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Abstract: The paper is devoted to the study of radiation-induced damage kinetics in beryllium
oxide ceramics under irradiation with low-energy helium ions with fluences of 1015–1018 ion/cm2.
It was revealed that at irradiation fluences above 1017 ion/cm2, a decrease in radiation-induced
damage formation and accumulation rate is observed, which indicates the saturation effect. At the
same time, the main mechanisms of structural changes caused by irradiation at these fluences are
amorphization processes and dislocation density increase, while at fluences of 1015–1016 ion/cm2,
the main mechanisms of structural changes are due to the reorientation of crystallites and a change
in texture, with a small contribution of crystal lattice distorting factors. It was discovered that the
radiation-induced damage accumulation as well as an implanted helium concentration increase
leads to the surface layer destruction, which is expressed in the ceramic surface hardness and wear
resistance deterioration. It was determined that with irradiation fluences of 1015–1016 ion/cm2, the
decrease in thermal conductivity is minimal and is within the measurement error, while an increase
in the irradiation fluence above 1017 ion/cm2 leads to an increase in heat losses by more than 10%.

Keywords: beryllium oxide; helium swelling; radiation defects; low-energy ions; inert matrices

1. Introduction

In the light of recent developments in nuclear power and alternative energy in energy-
intensive countries, particular attention is being paid to the development of technologies
using new types and concepts of nuclear fuel use. One such concept is the concept of
replacing traditional fuel elements with inert matrices that use plutonium or americium
instead of uranium [1–3]. The increased interest in these types of materials is due to the fact
that, during their operation, actinides or plutonium are not formed, and the concentration
of actinides in spent fuel is significantly lower than in conventional fuel elements or mixed
oxide fuel [4–7]. At the same time, the transition of nuclear reactors to the use of plutonium
fuel with an inert matrix that does not contain uranium makes it possible to increase the
burnup of plutonium by a factor of 2–3, which is one of the main advantages of these
materials. Generally, oxide ceramics such as ZrO2, MgAl2O4, CeO2, and BeO are used as
inert matrix materials, interest in which is due to their high resistance to external influences,
including heating and mechanical pressure or friction [8–10]. At the same time, one of
the key problems in the use of inert nuclear fuel matrices in comparison with traditional
fuel elements or mixed oxide fuel is the confirmation of the stability of these materials for
long-term operation (more than 10–15 years) and the preservation of strength, mechanical,
and heat-conducting properties [9,10].

One of the promising materials for inert oxide-based matrices is beryllium oxide (BeO)
ceramics, which has a number of unique physicochemical, heat-conducting, and mechanical
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properties [11,12]. The interest in this class of materials is due to its inertness to most types
of aggressive media and the ability to work at high temperatures, as well as good absorbing
capacity and high thermal conductivity. All this allows us to use these ceramics as neutron
reflectors or absorbers, various types of structural materials, etc. [13–15]. It is worth noting
that despite the increase in interest in BeO ceramics in recent years, this type of ceramics
has been used for a long time as a basis for dosimeters and OSL sensors designed to register
ionizing radiation and control the dose load [16–19]. Interest in this area is due to high
sensitivity and luminescence properties of beryllium oxide, which allows high accuracy
of recording and further determination of radiation dose [16–19]. Moreover, an important
area of research in radiation materials science is the study of the applicability and efficiency
of doping with beryllium oxide or other rare earth elements of radiation-resistant ceramics
and glasses [20–24]. These studies are based on an assessment of the possibility of an
increase in the resistance of materials to radiation damage and accumulated defects in
the structure, which can lead to disordering and deformation of the material. The main
feature of doping in this case is the possibility of increasing stability due to substitution
and interstitial processes, as well as the absorbing capabilities of rare earth elements or
beryllium oxide, which leads to a slowdown in the accumulation of defects in the structure
and subsequent deformation.

At the same time, as it was established earlier, ceramics based on beryllium oxide are
highly resistant to radiation damage and the accumulation of radiation-induced defects,
which opens up the possibility of their operation for a long time [25,26], while high ab-
sorption capacity indices make it possible to use them in fields of increased background
radiation or large neutron fluxes.

