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Abstract In the present article anisotropic solutions with
vanishing complexity in the framework of f (Q) gravity are
generated. At first, the field equations in f (Q)-gravity are
gravitationally decoupled where the isotropic fluid compo-
nent corresponds to Vlasenko–Pronin space-time. Then, with
a new source, the complete geometric deformation is supple-
mented to an isotropic component, and the related deforma-
tion function is derived by the method known as mimicking
of mass constraints. Furthermore, the generated anisotropic
solution prevails all the physical tests along with the stability
analysis with respect to the decoupling parameter as well as
the f (Q) gravity parameter and it accomplishes the physi-
cal representation of observational constraint related to stars,
namely, SMC X-1, 2 S 0921-630, PSR J0437-4715, Vela X-
1, PSR J1748-2021B which are reflected in Mass–Radius
curves. Hence, the study comes out to be worthy of the fact
that the f (Q) gravity parameter directly influences the max-
imum mass of a compact stellar configuration for the fixed
decoupling parameter in the context of gravitational decou-
pling where it predicts the star PSR J1748-2021B having
highest mass 2.74 M�. It is noted that when the decoupling
parameter (α) increases, the central value of the adiabatic
index value also increases, while the reverse situation occurs
when the f (Q)-parameter (β1) gets increased. This implies
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that both the parameters α and β1 have the overall controlling
power on the stability of the model.

1 Introduction

The general theory of relativity, formulated by Albert Ein-
stein, has some limitations in both theoretical and observa-
tional domains. However, it remains a very effective frame-
work for elucidating a wide range of cosmological and astro-
physical phenomena. In the field of general relativity, sin-
gularities are often encountered, and the absence of a self-
consistent theory of quantum gravity is a common challenge.
Furthermore, the general theory of relativity lacks the abil-
ity to adequately explain the dynamics of galaxies, extra-
galactic systems, and the cosmos as a whole without tak-
ing into account the existence of the “dark” components of
the matter-energy composition of the Universe, namely dark
matter and dark energy.

Instead of modifying the Einstein field equations by
introducing an unexplained matter-energy component, an
alternative approach is to seek solutions from a geometric
perspective. This allows for the inclusion of the missing
matter-energy required to describe various phenomena in the
observed Universe, such as galactic and cosmic dynamics,
including the late-time acceleration of the Universe. Over
time, a number of alternative or modified theories of grav-
ity have been offered by various researchers [1–4]. In each
of these theories, the Einstein field equations have been
modified by altering the source side. Simultaneously, the
geometrical component has been modified by including a
generalised functional form of the argument as the gravita-
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tional Lagrangian in the appropriate action. Among the sev-
eral hypotheses under consideration, a select handful stand
out as particularly noteworthy. The literature discusses vari-
ous modified gravity theories, including f (R) gravity [5–8],
f (T ) gravity [9–11], f (R, T ) gravity [12–15], f (G) gravity
[16,17] and f (R,G) gravity [18]. In these theories, the sym-
bols R, T , T , and G represent the Ricci scalar, torsion scalar,
trace of the energy–momentum tensor, and Gauss–Bonnet
scalar, respectively. Like the generalization of the general
theory of relativity to f (R) gravity, one can choose either the
torsion T or the nonmetricity Q as the geometric basis which
provides two different but equivalent descriptions of gravity
and those are known as “teleparallel equivalent of general rel-
ativity” (TEGR) [19–21] and “symmetric teleparallel general
relativity” (STGR) [22–25] respectively. In STGR instead of
the curvature and the torsion, the nonmetricity describes the
gravity where one can always choose the coincident gauge,
under the teleparallelism constraint, which does restrict the
affine connection to disappear as well as make the metric
tensor the only basic variable. In analogy to f (R) gravity,
STGR can be generalized to f (Q) gravity [25,26] where
the gravitational Lagrangian in the corresponding action can
be taken as the function of nonmetricity Q. In the present
study we are employing f (Q) gravity theory because of the
fact that it has (i) a long historical background which was
proposed in the year 1928 by Einstein [27] in connection to
his GR and known as “Teleparallelism” or “teleparallel grav-
ity”, and (ii) received attention to the scientists [28,29] in the
cosmological [30–34] as well as astrophysical [35–54,64–
66] field of research. In [37,38,45–52] authors explored the
wormhole geometries in f (Q) gravity under different phys-
ical scenarios. Mandal et al. [35] have studied the energy
conditions in f (Q) gravity whereas Wang et al. [44] have
found static and spherically symmetric solutions under the
framework of f (Q) gravity. Flathmann and Hohmann [36]
have analyzed the post-Newtonian approximation of a gener-
alization of the symmetric teleparallel gravity, i.e., in f (Q)

gravity with the help of the parameterized post-Newtonian
(PPN) formalism. In Refs. [40–43,53,54] authors discussed
different stellar models under the realm of f (Q) gravity con-
sidering different physically plausible possibilities. In a dark
energy stellar model [55] using linear form of f (Q), the
maximum mass of the dark energy star is found to be within
the mass gap range (2.5–5 M�) which eventually implies
a possible candidate for the secondary component of the
GW190814 event. Some other works [56,57] with similar
astrophysical implications, proposed the existence of dark
energy stars, respectively, for quadratic form of f (Q) and
under the Krori–Barua (KB) metric matched with the exte-
rior Reissner–Nordström space-time in the presence of mod-
ified Chaplygin gas EOS fused within the Einstein–Maxwell
field equations. Anisotropic compact stars with quintessence
dark energy can be represented by a new family of solu-

tion [58,59] in f (Q) gravity. In addition, the compact star
model with anisotropy as well as quintessence is developed
with physical validity in f (T ) gravity [60]. With embedding
Class 1 technique, a well behaved set of solutions [61–63]
to the field equations in f (R, T ) gravity is found exploring
physical features of compact stars. Furthermore, Nashed and
his collaborators have performed several study on compact
objects in different gravity theories [67–70]. Various black
hole configurations have been studied under the framework
of f (Q) gravity in Refs. [39,64–66].

This research investigates the anisotropic stellar configu-
ration using the mimic constraint on the mass function sug-
gested by Contreras and Stuchlik [71] in the context of f (Q)

gravity theory. The analysis is conducted within the frame-
work of the vanishing complexity formalism, as defined by
Herrera [72,73]. The analysis of the complexity of a system
may be facilitated by considering a multitude of elements.
The core principle pertains to the quantification of entropy
and the information content inherent in the structure of a
given system. There exist multiple definitions of complexity
in the existing body of literature. However, our focus lies
exclusively on the complexity of a self-gravitating system,
which was initially introduced by the authors in the refer-
ences [74–79]. This concept builds upon the research con-
ducted by Lopez–Ruiz and his colleagues [80,81].

