,
) + Fy(up, wo) = py 3¢2

on k,q,p (k and q are Fourier transform
parameters, p is the Laplace transform parameter).

As can be seen from the boundary conditions
(1.12) at z = —h the base parameters and R the base
reaction are excluded. Thus, we have the task (2.3) of
vibrations of isotropic plate under boundary
conditions (2.4) and (2.5) taking into account
physical nonlinearity of stresses from deformation.

In this formulation, the left-hand sides of
equation (2.3) have nonlinear terms F; (uy, wy) and
F,(ug, wy) that depend on displacements ugy, wy and
look like (1.10).

Then, applying integral Fourier and Laplace
transforms to the displacements u,,w;, as well as
non-linear functions F;(ug, wy), F,(ug, wy) we
obtain the ordinary differential equations
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da? d
Mo duz [p1p? + k?Liglusg — k[Lyo + Myl —° Wlo = F19(uo, wo) (2.7
da? d
LlOd_‘;vz [p1p? + k*Myg]wio — k[L1o + Mlo] um = F0(uo, wo)
where F;o u F, are Fourier and Laplace transformed ©
nonlinear  functions  F;(ug, wy),  Fp(ug, wy). Fyo = f COSkx} dk f F, exp(pt) dp
sinkx
o 0 1
ink
Fio = f —S(,l‘:)lsl)ccx} dk f F; exp(pt) dt General solutions of equations (2.7) we find in
0 ! the form
1
U,p = k[A;ch(az) + Bysh(az)] + B[A,ch(Bz) + B,sh(Bz)] — m
z
[ F@)shlatz - 014 + 7 f F)shB(z - )] df (28)
0
1
wio = —a[A;sh(az) + Bich(az)] — k[A,sh(Bz) + B,ch(Bz)] + W
z
[ F©chlat - 01t - s f F(E)chlB(z ~ ©)ldg
) (B =)
where
k(Lig + M) dF. 1 d%F z
F(z) = (L1o 10) 20~ 1o_ﬁ__F10
Lio - My dz ~ Lyg dz? Ly
In this case the function F(z) is assumed to be  principal parts of the displacements
given, and the integrals by the formulas:
Iy chly(z — )1dE n [ shly(z — §)]d¢ can be Uso = kA, + BA, Uy = kBya + 2B,
expanded into power series. W1(01) = —a?A, — kBAs; Wo(l) = —aB, — kB,

Decomposing the expressions for u;, and wy

into power series on the coordinate z and entering the 5,4 reversing by k and f, we get:

® aw(l) ZZn
— (m D 1 (1)
Uy = Z {[,11 ~ 10 Qn] Uy + €0 =+ Ffy o
NI @ @y, @ | 20
+ Z){[/‘l DlQn] Uy’ +D1Qn5= e /1 Wy + F2n+1}m
n=

2n+1

_ ™A 1901, [,m 9 W, 3| _Z
=, [CM inaﬂ% ~ ez | W B [y

+Z{ 0,0, Y - [/1(”) 259D, 0, W(1)+F2(,’31}

n=0

(2n)!
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where
2 _ k2
EY = F[ b

2n

2 _ k2
o) B

B _ 9 )
By = £F2n 7=0’ Fpya = az ' 2n+1],

a2n('82 + kZ) _ 2k2ﬁ2n

a1 :F[W-F

k(B? —a?) ]

2ﬁ2<n+1) _ (ﬁz + kZ)ﬁZn
B(B? — a?) ]

_9 @

=0

Then from the boundary conditions (2.4) and (2.5) we obtain a system of four equations with respect to

U, U, W™ and w®,

M3 0y (UD) + Mgy (W) + Miuy (US2) 4+ Many (WD) = My (B3 >)

(2.10)

Ky (U1) + Ky (W1(1)) + K3y (U1(1)) + K ay (WD) = K'smy (Fz(rt'”)

p®

1(n) 2(n)

UBE: p® (W1(1)) n Dg(z(eg) (U1(1)) + DR4(n)(W(1)) = Dymy (FZ(ril)'FZ(ril)+1)

—Ki iy (UD) = K3y (WA) + Ky (UFP) + K auy (WD) = =K' 50y (B

The system of equations (2.10) are equations of
longitudinal-transverse vibration of the plate in a
nonlinear formulation, lying on a deformable base in
the first approximation.