One of the mechanisms of radiation-induced damage arising in materials used as inert
matrices of nuclear fuel or structural materials is the accumulation of implanted or transmutation
helium in the structure of the surface layer of ceramics [27–29]. The presence of poorly soluble
and, at the same time, highly mobile helium in the structure of the surface layer can lead to its
agglomeration, followed by the formation of gas-filled bubbles [30–32]. The formation of such
bubbles in the structure of the surface layer of a ceramic or metal can lead to destructive
processes of swelling and peeling of the surface layer, which in turn leads to destruction
and deterioration of the properties of the material [33,34]. Furthermore, an important
factor affecting the working and heat-conducting properties of ceramics is a decrease in the
amount of heat removal from the system due to the destruction and destabilization of the
properties of the heat-conducting material. The formation of distortions in the structure
as a result of the accumulation of gas-filled bubbles can lead to a decrease in the thermal
conductivity coefficient, which will lead to destabilization of heat removal from the system,
as well as its overheating. From a mechanical point of view, the formation of additional
distortions in the near-surface layer of ceramics can lead to a change in its strength and
wear resistance, which also has a negative effect on the mode and time of operation.

At the same time, in the case of using oxide ceramics as materials of inert matrices
or structural materials in nuclear power, the key factor in their application is knowledge
of the kinetics and mechanisms of the degradation of structural, mechanical, and heat-
conducting properties, depending on the degree of the accumulation of radiation-induced
damage and the subsequent amorphization processes or disordering [35,36]. In this regard,
the acquisition of any new data on radiation damage and their effect on change in the
properties of ceramics is very significant and relevant today, which prompts a large number
of scientific groups to engage in such studies. Based on the foregoing, the key goal of
this article is to assess the effect of helium irradiation at doses of 1015–1018 ion/cm2 on
the change in the mechanical, structural, and heat-conducting properties of BeO ceramics.
Interest in this topic is not only due to the possibility of obtaining new data on the radiation
resistance of these ceramics, but also due to the assessment of radiation-induced defects
and the implanted helium concentration effect on thermal conductivity of ceramics. As
is known from the literature, at doses above 1017 ion/cm2 in the structure of oxide and
nitride ceramics, the formation of gas-filled bubbles arising as a result of agglomeration
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and filling of helium-implanted voids in the ceramics structure is observed, which leads to
its swelling and destruction [37–39]. However, there are still questions associated with the
subsequent accumulation of helium when these radiation doses are exceeded, as well as
a change in the rate of accumulation of defects and destruction of the material when the
effect of saturation with defects occurs.

2. Experimental Part

Ceramics based on beryllium oxide obtained by hot pressing and having a high
density (3.018 g/cm3) close to the reference value (3.020 g/cm3) were chosen as the samples
under study. The original samples were purchased from a commercial company Berlox®

(American Beryllia Inc., Haskell, NJ, USA) that is engaged in the production of ceramics for
commercial and research purposes.

The samples were irradiated at a DC-60 heavy ion accelerator (INP ME RK, Nur-
Sultan, Kazakhstan). Low-energy He2+ ions with an energy of 40 keV (20 keV/charge)
at an ion flux density of 1010 ions/cm2*s were used as incident ions. In order to avoid
overheating of the samples during irradiation, special water-cooled target holders were
used, which made it possible to maintain the temperature of the samples in the range of
30–50 ◦C, thereby excluding the effect of high-temperature annealing of defects during
irradiation. The irradiation fluences were 1015–1018 ion/cm2, the choice of which is due to
the possibility of simulating the structure swelling effects as a result of ion implantation
and helium accumulation in the structure of the surface layer [37–39].