Herrera [72,73] has proposed a novel framework for
assessing complexity in self-gravitating systems. In this
framework, the complexity factor, which serves as the met-
ric for quantifying complexity, emerges in the orthogonal
decomposition of the Riemann tensor within the spacetime
continuum under consideration. In the scenario of a static dis-
tribution of fluid, one may simplify the system by considering
it as a homogeneous fluid with uniform energy density. In this
configuration, it is straightforward to give a complexity factor
of zero. The aforementioned concept bears resemblance to
the Tolman mass concept introduced by Tolman in 1930 [82].
It can be understood as the gravitational mass that is actively
involved in the system. In the case of an arbitrary distribution,
this mass can be expressed as the sum of its value for the zero
complexity case, along with two additional terms that depend
on the inhomogeneity of energy density and the anisotropy
of pressure. A single scalar function, called the complexity
factor, may characterise the last two terms, which becomes
zero when the fluid distribution exhibits both homogeneity
in energy density and isotropy in pressure. However, these
terms may also become zero when the components involving
density inhomogeneity and anisotropic pressure counteract
each other. Hence, the phenomenon of diminishing complex-
ity may be seen in many systems, as elucidated in the work of
Lopez [80]. In their research, Herrera et al. [83] utilised the
axially symmetric geometry to evaluate the impact of com-
plexity on various geometries. They identified three primary
sources that contribute to complexity. In a separate study [84],
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the authors investigated the concept of complexity, specif-
ically in relation to dissipation and non-dissipation. They
examined the emergence of spherically symmetric non-static
geometry using the quasi-homology concept to establish a
relationship between the areal radius and the velocity of the
areal radius.

Contreras and Fuenmayor [85] have investigated the sta-
bility of self-gravitating celestial bodies via the examination
of gravitational cracking, using a similar methodology. In
their earlier study, Herrera et al. [73] not only examined the
influence of additional structural scalars derived from the
orthogonal division of intrinsic curvature, but also extended
the notion of complexity factor to hyperbolically symmetric
geometry. In this connection, new developed gravitational
decoupling via MGD and extended MGD techniques [86,87]
are very effective methodology to develop new solutions
[88–95]. In this context, it is possible to examine the recent
research publications [71,96–104] that have undertaken an
analysis of the complexity associated with static and spher-
ically symmetric stellar structures within the framework of
gravitational decoupling.

The unique feature of the present paper is that the isotropic
fluid component corresponds to Vlasenko–Pronin space-time
[105] to which CGD added by a new source. It is to be
noted from the literature survey that Maurya and Gupta [106]
have presented charged analogue of the Vlasenko–Pronin
superdense star [105] in general relativity. Later on, Singh
and Pant [107] have also studied the charged anisotropic
Vlasenko–Pronin solutions [105] related to superdense stars
with constant stability factor. Interestingly, the maximum
mass and radius contained in the neutral physical system
are 2.1434 M� and 16.7300 km, respectively. on a recent
study conducted by Maurya et al. [108], an anisotropic dark
star model was developed. This model was formed by the
Vlasenko–Pronin space-time induced anisotropy on a back-
ground of complexity-free domain. Additionally, the study
investigated the influence of dark matter on gravitational
wave echoes. So the present study in that sense related to
varieties of physical aspects, starting from neutral to charged
superdense star [109–111]. Esmakhanova et al. [113] devel-
oped a relation between the solution od Einstein equation,
Ramanujan and Chazy equations, while cosmological model
with fermionic field and with f -essence was discussed by
Momeni [112].

Under the above mentioned physical background we have
investigated various physical attributes and effect of f (Q)

gravity along with the decoupling parameter on anisotropic
stellar structure constructed by mass constraint approach.
The study is organized as follows: In the next section we
discuss the corresponding field equations of f (Q) gravity
considering a linear form in nonmetricity Q for the function
f (Q) and we define the corresponding complexity factor
Y Q
T F in f (Q) gravity. In Sect. 3 we provide the solutions to

the corresponding field equations using complete geomet-
ric deformation method in complexity free scenario. The
required matching conditions at the boundary are expressed
in Sect. 4. This is followed by the physical analysis of com-
plexity free anisotropic solution in f (Q) gravity in Sect. 5.
Furthermore, in Sect. 6, we discuss different constraints on
maximum mass and radii studying mass-radius relationships
based on observational data for observed compact objects.
Finally, concluding remarks are presented in Sect. 7.

2 Revisit of the decoupled field equations in f (Q)

gravity

The revised action for f (Q) gravity is obtained by includ-
ing an additional Lagrangian term, denoted as Lθ , which is
coupled to the new source θεν via a decoupling constant α
as:

S =
∫

1

2
f (Q)

√−g d4x +
∫

Lm
√−g d4x + α

∫
Lθ

√−g d4x .

(1)

In the context of the f (Q) gravity hypothesis, the Lagran
gian density Lm represents the matter fields and is associated
with the energy–momentum tensor Tεν . The nonmetricity
scalar Q plays a crucial role in governing the gravitational
interaction. The inclusion of the additional contribution in
the f (Q) gravity matter field correction has the potential to
enhance our comprehension of the system’s physical char-
acteristics beyond the scope of the f (Q) gravity theory. The
sources Tεν and T θ

εν are defined as

Tεν = − 2√−g

δ
(√−gLm

)
δgεν

, (2)

T θ
ε ν = − 2√−g

δ
(√−gLθ

)
δgεν

. (3)

In addition to this, the combined action for both sources is
denoted by the decoupling constantα asT tot

εν = (
Tεν+α T θ

εν

)
.

The expression for the nonmetricity tensor Qλεν in rela-
tion to the affine connection is provided as follows

Qλεν = �λgεν = ∂λgεν − 
δ
λεgδν − 
δ

λνgεδ, (4)

The symbol 
δ
εν is often referred to as the affine connection,

which takes on the following structure


δ
εν = Lδ

εν + K δ
εν + {δεν}. (5)

The symbols Lδ
εν , K δ

εν , and {δεν} represent the disforma-
tion, contortion tensors, and Levi–Civita connection, respec-
tively. These tensors may be mathematically represented as:

{δεν} = 1

2
gδσ (∂εgσν + ∂νgσε − ∂σ gεν) ,

Lδ
εν = 1

2
Qδ

εν − Q δ
(ε ν),
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K δ
εν = 1

2
T δ

εν + T δ
(ε ν). (6)

The symbol T δ
εν represents the torsion tensor, which char-

acterises the antisymmetric component of the affine connec-
tion as: T δ

εν = 2
λ[εν]. Furthermore, the nonmetricity tensor
associated with the superpotential may be expressed as:

Pα
εν = 1

4

[
−Qα

εν + 2Qα
(ε ν) + Qαgεν − Q̃αgεν − δα

(εQν)

]
,

(7)

where

Qα ≡ Q ε
α ε, Q̃α = Qε

αε, (8)

are two independent traces that aid in the establishment of
the nonmetricity scalar term as

Q = −Qαεν Pαεν. (9)

By taking the variation of the action (1) with respect to the
metric tensor gεν , the system of governing field equations in
f (Q)-gravity may be derived as

2√−g
�γ

(√−g fQ Pγ
εν

)+ 1

2
gεν f + fQ

(
Pεγ i Q

γ i
ν

−2 Qγ iε P
γ i
ν

) = −T tot
εν , (10)

where fQ = d f
dQ and T tot

εν = Tεν + T θ
εν .