To solve practical tasks instead of exact

equations that include some finite order on
derivatives: such approximate equations are not
difficult to obtain from exact ones, being limited to a
finite number of the first terms. Then for the main
part of the displacement W'" we get an approximate

equations, it is advisable to use approximate equation.
62w(1) h2 4w(1) a4w(1)
-1 -1 -1 -1
L2 + ?[P1(N1 +3M7") — 4p,(3 — 2MN{ )W +8M;(1— MN; ™) 5 +
EOMIN [LiTUARD! I ol L TUAGD]
+P(W®W) + [ v | "7 ower |, =0 (2.11)
6W(1) 2
where F5 = yoGR [ o Gl(i,bo)] (2.12)
the operator P looks like:
_ S, [0, " —1 4 3p-1y 2% _ 4 O

P=omh {6t t3 [pl(Ml + 3L )6t3 46t6x2]} (2.13)
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22 Solution of one boundary value task of viscoelasticity in a nonlinear formulation...

The function F; looks like (1.10).

For the main part of the move W = W(l)

aW @ we obtain an approximate equation for the

transverse displacement of the median plane of the
plate lying on the deformable base in the nonlinear
formulation

2 2 41174 4 4
a_W+h_ 2(1\/-1+31\/1-1)6W —4p,(3 = 2M;N[Y) ——— g +8M,(1 — M;N{1) +
P1 9t2 6 p1 vy 1 P1 11 ) 5125,2 1 11 )5
dFs(W) h_z *F W _ fz(xt)
+PW) +a [ L - T2 = (2.14)

If the nonlinear dependence does not depend on
the stress intensity, i.e. the parameter y, = 0 , then
the results obtained are greatly simplified.

Of great theoretical and applied interest is the
task of the effect of a normal load on the surface of
an elastic plate lying on an absolutely rigid half-space
with perfect contact between them.

As above, it is assumed that the stress-strain
relationships are nonlinear (physical nonlinearity)

Because of the ideal contact, the sought values of
displacements of points of the plate are symmetric
with respect to the displacement of u and
antisymmetric with respect to the displacement of v

’U 5 9%U

C
at? ox2 9 p au

Let's consider a particular task when the
magnitude of the external load f,(x, t) is equal to

f;(x,t) = f, (x + Dt) (2.17) i.e., the task of the
influence of the moving load on the plate surface at
z = th, where D is the moving speed of the moving
load.

2_2)¥U_2 2,1 pc
(0% = ¢ L5~ 2c2p oK (M5

_2,2%Xo (4;1—629

d ou
= 1252

Z)H(EJ’ R =+ (

This task is equivalent to the task about the
influence of normal loads on the surface of the plate
atz = th, i.e.

= fz(x' t); Oxz =0 (z=nh)
0,z =W=0(z=-h)

(2.15)

Consequently, this task is reduced to the study of
the longitudinal vibration of a plate with a thickness
of 2h (|z| £ h) based on general equations (2.10),
taking as the main unknown the value of U points of
the median plane of the plate, to determine it we
obtain an approximate equation in partial derivatives

1eysl =2 pe? _ 9
R =S e - (2.16)

Since there are no initial conditions in the given
task, it is easier to search for a general solution of
equation (2.16) by passing to the moving coordinates
related to the stationary coordinate system by the
well-known Galileo transformation x’ = x + Dt

Then equation (2.16) turns into the ordinary
differential equation

)%

L2 (2.18)

. . . . . . du
Equation (2.18) after integration over x can be reduced to a cubic equation with respect to o

9p(D%-C?) ( au

(%)

3 an\? | [3 o
vk (52) + 52 -

16ayK
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Hav 1,3
z)]?f[ﬁfz -

4pu—pc

9(2u—pc2)( 4p
32auyo K \4u—pc?