Figure 1 shows the simulation results of radiation damage and the implantation of
helium ions in the structure of an irradiated ceramic layer with a depth of 400 nm. The
maximum displacement value for fluences of 1017 ion/cm2–1018 ion/cm2 is 3–17 dpa,
which, in comparison with radiation damage caused by neutron irradiation in the case of
oxide ceramics, is 0.3–1.7 × 1022 neutron/cm2. This atomic displacements value for the
maximum irradiation fluences is due to the fact that the main contribution to the formation
of radiation-induced defects is made by the energy losses of incident He2+ ions during
interaction with nuclei, while the energy losses on the electron shells value is an order less
than the nuclear losses value. According to calculations, the energy losses of incident ions
on the nuclei are 182.4 keV/µm, and losses on electron shells are 10.7 keV/µm. In this case,
the maximum damage accumulation area is at a depth of 170–300 nm from the surface of
the samples, with a maximum at 250–170 nm. The maximum concentration of implanted
ions is from 0.1 to 1.3 at.%, for fluences 1017 ion/cm2–1018 ion/cm2.
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Figure 1. Simulation results for SRIM Pro 2013 [40,41]: (a) Damage vs. depth; (b) Atomic% He vs. 
depth. 
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The study of the effect of irradiation and accumulation of radiation-induced defects
caused by helium ions on the structural properties and swelling of the crystal lattice was
carried out by analyzing the X-ray diffraction patterns of the samples under study before
and after irradiation. Diffraction patterns were obtained using a D8 ADVANCE ECO
(Bruker, Berlin, Germany) powder diffractometer. Diffraction patterns were recorded in the
Bragg-Brentano geometry in the angular range of 2θ = 35–75◦, with a step of 0.03◦.

The hardness value was determined by the indentation method by using a standard
method and using a Vickers pyramid at a load of 500 N. To determine the hardness
value and its change as a result of irradiation and radiation-induced defects accumulation,
25 points were measured, which made it possible to determine the standard deviation of
the hardness parameters.

The softening degree (SD) was determined from the change in the hardness of the
near-surface layer before (H0) and after (H) irradiation, determined by the indentation
method using the calculation Equation (1):

SD =

(
H0 − H

H0

)
× 100% (1)

The wear resistance of ceramics before and after irradiation was determined by calcu-
lating changes in the dry friction coefficient using the tribological method. The number of
test cycles was 20,000, and the load on the metal ball was 200 N. Based on the changes in
the dry friction coefficient before and after 20,000 test cycles, the value of the coefficient
deterioration was determined, which characterizes the loss of the wear resistance of the
initial and irradiated materials to mechanical stress.

The determination of the effect of irradiation and subsequent radiation-induced defects
accumulation and implanted helium concentration on the heat-conducting properties
and a decrease in thermal conductivity was carried out using the standard method for
determination of the longitudinal heat flux. This method was implemented using the
KIT-800 device (Granat, Moscow, Russia).

3. Results and Discussion

Figure 2 shows the X-ray phase analysis data reflecting changes in the structural
parameters of the samples under study depending on the irradiation fluence. According
to the data of X-ray phase analysis, it was found that the samples under study have a
hexagonal structure with the spatial system P63mc(186) and crystal lattice parameters
a = 2.66986 Å, c = 4.33690 Å. Analysis of the obtained diffraction patterns showed that in
the case of the initial samples, the shape of the diffraction lines, as well as the ratio of the
areas of reflections and background radiation, indicate a high degree of ordering of the
crystal structure (more than 98%). In this case, for irradiated samples, the main changes in
the diffraction patterns shown in Figure 2 are associated with two types of changes.