By using Eq. (1), it becomes feasible to deduce an addi-
tional restriction on the connection as

�ε �ν

(√−g fQ Pγ
εν

) = 0. (11)

The restrictions of torsionlessness and curvaturelessness
result in the affine connection being rendered as such


λ
εν =

(
∂xλ

∂ξβ

)
∂ε∂νξ

β. (12)

Moreover, it is possible to choose a certain coordinate
system, known as the coincident gauge, in order to do this:

λ

εν = 0. Then, the nonmetricity Eq. (4) reduces to

Qλεν = ∂λgεν . (13)

The computation is simplified since the metric function
is the only significant variable. However, with the exception
of conventional General Relativity (GR) as discussed in the
work of Koivisto [114], it can be shown that the action no
longer maintains invariance with respect to diffeomorphism.
In order to address this issue, it is possible to use the covariant
formulation of f (Q) gravity. The covariant formulation may
be used by first determining the affine connection in without
the presence of gravity [115]. This is necessary since the
affine connection described in Eq. (12) is only inertial.

The primary objective of this research is to investigate the
properties of compact stars within the framework of f (Q)

gravity theory, specifically in relation to gravitational decou-
pling. In order to facilitate our analysis, we make the assump-
tion of the following line element as

ds2 = −e�(r)dt2 + eμ(r)dr2 + r2dθ2 + r2sin2θ dφ2. (14)

The metric potentials �(r) and μ(r) are denoted as
unknown functions that are dependent on the radial coor-
dinate r . The determination of the expression for the non-
metricity scalar Q in the context of the spherically symmetric
line element (14) is as follows:

Q = −2e−μ(r)
(
1 + r�′(r)

)
r2 . (15)

In addition, it is worth noting that the stellar model in
f (Q) gravity is characterised by the presence of ideal matter
distributions inside its internal structure. Subsequently, the
expression Tεν may be represented as:

Tε ν = (ρ + p) uε uν + p gε ν . (16)

In the context of pure f (Q) gravity theory, the symbols ρ

and p represent the energy density and fluid pressure, respec-
tively. The fluid four-velocity vector is represented by the
symbol uν , where u0u0 = −1. In this context, the compo-
nents for T θ

εν are denoted as:

[T θ ]0
0 = −ρθ , [T θ ]1

1 = pθ
r , [T θ ]2

2 = [T θ ]3
3 = pθ

t . (17)

It is important to note that we have made the assumption
that θ1

1 is not equal to θ2
2 . Subsequently, the introduction

of the new source will induce anisotropy within the f (Q)

gravity system. To derive the field equations corresponding
to Eq. (10), we introduce the components of the total energy–
momentum tensor (T tot

εν ) as

ρtot = ρ + α ρθ , P tot
r = p + α pθ

r , P tot
t = p + α pθ

t .

(18)

Consequently, in f (Q) gravity the independent compo-
nents of the equation of motion (10) can be written as fol-
lows:

ρtot = − f (Q)

2
+ fQ

[
Q + 1

r2 + 1

r eμ
(μ′) + �′], (19)

P tot
r = f (Q)

2
− Q fQ − fQ

r2 , (20)

P tot
t = f (Q)

2
− fQ

[Q
2

− 1

eμ

{�′′

2
+
(�′

4
− 1

2r

)

×(μ′ − �′)
}]

, (21)

0 = Q′ cotθ

2
fQQ, (22)

where fQ(Q) is defined as fQ(Q) = ∂ f (Q)
∂Q . The total

anisotropy is therefore expressed as

�tot = ptot
t − ptot

r = �θ, where, �θ = α (pθ
t − pθ

r ). (23)
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It has been seen that the signature of decoupling con-
stant α affects the behavior of anisotropy in the system. At
first, the functional form of f (Q) must be defined to express
the explicit form of the equations of motion (19)–(21). In
this context, Wang et al. [116] have shown that the exact
Schwarzschild (anti-) de Sitter solution can be produced as
the exterior solution of field equations satisfying the essential
condition fQQ = 0. So, the condition fQQ = 0 is further
required to obtain the functional form of f (Q) which is nec-
essary to find the solution of self-gravitating compact star
models and hence fQQ = 0 yields

f (Q) = β2 + β1 Q. (24)

The variables β1 and β2 represent constants in the given
context. On substitution of Eqs. (15) and (24), the Eqs. (19)–
(21) can be expressed as

ρtot = 1

2 r2

[ 2

eμ
β1
(
r μ′ − 1

)+ 2 β1 − β2 r
2
]
, (25)

P tot
r = 1

2 r2

[
r2 β2 − 2 β1 + 2 e−μ β1

(
1 + r �′) ], (26)

P tot
t = 1

4 reμ

[
− (r β1 �′ + 2β1)

(
μ′ − �′)+ 2 r �′′ β1

+2 β2 r e
μ
]
. (27)

Based on the functional form of f (Q) as described in Eq.
(24), a corresponding conservation equation may be derived
in the context of f (Q) gravity [116,117]

− �′

2
(ρtot + P tot

r ) − (P tot
r )′ + 2

r
(P tot

t − P tot
r ) = 0. (28)

It is to be noted that Eq. (28) is comparable to the Tolman–
Oppenheimer–Volkoff (TOV) equation [118,119] in classical
general relativity. Let us now concentrate on the method to
obtain the solution of field equations (25)–(27) beyond the
f (Q) gravity theory. It is worth mentioning some important
brief reviews of widely adopted techniques which are useful
to get solution of the field equations in general relativity and
modified gravity theory. In this connection, Newton et al.
[120] have described some relations which are related to three
straightforward techniques mainly and the metric potentials.
The relations are as follows:

1. Ivanov [121] proposed a relation which is related to con-
formally flat geometry [122,123] given by

e�(r) = Â2
1r

2 cosh2
(∫ √

eμ(r)

r2 dr + B̂1

)
, (29)

where the constants are Â1 and B̂1.

2. The second relation [124–127] subject to a conformal
killing vector is given as

e�(r) = Â2
2r

2 exp

(
− 2k

B̂2

√
eμ(r)

r2 dr

)2

, (30)

where integration constants are Â2 and B̂2.
3. Another relation popularly known as the Karmarkar con-

dition [128] given by

e�(r) =
(
Â3 + B̂3

∫ √
eμ(r) − 1 dr

)2

, (31)

where constants of integration are Â3 and B̂3.