)4;;] =0(2.19)
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By substituting Z—Z =S —% equation (2.19) is
reduced to the form

S3+pS+q=0 (2.20)
_ 3 o 9p(p2=c®) ( ap \*.
where a = 2”fZ PP = T eannek (4”_[)62) i.e. the

parameter p does not depend on the external load, and

q is equal to
4

Let us consider the case when a < 0 (The case
a > 0 is solved in a similar way)

If the exposure mode is supersonic, i.e. D >0
and there is no vibration in the plate in front of the
load, then p > 0 and the cubic equation (2.20) has
one valid solution, and the other two have no
mechanical sense.

Since the nonlinearity parameter « is assumed to
be small, we obtain formulas for the value of U and
the loads o, 0,, and g,, that are convenient for

9(2pD* —2u) [ 4u S O
= calculations:
3auy, K \4u— pc?
_ 1 ﬁ_ x+Dt 2 xoK 4u—pc? 4 [ _pD-4u 3) (x+Dt
= (= 1) [ £ + @ (2 ) [W(Dz_cz] J* g2 ode @21
D? pc2 2 )(OKCZ 4u — pc? pD2 — u
= . 2 1 - —
z? 2 (P’ _ . n2(Pc? 3 Pe” 5\ _ _ 1 pct
+2 {[pD (Z,u + 1) pD ( 1) + 3(A + ZM) ( 2) 2(pC 3,[1)] ox3 /1+2,u [pD (2;4
92 fz(U) u azfz(U)
1) + 4 — 31+ 241)] - P }
z —h2 pc 03U pD? pc 0%f,
= C(pD? - 2p)— — [ — —1)- =2
Orz = fo { (pD* = 241) 0x3 (A +2u ' 2u 0x?
D? c? 2%f, (U
4o (PP P )\ U)
A+2u  2u 0x?2
3
1, XxoK (4u—pc®\'[ pD?* —2u
Oxz = C((Z —ﬁ23) 192 < 7 Mp(DZ — Cz) fzzfzx
1 4p — pc? au 3
U) == yok [———) (2— )
fz()9Xo<4#>(a+fz
Let's consider a particular kind of external load D?  (pc?
function I = —DZ o2 Z —1)>0;
2 24 2 _ 3
f,(x + Dt) = goB(x + Dt)exp[—B(x + Dt) (2.22) I, = D .XOK(4“ pc”)*(pD” — 21
D? —c? 1152u7p3(D? — c?)

then, for example, with respect to the dimensionless
load % we get an approximate expression
0

Oxx

= hLiexp(=¢) + al,05§%exp(—3¢) (2.23)

where the following designations are used
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When a < 0 in a nonlinear task, the maximum
value of 2% is less than in a linear task. When a > 0
g0

there is the opposite phenomenon
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Conclusion

This article gives a general formulation of the
boundary value task of vibrations of isotropic plates
lying on a deformable base in a nonlinear
formulation. It is shown that the boundary task of
vibrations of isotropic plates lying on a deformable
base considering physical nonlinearity of stresses
from deformation is reduced to the solution of
integrodifferential equations with given boundary
and initial conditions.

The general equations of oscillation of isotropic
flat structures lying on a deformable base, taking into
account the physical nonlinearity of stresses from
deformation, are obtained.

It is shown that the general equations of vibration
of isotropic plates, considering the physical
nonlinearity of stresses from deformations, are

complex in structure and contain derivatives of any
order for the coordinates x, y and time t, and therefore
are not suitable for practical tasks and engineering
calculations.

To solve practical tasks, approximate equations
that involve some finite order on derivatives are
derived. The approximate equations are derived from
the exact equations by limiting themselves to a finite
number of the first terms.

The task of normal loading on the surface of an
elastic plate lying on an absolutely rigid half-space with
nonlinear dependence of stresses on deformations is
considered. Taking into account the small nonlinearity
parameter, formulas for displacement and for stresses
convenient for calculations are obtained.

A particular type of external load is considered
and an approximate expression for the dimensionless
stress is obtained.
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