The first type is associated with a change in the intensities and shape of diffraction
peaks, caused by the processes of crushing and recrystallization of grains under the action
of irradiation, as well as a change in their orientation [35,36]. The appearance of the effect
of reorientation of grains as a result of their mobility under the action of irradiation is
evidenced by the fact that, at doses of 1015–1017 ion/cm2, a change in the intensity of the
(100), (002), and (101) reflections is observed, with a clearly observed increase in the intensity
of the (002) and (101) reflections. This behavior of changes in the intensities of reflections
indicates a reorientation of grains under the action of irradiation, caused by the transfer
of the kinetic energy of incident ions into the structure of the irradiated layer, followed
by the transformation of kinetic energy into thermal energy. This transformation leads to
an increase in the thermal vibrations of atoms in the lattice, as well as local heating of the
structure. As a result of such influences, a partial reorientation of crystallites occurs, due to
both the processes of mobility and the processes of crushing and subsequent amorphization.
It should be mentioned that in the work with similar types of commercial ceramics exposed
to helium irradiation, it was assumed that the change in the shape of the (002) reflections at
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high irradiation doses may be associated with polymorphic transformations of the BeO-
hexagonal→ BeO-cubic type [36]. Such polymorphic transformations can be caused by
the crystal structure disordering and partial amorphization processes, which lead to the
formation of impurity inclusions of the cubic phase at high radiation doses. In this case, a
detailed analysis of the shape of the diffraction reflection (002) at irradiation doses above
1017 ion/cm2 revealed a strong asymmetry of the reflection characteristic of the formation
of impurity inclusions of the cubic BeO phase, the content of which is no more than 3–5%.
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Figure 2. X-ray diffraction patterns of the studied ceramic samples versus irradiation fluence.

The second type of changes is caused by the shift of diffraction maxima to the region
of small angles, which indicates crystal lattice deformation and swelling processes under
the action of irradiation. A detailed representation of the change in shape and position of
the main diffraction lines (100), (002), and (101), reflecting the change in the crystal lattice, is
shown in Figure 3a. As can be seen from the presented data, the greatest shift of diffraction
reflections is observed for fluences of 1016–1017 ion/cm2, while the change in intensities
for these fluences is associated only with crystallites reorientation processes and a change
in texture. A further increase in the irradiation fluence to 5 × 1017–1018 ion/cm2 leads to
a sharp decrease in the intensity of reflections, as well as an increase in the asymmetry
of reflections, which, as mentioned above, can be caused by the formation of inclusions
of a cubic phase in ceramic structure [37,38]. At the same time, the change in diffraction
maxima positions for these irradiation fluences is less pronounced than for lower fluences
(see Figure 3b). This behavior may be due to the fact that at these fluences, the dominant
radiation damage mechanism is amorphization and the formation of impurity phases in
the structure.

Table 1 shows the results of changes in the crystal lattice parameters of the studied
ceramics depending on the irradiation fluence. As can be seen from the presented data, an
increase in the irradiation fluence leads to a shift in the position of diffraction reflections,
and, consequently, a distortion of the crystal lattice leads to an increase in the lattice
parameters, as well as its volume. Increase in the crystal lattice volume as a result of
irradiation indicates crystal structure swelling due to both deformation and helium ion
implantation processes, followed by the formation of gas-filled bubbles in the structure.
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Table 1. Crystal lattice data.

Fluence,
ion/cm2

Initial
Sample 1015 1016 1017 5 × 1017 1018

Lattice
parameter,

Å

a = 2.66986,
c = 4.33690

a = 2.67039,
c = 4.33730

a = 2.67100,
c = 4.33966

a = 2.67312,
c = 4.34139

a = 2.67678,
c = 4.34485

a = 2.67785,
c = 4.34658

c/a 1.6243 1.6242 1.6247 1.6241 1.6232 1.6231

Lattice
volume,

Å3
26.77 26.79 26.81 26.87 26.96 26.99

Figure 4 shows the results of crystal lattice swelling determined according to Equation (2):

Swelling =

(
V −V0

V0

)
× 100% (2)

where V and V0 are values of the crystal lattice volume for irradiated and initial samples.
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The dislocation density in our case was estimated by the standard method based on a
change in the size of crystallites, which are estimated from X-ray data [36,37]. The following
Equation (3) is used as a calculation formula:

Dislocation_density =
1

D2 , (3)

where D is the crystallite size determined from the analysis of X-ray diffraction patterns.
As can be seen from the data presented, the change in crystal lattice volume and,

consequently, its swelling has a three-stage nature, characterized by different trends in the
increase in swelling. At fluences of 1015–1016 ion/cm2, the swelling of the crystal lattice is
insignificant, which is due to the fact that at these fluences, the main processes caused by
irradiation are the processes of reorientation of crystallites and deformation of the structure
due to the agglomeration of defects. At the same time, at the given irradiation fluences,
changes in dislocation density are also insignificant.