To solve the current system of equations in the f (Q) grav-
ity regime, with reference to the above relations, we now
build a new bridge equation based on the vanishing com-
plexity factor condition that connects metric functions. To
establish the relation, we first use Herrera’s concept of the
complexity factor for a compact object [72] to calculate the
complexity factor (Y Q

T F ) in the f (Q) gravity factor for the
system (25)–(27) as

Y Q
T F = 8π(P tot

r − P tot
t ) − 4π

2r3

∫ r

0
x3(ρtot)′(x)dx . (32)

Substituting ρtot, P tot
r and P tot

t in the above equation, we
get Y Q

T F as

Y Q
T F = β1

[{
2 − r(�′ − μ′)

}
�′ − 2r�′′]

4 r eμ
. (33)

Then employing the vanishing condition, i.e., Y Q
T F = 0

and integrating we got the required relation between the met-
ric potentials � and μ as

e�(r) =
(
A1

∫
r eμ(r)/2dr + B1

)2

, (34)

where A1 and B1 are denoted as the constants of integration.
It is worth noting that the requirement for the absence of

the complexity factor in f (Q) gravity theory, as expressed
in Eq. (34), is equivalent to the condition found in Einstein’s
general relativity, as discussed by Contreras and Stuchlik
[71]. In the preliminary phase, our primary aim is to get
a precise analytical solution of the field Eqs. (25)–(27) that
describe a compact stellar object within the framework of the
f (Q) gravity theory. In the subsequent section, the full geo-
metric deformation (CGD) method, a well recognised tech-
nique for achieving gravitational decoupling, will be used for
the aforementioned objective.
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Fig. 1 This diagram shows the procedure for generating gravitational
decoupling anisotropic solution in f (Q) gravity via zero complexity
factor

3 Anisotropic complexity free solution in f (Q) gravity
using gravitational decoupling

The present section commences with the implementation of
a comprehensive geometric deformation (CGD) technique
that employs a specific transformation along the gravitational
potentials as:

�(r) −→ H(r) + α η(r), (35)

e−μ(r) −→ W (r) + α �(r), (36)

whereη(r) and�(r) are the geometric deformation functions
along the temporal and radial metric components, respec-
tively. The CGD method allows us to specify η(r) �= 0
and �(r) �= 0. This is demonstrated in the diagram (Fig. 1),
where a solution beyond the f (Q) gravity theory is obtained
from the new sector due to CGD. Additionally, the decou-
pled system (25)–(27) in f (Q)-gravity is split into two sub-
systems on the application of the CGD technique. The first
subsystem is for Tε ν , and the other subsystem is governed
by the extra source θε ν . The system of field equations for the
two subsystems follows as:

3.1 A set of field equations for pure f (Q) gravity

ρ = 2β1 − 2β1W − 2r W ′β1 − β2r2

2r2 , (37)

p = 2β1W − 2β1 + 2r H ′Wβ1 + β2 r2

2r2 , (38)

p = β1H ′ W ′ + β1WH ′2 + 2β1WH ′′

4

+β1 W H ′ + β1 W ′ + β2 r

2r
, (39)

and following the TOV equation (28) we get

− H ′

2
(ρ + p) − dp

dr
= 0, (40)

which is an equivalent TOV equation for the subsystem (37)–
(39).

This has a solution which can be obtained by the following
spacetime

ds2 = −eH(r)dt2 + dr2

W (r)
+ r2dθ2 + r2sin2θ dφ2. (41)

3.2 System of field equations for new source θεν

ρθ = −β1�
′

r
− β1�

r2 , (42)

pθ
r = β1 � �′

r
+ β1 �

r2 + β1 η′ W
r

, (43)

pθ
t = β1

(1

2
� �′′ + � ′

2r
+ �′�

2r
+ 1

4
�′ � ′ + 1

4
��′2)

+β1

[W
4

(
β1 η′ 2 + 2 η′′ + 2 η′

r
+ 2 η′ H ′)+ η′ W ′

4

]
.

(44)

The following conservation equation is provided by the
system of Eqs. (42)–(44):

− H ′

2
(ρθ + pθ

r ) + 2

r
(pθ

t − pθ
r ) − (pθ

r )
′ = η′

2
(ρθ + pθ

r ),

(45)

which demonstrates that the energy is transferred between
the sources.

Both systems of equations are needed to be solved under
the condition (34). In order to solve the Eq. (34) we need to
find metric potential μ. Hence, we must have known forms
of W (r) and �(r). The first isotropic system of field equa-
tions needs to be solved first, since the solution to the second
system depends on the solution to the first system. To serve
the purpose, we get the isotropy condition in the context of
f (Q) gravity by subtracting Eqs. (38) and (39)

W (2H ′′r2 + H ′2r2 − 4 − 2H ′r) + [4 + r W ′(2 + r H ′)] = 0.

(46)

Interestingly, in the above result (46), the isotropic condi-
tion in f (Q) gravity is comparable to the isotropic condition
in standard general relativity. This has a simple implication
that there exists an isotropic solution in f (Q) gravity for
any known isotropic solution in general relativity. Therefore,
we have chosen a well-known perfect fluid solution corre-
sponding to Vlasenko–Pronin space-time geometry [105] to
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ensure the integrability of the Eq. (34). The Vlasenko–Pronin
space-time geometry given as

ds2 = −
{
A cos

[
log
√

1 − Cr2
]+ B sin

[
log
√

1 − Cr2
]}2

dt2

+(1 − Cr2)−2dr2 + r2(dθ2 + sin2θ dφ2), (47)

ρ(r) = −β2

2
− 5β1C

2r2 + 6β1C, (48)

p(r) = 1

2
(
A cos

[
log

√
1 − Cr2

]+ B sin
[

log
√

1 − Cr2
])

×
{

sin
[

log
√

1 − Cr2
]×

(
B
(
β2 + 2β1C

2r2 − 4β1C
)

−4Aβ1C
(
Cr2 − 1

) )+ cos
[

log
√

1 − Cr2
]

×
(
A
(
β2 + 2β1C

2r2 − 4β1C
)+ 4Bβ1C

(
Cr2 − 1

) )}−1
.

(49)

For both systems, the mass function for the distribution of
matter may be found using the formula

mQ = 1

2

∫ r

0
ρ(x) x2dx and mθ = 1

2

∫ r

0
ρθ (x) x2dx . (50)

The symbols mQ and mθ represent the mass function for
the first and second systems, respectively. However, subse-
quently the effective mass should be determined as

m(r) = mQ(r) + α mθ (r). (51)

The next step involves determining the deformation func-
tion �(r) in order to integrate condition (37). In order to
achieve this objective, we use the utilisation of mimicking
of mass constraints in order to determine the deformation
function �(r).

3.3 Mimicking of mass constraints (mQ = mθ )

The mimic constraint is used to compute the deformation
function in accordance with the mass function suggested by
Contreras and Stuchlik [71]. The mass restrictions technique
yields the below outcomes

rβ1�
′ + β1� + r2

(
β1C

(
6 − 5Cr2

)
− β2

2

)
= 0. (52)

Upon performing the integration of the aforementioned
differential equation, the resulting solution for the function
�(r) is obtained as

�(r) = r2
(
β2 + 6β1C

(
Cr2 − 2

))
6β1

+ F

r
. (53)

The symbol F represents the arbitrary constant of inte-
gration, which is assumed to be zero for the whole of the
analysis to prevent singularity in the centre. Regarding this
matter, the revised expression for the metric function eμ is

e−μ(r) = αr2
(
β2 + 6β1C

(
Cr2 − 2

))+ 6β1
(
1 − Cr2

)2
6β1

.