The second stage of swelling changes is associated with a sharp change in the swelling
trend and an increase in swelling from 0.15% to 0.7%. The swelling of the crystal lattice at
these fluences is primarily associated not only with deformation processes, but also with
the accumulation of implanted helium, which leads to the formation of defect agglomerates.
In this case, a 1.5-fold increase in the dislocation density is also observed, which indicates a
decrease in the grain size as a result of crushing and amorphization.

The third stage of changes is typical for fluences 5 × 1017–1018 ion/cm2 and is charac-
terized by small changes in the swelling and dislocation density, which indicates a decrease
in the rate of defect accumulation in the structure and the so-called saturation effect. More-
over, a decrease in the swelling rate can be due to the formation of impurity inclusions in
the structure of a cubic phase, leading to amorphization of the structure.

Some of the important performance characteristics of ceramics are their mechanical
and strength properties, as well as the dynamics of their change during irradiation and
operation. It is a known fact that, under irradiation with heavy ions with low energies, a
hardening of the surface layer is observed [42–44]. This is primarily due to the processes
of change in the dislocation density, leading to radiation hardening. However, this effect
has a strong dose dependence, and is observed mainly for irradiation doses of 1012–1015

ions/cm2, which are characterized by the formation of dislocation and point defects, leading
to the formation of a strengthening layer. In our case, the irradiation was carried out with
He2+ ions, which by their nature have high mobility and low solubility in the structure,
leading to the formation of agglomerates in the structure in the form of gas-filled regions
and bubbles. At the same time, in our case, the irradiation doses were 1015–1018 ion/cm2,
which is much higher than the doses typical for observing the hardening effect.

Figure 5 shows the results of changes in the hardness of the near-surface layer of
ceramics as a result of the accumulation of radiation-induced damage and implanted ions.
With an irradiation fluence of 1015–1016 ion/cm2, the change in the hardness indicators is
insignificant, and is no more than 1–3%, which indicates a high resistance of materials to
radiation-induced damage caused by irradiation. With these fluences, damage accumulates
in the structure of the surface layer due to the formation of dislocation and cluster defects,
as well as the possible agglomeration of implanted helium into gas-filled bubbles. An
increase in the radiation dose to 1017–5 × 1017 ion/cm2 leads to a sharp decrease in
hardness indicators and an increase in the softening degree of the near-surface layer from
3% to 13–32%, which is a 5–10-fold decrease in the degree of resistance to softening and
embrittlement. This destructive behavior of changes in strength properties is associated
with a sharp crystal structure swelling, leading to the rupture of chemical and crystal
bonds. The increase in swelling is due to a rise in the implanted helium concentration,
which leads to an increase in the volumes of gas-filled bubbles and, consequently, to an
increase in internal pressure on the crystal structure. A pressure increase in the crystal
structure leads to an increase in deformation and distortions of the crystal lattice, which
is also associated with an increase in atomic displacements, leading to disorientation of
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the crystal structure and its amorphization. As is known from the literature, radiation
doses above 1017 ion/cm2 are critical for oxide and nitride ceramics, as well as multilayer
radiation-resistant coatings, which are associated with the formation of blister inclusions
and gas-filled bubbles of various diameters in the structure of the irradiated near-surface
layer. The formation of such defects leads to embrittlement and partial destruction of the
near-surface layer, which entails a decrease in mechanical and strength characteristics. It
is known that the processes of the accumulation of radiation damage in the structure of
the surface layer are nonlinear, and at certain doses, a decrease in the degree of radiation
damage is observed, which is due to the effect of defect accumulation in the structure and
amorphization processes [38,45]. This behavior for selected ceramics is observed at a dose
above 5 × 1017 ion/cm2, which consists of a sharp change in the trend of the decrease of
irradiated ceramic strength properties, as well as the softening and embrittlement of the
near-surface layer. This is primarily due to an increase in the degree of the amorphization
of the irradiated layer and its swelling due to the accumulation of implanted helium in the
structure.
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Figure 5. Results of changes in hardness and softening of the ceramic near-surface layer depend-
ing on irradiation fluence. 
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on irradiation fluence.