(54)

By substituting the deformed metric function μ(r) from
Eq. (54) into the condition of vanishing complexity factor
(37), we get the generalised version of the metric function �

as

e
�(r)

2 = − A1

4C
√

α + 1

{
2 tanh−1

⎛
⎝2

√
α + 1β1C

(√
6β1�1(r) − 6r2

√
(α + 1)C2

)

12(α + 1)β1C − αβ2

⎞
⎠

+ log
[
α2β2

2 − 288(α + 1)2β2
1C

4r4 + 288(α + 1)2β2
1C

3r2

+24(α + 1)β1C
2
(

6αβ1 + 2
√

6β1r
2

×
√

(α + 1)C2�1(r) − αβ2r
2
)
−24α(α + 1)β1β2C

]}
+B1,

(55)

where

�1(r) =
√

β1
(
6(α + 1)C2r4 − 12(α + 1)Cr2 + 6

)+ αβ2r2.

As a result, the deformation function η(r) may be
expressed in terms of Eq. (38) as η(r) = 1

α

[
�(r) − H(r)

]
.

This equation provides the formulation of η(r) in the follow-
ing form:

η(r) = 1

α

[
2 ln

(
− A1

4C
√

α + 1

{
2 tanh−1

⎛
⎝2

√
α + 1β1C

(√
6β1�1(r) − 6r2

√
(α + 1)C2

)

12(α + 1)β1C − αβ2

⎞
⎠

+ log
[
α2β2

2 − 288(α + 1)2β2
1C

4r4

+288(α + 1)2β2
1C

3r2 + 24(α + 1)β1C
2
(

6αβ1

+2
√

6β1r
2
√

(α + 1)C2�1(r) − αβ2r
2
)

−24α(α + 1)β1β2C
]}

+ B1

)

−2 log

{
A cos

[
log
√

1 − Cr2
]+ B sin

[
log
√

1 − Cr2
]}]

.

(56)

4 Matching condition in f (Q) gravity

It is noteworthy that the most appropriate exterior solution in
the f (Q) gravity theory assuming the linear functional form
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of f (Q) (24) is the Schwarzschild (Anti-) de Sitter solu-
tion. The exterior Schwarzschild (Anti-) de Sitter geometry
is expressed by

ds2+ = −
(

1 − 2M

r
− �

3
r2
)
dt2 + dr2(

1 − 2M
r − �

3 r2

)

+r2
(
dθ2 + sin2 θ dφ2

)
. (57)

In the given context, M represents the aggregate mass,
whereas � signifies the cosmological constant.

The unknown constants of the solution may be determined
by ensuring that the internal spacetime matches the out-
side Schwarzschild (Anti-) de Sitter spacetime at the bound-
ary, denoted as r = R, when the pressure becomes zero.
The matching procedure is performed using Darmois-Israel
boundary conditions [129,130] in order to get the appropri-
ate boundary conditions known as the first and second basic
forms. The mathematical representations of the requirements
are provided as(

1 − 2M

r
− �

3
r2
)

= eν(R), (58)

(
1 − 2M

r
− �

3
r2
)

= e−λ(R), (59)

Pr (R) = 0. (60)

The cosmological constant � is related to the constants
β1 and β2 as in the form β2 = 2�β1. In the present stellar
model, nonzero smaller values of � and β2 are taken into
consideration for the rest of the study. Formulas for arbitrary
constants are derived by using the boundary conditions (58)–
(60).

5 Physical analysis and impact of decoupling constants
on f (Q) gravity solution

In this section, we will investigate the physical properties of
stellar systems and their ability to maintain equilibrium in
f (Q) gravity under zero complexity background.

5.1 Effect of the decoupling parameter (α) and f (Q)

gravity parameter (β1) on the density, pressure and
anisotropy

It has been presented in Fig. 2. the graphical representations
of the physical behavior of energy density (ρtot ), radial pres-
sure (P tot

r ), tangential pressure (P tot
t ), and anisotropy (�tot)

in a stellar system with respect to radial distance for differ-
ent values of α. The quantities {ρtot, P tot

r , P tot
t } are positive

and finite throughout the region, and they are maximum at
the center. They decrease with radial distance, and the radial
pressure vanishes at the surface (r = R).

The positive anisotropy, i.e., (P tot
t > P tot

r ) demonstrated
in Fig. 2 (bottom right panel) is an increasing function with
respect to radial distance. This is significant because pos-
itive anisotropy maintains hydrostatic equilibrium, which
enhances the stability of the stellar system. Table 1 pro-
vides numerical values for the central density, surface density,
and central radial pressure. It is evident from an examina-
tion of Fig. 2 that increasing values of α increase the values
of {ρtot, P tot

r , P tot
t ,�tot}. Therefore, the impact of the new

source T θ
εν is to generate more dense stellar objects.

Now, we would like to study the impact of increasing val-
ues of β1 on the physical quantities {ρtot, P tot

r , P tot
t ,�tot} as

shown in Fig. 3. It can be seen that energy density is increas-
ing in nature throughout the region of the anisotropic star with
respect to the increasing values of β1. This indicates that the
presence of the new source T θ

i j in f (Q) gravity produces
stellar objects of higher densities. The radial pressure and
tangential pressure have the same behavior as of energy den-
sity with respect to increasing values of β1. Figure 3 reveals
that the anisotropy is convergent near the central region of
the star and differs near the surface for increasing values of
β1. So, with the effect of β1 anisotropy of the star behaves as
a monotonically increasing function throughout the star.

5.2 Stability analysis via adiabatic index

We must now examine the stability of the anisotropic star
configuration by studying the adiabatic index (
), which is
defined by


 = ρtot + P tot
r

P tot
r

d P tot
r

dρtot . (61)

In the Newtonian limit, the stability condition for an
isotropic fluid is that the adiabatic index 
 must be greater
than 4/3 [131,132]. However, for an anisotropic stellar model
the stability condition may be changed [133,134] given as


 >
4

3

(
1 + �tot

r |(P tot
r0 )|′ + 1

4

κρtot
0 P tot

r0 r

|(P tot
r0 )|′

)
. (62)

The symbol “prime” denotes the derivative with respect
to the variable r and P tot

r0 is radial pressure at center. The
anisotropic corrections and relativistic corrections are rep-
resented by the second and third term in Eq. (62). In an
anisotropic star model, the role of positive anisotropy fac-
tor (�tot) [131] is very significant in increasing the limit for

 in the stability condition.

We have shown the variation of 
 with respect to radial
distance for different values of α in Fig. 4 (left panel). The
central values of 
 for different α have been listed in Table
1. It follows that 
, denoted as 
0, is greater than 5 at center.
Again, it shows an increasing nature with respect to radial
distance for different values of α and converges near the sur-
face of the star. This is in confirmation with stable hydrostatic
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Fig. 2 The variation of total energy density ρtot, total radial pressure P tot
r , total tangential pressure P tot

t , and total anisotropy �tot versus radial
coordinate r for β1 = 1.2 km−2, C = 0.0023, � = 0.00085, β2 = 0.00203 km−2

Table 1 The numerical values pertaining to the physical parameters of the model

α Central density (g/cm3) Surface density (g/cm3) Central pressure (dyne/cm2) 
0 zs

0.00 8.89271 × 1014 5.55202 × 1014 3.84229 × 1035 6.07123 0.820828

−0.02 8.72577 × 1014 5.45188 × 1014 3.35326 × 1035 5.71485 0.783206

−0.40 8.55881 × 1014 5.35174 × 1014 2.93031 × 1035 5.42517 0.747821

−0.60 8.39186 × 1014 5.2516 × 1014 2.56675 × 1035 5.18519 0.714462

equilibrium as the anisotropic star model satisfies the stabil-
ity condition given by Eq. (62). For fixed α the nature of

 remains independent of the values of β1 as it can be seen
from Fig. 4 (right panel). So, the presence of new source in the
background f (Q) has the effect on 
 and hence, is respon-
sible for anisotropy as well as stability of the present stellar
model.

5.3 Stability analysis via Harrison–Zel’dovich–Novikov
criterion

A technique to find the constraints for stability of a stellar
object under radial perturbations was developed by Chan-
drasekhar [135] which later simplified for polytropic equa-

tion of state Pr = K ε
 by Harrison et al. [136] and
Zel’dovich–Novikov [137]. It turns out that the stellar con-
figuration is stable under a small radial oscillation when
the characteristic frequency is positive (σ 2 > 0) only if
we consider 
 > 4/3. Another interesting inference can
be obtained from the mass-central density relation given by
M(ρ0) ∝ ρ

3(
−4/3)/2
0 is that dM/dρ0 > 0, i.e., M has an

increasing nature with respect to ρ0 only if 
 > 4/3. This
is known as Harrison–Zel’dovich–Novikov criterion or the
static stability criterion.

The static stability criterion can be analyzed with the help
of following expressions for the physical quantities such as
mass, central density and dM/dρtot

0 given as
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Fig. 3 The variation of energy density (top-left), radial pressure (top-right), tangential pressure (bottom-left) and anisotropy (bottom-right) versus
radial coordinate r for different β1 with fixed α = −0.06, C = 0.0023, β2 = 0.00203 km−2

Fig. 4 Left panel: the variation of adiabatic index 
 versus radial coor-
dinate r for different α with fixed β1 = 1.2 km−2, C = 0.0023,
� = 0.00085, β2 = 0.00203 km−2. Right panel: the variation of adi-

abatic index 
 versus radial coordinate r for different β with fixed
α = −0.06, C = 0.0023, � = 0.00085, β2 = 0.00203 km−2
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Fig. 5 The total mass variation and total mass gradient variation against the central density for β1 = 1.2, C = 0.0023,� = 0.00085, β2 =
0.00203 km−2

ρtot
0 = 6(α + 1)β1C − αβ2

2
, (63)

M = 1

288(α + 1)β2
1

[
R3
(

48(α + 1)β1ρ
tot
0 − 4[ρtot

0 ]2R2

−4αβ2ρ
tot
0 R2 − α2β2

2 R
2
)]

, (64)

dM

dρtot
0

= 12(α + 1)β1R3 − 2ρtot
0 R5 − αβ2R5

72(α + 1)β2
1

. (65)

Figure 5 shows that mass rises as the central density
increases. The right panel of Fig. 5 demonstrates a clear pos-
itive and linear relationship between the gradient of the mass
and the centre density. Hence, the present anisotropic star is
stable under Harrison–Zel’dovich–Novikov criterion.

5.4 Energy exchange

In the completely deformed solution, the seed system and
new generic system can be decoupled successfully only when
there is an energy exchange between both sources [87]. This
notion may be comprehended by the following elucidations:
Given that the Einstein tensor G{H,W }

εν associated with the
line element (41) satisfies its corresponding Bianchi identity,
it follows that the energy–momentum tensor Tεν is conserved
within this particular spacetime geometry, as indicated by
Eq. (40). This conservation can be explicitly expressed as

�{H,W }
ε T ε

ν = 0. (66)

The symbol �{H,W } denotes that the divergence men-
tioned above is computed with respect to the metric (44).
It is observed that the expression

�ε T ε
ν = �{H,W }

ε T ε
ν − α η′

2
(T 0

0 − T 1
1 )δ1

ν , (67)

represents the calculation of the divergence on the left-hand
side with respect to the deformed spacetime described by Eq.
(14).

In the end, by taking into account the conditions (40),
(44) and (66), the conservation equation Eq. (28) yields the
following expression:

�ε T ε
ν = −α η′

2
(T 0

0 − T 1
1 )δ1

ν . (68)

Additionally, we have

�ε [T θ ]εν = α η′

2
(T 0

0 − T 1
1 )δ1

ν . (69)

Subsequently, Ovalle et al. [138] and Contreras and Stuch-
lik [139] initiated a discussion on the crucial phenomena per-
taining to the energy exchange between the sources denoted
as Tεν and T θ

εν . The energy transfer between the sources was
represented as �E and calculated using the equation

�E = η′

2

(
p + ρ

)
. (70)

Given that p and ρ are positive, we may deduce from Eq.
(70) that if η′ > 0, it implies that �E > 0. Consequently, Eq.
(69) leads to the conclusion that �ε [T θ ]εν > 0. In the present
scenario, the newly introduced source T θ

εν is transferring
energy to the surrounding environment, but the converse is
seen when η′ < 0.

The explicit expression for �E is determined as
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�E(r) = 2

α

[
− A1

{[
− 1152(α + 1)2β2

1C
4r3 + 576(α + 1)2β2

1C
3r + 24(α + 1)β1C

2
(

4
√

6
√

β1r

×
√

(α + 1)C2
√

6β1
(
(α + 1)C2r4 − 2(α + 1)Cr2 + 1

)+ αβ2r2 + �E2(r) − 2αβ2r
)]/

×
[
α2β2

2 − 288(α + 1)2β2
1C

4r4 + 288(α + 1)2β2
1C

3r2 + 24(α + 1)β1C
2(6αβ1 + 2

√
6

×
√

6β1
(
(α + 1)C2r4 − 2(α + 1)Cr2 + 1

)+ αβ2r2
√

β1r
2
√

(α + 1)C2 − αβ2r
2)− 24α

×(α + 1)β1β2C
]

+ �E1(r)

}/{
4
√

α + 1C

(
B1 − 1

4
√

α + 1C

[
A1

(
log
{
α2β2

2 − 288

×(α + 1)2β2
1C

4r4 + 288(α + 1)2β2
1C

3r2 + 24(α + 1)β1C
2[6αβ1 + 2

√
6
√

β1r
2
√

(α + 1)C2

×
√

6β1
(
(α + 1)C2r4 − 2(α + 1)Cr2 + 1

)+ αβ2r2 − αβ2r
2]− 24α(α + 1)β1β2C

}

+2 tanh−1(�E3(r))
)])}

− �E4(r)

]
× �E5(r), (71)

where the expressions for �E1, �E2, �E3, �E4, and �E5

are given in the Appendix.
The distribution of energy transfer (�E) between the rel-

ativistic fluids is depicted in Fig. 6. The radial coordinate is
plotted on the x-axis, while �E for different values of α are
represented on the y-axis. The constant values A/B = −4,
C = 0.0023 km−2, β1 = 0.8 km−2, and β2 = 0.00203 are
fixed for the Fig. 6. Similarly, for the right panel of Fig. 6,
the constant values are A/B = −4, C = 0.0023 km−2,
β1 = 1.2 km−2, and β2 = 0.00203. The negative value of
�E may be detected from both panels Fig. 6. This observa-
tion indicates that the newly introduced source, denoted as
T θ

εν , consistently extracts energy from either the ideal fluid
matter distribution or the surrounding environment. It was
also observed that there is an increase in energy transfer when
the values of α and β1 grow.