Figure 6 shows the results of the changes in the dry friction coefficient, reflecting the
wear resistance of ceramics to external mechanical influences. As can be seen from the data
presented, changes in the dry friction coefficient can be divided into two factors, reflecting
both wear resistance over a long number of cycles and the change in surface defectiveness
as a result of irradiation. At irradiation fluences of 1015–1017 ion/cm2, change in the dry
friction coefficient is insignificant, which indicates a small degree of surface defectiveness
as a result of irradiation and subsequent deformation processes caused by the accumulation
of radiation-induced defects in the surface layer structure. The main changes in the dry
friction coefficient for these irradiation fluences are observed after 15,000 test cycles, when
the coefficient increases by 15–25%, which indicates a surface deterioration and a decrease
in wear resistance.

For fluences of 5 × 1017–1018 ion/cm2, an increase in the dry friction coefficient is
observed from 0.34 (initial sample) to 0.42 and 0.51, respectively, which indicates a surface
deterioration and the formation of additional defects or irregularities leading to an increase
in friction resistance. This behavior may be due to the defect accumulation in the structure,
as well as partial amorphization, which leads to a sharp deterioration of not only hardness,
but also wear resistance. Furthermore, a decrease in resistance to mechanical stress is
evidenced by a sharp deterioration in the dry friction coefficient after 15,000 tests, which
indicates the low stability of the near-surface irradiated layer to mechanical stress.
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Figure 7 shows the results of changes in the heat-conducting properties of ceramics,
as well as thermal conductivity loss depending on irradiation fluence and accumulated
radiation damage concentration.
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The general appearance of the trend in the thermal conductivity coefficient is similar
to changes in the strength and structural properties of ceramics, which indicates a direct
dependence of the effect of radiation-induced defects concentration in the irradiated near-
surface layer structure on the heat-conducting properties. In this case, accumulation of
radiation-induced damage, entailing deformation and swelling of the crystal structure,
leads to a decrease in heat-conducting properties. However, the formation of impurity
inclusions in the structure of the irradiated layer slows down thermal conductivity deterio-
ration. Thus, the obtained dependences of changes in heat-conducting properties indicate
that at irradiation doses of 1015–1016 ions/cm2, heat losses are no more than 1–2%, which
is within acceptable limits. However, the accumulation of radiation-induced defects, as
well as the concentration of implanted helium in the structure of the surface layer, leads to
sharp thermal conductivity deterioration and significant heat losses exceeding 10% of the
initial value.
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4. Conclusions

In conclusion, we can summarize the results of the studies carried out aimed at
obtaining new information on the radiation resistance of BeO ceramics to the helium
swelling processes and subsequent near-surface layer destruction. During research, it was
found that the change in structural properties depending on irradiation fluence occurs in
two stages associated with different mechanisms of radiation-induced defect accumulation.
It was found that at irradiation fluences above 1017 ion/cm2, the dominant radiation
damage mechanism is amorphization and formation of impurity phases in the structure. In
turn, the rate and value of the crystal lattice swelling is directly dependent on implanted
helium concentration and subsequent partial amorphization and disordering processes of
the crystal structure. During the study of changes in the mechanical and strength properties
of ceramics depending on irradiation fluence, it was found that the destructive behavior of
changes in strength properties is directly related to the crystal structure swelling, as well
as the radiation-induced defect accumulation rate. During the study of heat-conducting
properties, it was found that with an irradiation fluence of 1015–1016 ion/cm2, the decrease
in thermal conductivity is minimal and within the measurement error, while an increase in
irradiation fluence above 1017 ion/cm2 leads to an increase in heat loss by more than 10%.
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