6 The determination of the maximum mass and radii of
observable compact objects via the use of M-R curves.

The mass–radius curves have been shown in Fig. 7 for fixed
surface density (ρs = 7 × 1014 g.cm−3) and different val-
ues of decoupling constant α and model parameter β1 where
positive values of α have been dismissed for violating the
Buchdahl limit. The M–R curves ensure that the present stel-
lar model under f (Q) gravity is physically valid.

Based on the M-R curves we have calculated radii for
observed masses of five different stellar objects such as SMC
X-1 [140], 2 S 0921-630 [141], PSR J0437-4715 [142], Vela
X-1 [140], PSR J1748-2021B [143]. From Tables 1 and 2
it can be seen that predicted radii of the stellar objects have
larger values for increasing values of α and β1. So, the present
investigation indicates that increasing strength of f (Q) grav-
ity with contribution of new source effectively reduce the
compactness of a stellar object. In a research work [145], a
model based on thermal X-ray emission constrained radii of

a millisecond pulsar (assumed to have mass 1.4 M�) to be
6.8–13.8 km with 90% confidence. In comparison, our model
predicts radius of 7.74–10.63 km (see Table 2) for observed
mass 1.44 M� of 2 S 0921-630 where 0.6 < β1 < 1.4 and
α = −0.1. It is to be noted that observed upper limit of radii
can be achieved for β1 > 1.4 for fixed value of α. Another
X-ray analysis of PSR J0437-4715 by XMM-Newton [146]
restricts the radii to be R > 11.1 km with 3σ confidence.
Now, this observed result is in well agreement with our model
for case β1 = 1.4 km−2 and α = −0.1 for PSR J0437-4715
(see Table 2).

We have explored some important results related to the
maximum mass from the mass-radius curves (Table 3). For
fixed β1 and increasing negative values of α, i.e., increas-
ing contribution of the new source, we see from Fig. 7 (left
panel) that the value of maximum mass increases signifi-
cantly (energy exchange may be the possible physical rea-
son) and reaches its highest value 3.27 M� for α = 0, i.e.,
for pure f (Q) gravity. Again Fig. 7 (right panel) indicates
that for a fixed α the maximum mass of the stellar objects is
directly proportional to the values of β1, i.e., the strength of
nonmetricity scalar Q in f (Q) gravity. It reaches 2.90 M�
for β1 = 1.4 km−2 and α = −0.1 which matches the upper
limit of Mmax < 2.9 M� [147] satisfying causality and EOS
of the low nuclear matter densities. Interestingly, the results
2.90 M� and 3.27 M� almost in agreement with the observed
mass of the new pulsar PSR J1748-2021B in the globular
cluster NGC 6440 [143,144] which is expected to be a double
neutron star considering purely relativistic effects. Its median
pulsar, suspected to be a supermassive neutron star, have the
observed mass 2.74 M�, with upper limits 2.95 M� with 1
σ uncertainty and 3.15 M� with 2 σ uncertainty. Another
important study [148] constraints the range of maximum
mass of neutron stars to be 2.0 M� < Mmax < 2.6 M�
which lies within the range of maximum masses as observed
from the M-R curves obtained in our model.
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Fig. 6 Energy exchange between the fluid distributions with different values of β1 = 0.8 km−2 (left panel) and β1 = 1.2 km−2 (right panel) for
fixed values of C = 0.0023, � = 0.00085, β2 = 0.00203 km−2, A = −4 and B = 1

Fig. 7 Left panel: mass-radius curves w.r.t. different values of α for β1 = 1.2 km−2, C = 0.0023, ρs = 7 × 1014g.cm−3, � = 0.00085,
β2 = 0.00203 km−2. Right panel: mass-radius curves w.r.t. different values of β1 for α = −0.10, C = 0.0023, ρs = 7 × 1014g.cm−3,
� = 0.00085, β2 = 0.00203 km−2

Table 2 The numerical values pertaining to the expected radii of certain observable stars with β1 = 1.2 km−2, C = 0.0023, ρs = 7×1014g.cm−3,
� = 0.00085, β2 = 0.00203 km−2

Stellar objects M
M� Predicted radii (km)

α = 0.00 α = −0.05 α = −0.10 α = −0.15 α = −0.20

SMC X-1 [140] 1.21 ± 0.12 9.66+0.28
−0.30 9.64+0.28

−0.29 9.61+0.27
−0.29 9.59+0.25

−0.29 9.54+0.26
−0.28

2S 0921-630 [141] 1.44 ± 0.10 10.18+0.20
−0.22 10.14+0.20

−0.20 10.11+0.18
−0.21 10.06+0.19

−0.20 10.01+0.17
−0.20

PSR J0437-4715 [142] 1.76 ± 0.20 10.78+0.33
−0.36 10.74+0.31

−0.36 10.67+0.29
−0.34 10.60+0.26

−0.32 10.50+0.22
−0.29

Vela X-1 [140] 2.12 ± 0.16 11.33+0.21
−0.22 11.26+0.19

−0.21 11.16+0.16
−0.20 11.02+0.11

−0.16 10.81−0.08
−0.09

PSR J1748-2021B [143] 2.74 ± 0.21 11.98+0.10
−0.17 11.78−0.09

−0.10 11.46–11.34 10.97 –
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Table 3 The numerical values pertaining to the expected radii of certain observable stars with α = −0.10, C = 0.0023, ρs = 7 × 1014 g cm−3,
� = 0.00085, β2 = 0.00203 km−2

Stellar objects M
M� Predicted radii (km)

β1 = 0.6 β1 = 0.8 β1 = 1.0 β1 = 1.2 β1 = 1.4

SMC X-1 [140] 1.21 ± 0.12 7.44+0.17
−0.20 8.27+0.21

−0.24 8.97+0.23
−0.26 9.57+0.26

−0.19 10.11+0.28
−0.31

2S 0921-630 [141] 1.44 ± 0.10 7.74+0.10
−0.12 8.66+0.14

−0.16 9.41+0.16
−0.18 10.05+0.19

−0.20 10.63+0.19
−0.22

PSR J0437-4715 [142] 1.76 ± 0.20 7.86 − 7.93 9.04+0.12
−0.22 9.88+0.22

−0.28 10.59+0.27
−0.32 11.22+0.31

−0.36

Vela X-1 [140] 2.12 ± 0.16 – 9.16 − 9.10 10.21+0.03
−0.11 11.04+0.12

−0.18 11.74+0.17
−0.21

PSR J1748-2021B [143] 2.74 ± 0.21 – – – 11.21 12.09 − 12.10

7 Discussion and conclusion

In the recent work, we investigated anisotropic stars using
a gravitational decoupling by means of complete geometric
deformation approach in framework of symmetric telepar-
allel f (Q) gravity theory. The notion of complexity factor
proposed by Herrera [72] has been used to derive a bridge
equation between the metric functions related to the complete
system. However, the deformation function �(r) is deter-
mined by new technique given by Contreras [71], known
as a mimicking of mass constraints. In this approach, the
mass function of new source is equalised with mass pro-
file of Vlasenko–Pronin space-time and determined the func-
tion �(r). After finding the deformation function �(r), the
deformed temporal metric function is determined by bridge
equation which is generated by null-complexity factor. In this
way, we obtained a complete deformed space-time geometry
in f (Q) gravity theory in the context of GD.

Subsequently, we have initially acquired the fundamen-
tal physical characteristics, such as density, pressure, and
anisotropy, of the spherically symmetrical celestial object for
different decoupling parameter α and f (Q)-parameter β1, as
shown in Figs. 2 and 3. The presented data provides evidence
that the variables ρtot, P tot

r , and P tot
t meet the fundamental

criteria for a physically plausible stellar model. These crite-
ria include: (i) maintaining positive and finite values within
the specified region, (ii) attaining a maximum value at the
central point and subsequently decreasing as a function of
radial distance r , and (iii) satisfying the condition for the
radial pressure to vanish at the surface, specifically when
r = R. In contrast, Fig. 3 (bottom right panel) demonstrates
the presence of anisotropic property positivity, denoted as
P tot
t > P tot

r , which displays a rising trend as a function of
radial distance r . This observation confirms the stability of
the stellar system by ensuring the maintenance of hydrostatic
equilibrium.

Many additional aspects of the physical characteristics
have been covered in detail with the appropriate figures.
However, we would like to highlight the major significance
of the parameter α and β1 in relation to Figs. 2 and 3, and

it is noteworthy to note that the energy density changes to
greater values across all regions for each increase of α and
β1. Observe additionally that, for all negative values of α

and positive values β1, the radial pressure is growing in
the middle area, converging at the surface, and disappear-
ing at 14 km. It can be shown in Table 1, the energy den-
sity of the model is maximum in absence of decoupling
parameter α which is ρ(0) = 8.89271 × 1014 g cm−3 and
ρ(R) = 5.55202 × 1014 g cm−3, while for positive values
of β1, the energy density is constrained to be no more than
ρ(0) > 5.5 × 1014 g cm−3 and ρ(R) > 3.5 × 1014 g cm−3.

By using the adiabatic index and the Harrison–Zel’dovich–
Novikov criteria, we have verified its relevance to stability
analysis. It is worth mentioning that the stability require-
ment for an anisotropic stellar model, 
 > 4

3 , is stated for an
isotropic fluid in the Newtonian limit [131,132]. Addition-
ally, Hillebrandt [131] mentioned that a positive anisotropy
factor (�) play an essential role in raising the limit for 
 in
the stability requirement for an anisotropic star model. We
can see from Fig. 4 along with the Tables 1 and 2 that 
 > 5
is present at the center and that it is an increasing function
with respect to the radial distance for various values of α and
β1. This characteristic demonstrates that our complexity-free
anisotropic star model satisfies the stability criterion. How-
ever, the total mass (M) fluctuation with respect to the center
density (ρ(0)) must be growing for a stable configuration
of an anisotropic stellar object, as stated by the Harrison–
Zel’dovich–Novikov criteria. Figure 5 shows that this condi-
tion is met, indicating that the current model of a complexity-
free anisotropic star is in a stable state. Additionally, α may
be shown to play a part here, with a more pronounced impact
at higher central densities.

In addition, we have examined the energy transfer across
fluid distributions within the context of extended gravita-
tional decoupling. The study has shown the presence of
energy exchange variations over the star’s whole area can
be seen in Fig. 6. The negative values are observed which
imply that the new source is taking energy from its sur-
rounding environment. The energy exchange �E for var-
ious values of the coupling constant β1 and α are calcu-
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lated with with fixed values of C = 0.0023, � = 0.00085,
β2 = 0.00203, A = −4 and B = 1 as: |�E |max ≈
0.045 km−3 and |�E |max ≈ 0.155 km−3 for α = −0.02
and α = −0.06, respectively with β1 = 0.8 km−2 and
|�E |max ≈ 0.060 km−3 and |�E |max ≈ 0.037 km−3

for α = −0.02 and α = −0.06, respectively with fixed
β1 = 1.2 km−2.

Moreover, the estimation of the maximum mass and radii
of the discovered compact objects has been conducted using
the M − R curves, as seen in Fig. 7, with varying val-
ues of α and β1 along with fixed surface density ρs =
7×1014 g cm−3. The observation of Table 2 and Fig. 7 reveals
that the current models predict the maximum mass and radii
when α = 0 i.e. in pure f (Q) gravity theory, while when
β1 increases the object PSR J1748-2021B [143] of mass
2.74 ± 0.21 (which is beyond the 2M�) is observed when
β ≥ 0.8 and α ≤ −0.15. This implies that the mass and radii
can be constrained through the decoupling parameter α and
f (Q) gravity parameter β1.
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Appendix I

�E1(r) =
⎡
⎣4

√
α + 1β1C

⎛
⎝
√

3
2

√
β1
(
6β1

(
4(α + 1)C2r3 − 4(α + 1)Cr

)+ 2αβ2r
)

√
6β1

(
(α + 1)C2r4 − 2(α + 1)Cr2 + 1

)+ αβ2r2
− 12r

√
(α + 1)C2

⎞
⎠
⎤
⎦
/

×
[
{1 − �E2

3(r)}{(12(α + 1)β1C − αβ2}
]
,

�E2(r) =
[√

6
√

β1r
2
√

(α + 1)C2
(

6β1

(
4(α + 1)C2r3 − 4(α + 1)Cr

)
+ 2αβ2r

) ]/
�1(r),

�E3(r) =
2
√

α + 1β1C
(√

6
√

β1�1(r) − 6r2
√

(α + 1)C2
)

12(α + 1)β1C − αβ2
,

�E4(r) =
ACr sin

[
log

√
1−Cr2

]
1−Cr2 − BCr cos

[
log

√
1−Cr2

]
1−Cr2

A cos
[

log
√

1 − Cr2
]+ B sin

[
log

√
1 − Cr2

] ,

�E5(r) = −
2β1C

(
Cr2 − 1

) (
(A + 2B) sin

[
log

√
1 − Cr2

]+ (2A − B) cos
[

log
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1 − Cr2
])

A cos
[

log
√

1 − Cr2
]+ B sin

[
log

√
1 − Cr2

] .
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