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Abstract. We calculate the contribution of the higher-twist Feynman diagrams to the large-
pT inclusive gluon production cross section in πp collisions incase of the running coupling
and frozen coupling approaches within perturbative and holographic QCD. The structure of
infrared renormalon singularities of the higher-twist subprocess cross section are obtained and
the resummed higher-twist cross sections (Borel sum) with the ones obtained in the framework
of the frozen coupling approach and leading-twist cross section are compared and analyzed.

1. Introduction
It is well known that Quantum Chromodynamics (QCD) is the fundamental theory of the strong
interactions.Therefore in order to describe the structure and dynamical properties of hadrons
at the amplitude level many researchers have been studying QCD. The hadronic distribution
amplitude in terms of internal structure degrees of freedoms plays a crucial role in QCD process
predictions.

One of the basic problems in QCD is choosing the renormalization scale in running coupling
constant αs(Q

2). In principle, in perturbative QCD (pQCD) calculations, the argument of the
running coupling constant in both the renormalization and factorization scale Q2 should be
taken as equal to the square of the momentum transfer of a hard gluon in a corresponding
Feynman diagram [1]. In the perturbative QCD, the physical information of the inclusive gluon
production is obtained efficiently; therefore, it can be directly compared to the experimental
data.

It should be noted, that problem the existence of the higher-twist contribution is not yet
settled. Also necessary to study the difference of the leading-twist results for the frozen and
running coupling constant approaches and compare it with that of the higher-twist is important.

Take into account of this point the aim of this study is calculation and analysis of the inclusive
gluon production in the pion-proton collisions using the frozen and running coupling constant
approaches. Using this approaches the higher twist effects have been already calculated by many
authors [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].
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The contents of the paper is as follows. The related formulas for the calculation of the
contributions of the higher-twist and leading-twist diagrams are provided in the next section.
The formulas and analysis of the higher twist effects on the dependence of the pion distribution
amplitudes by the running coupling constant approach are presented in Section 3, and the
numerical results for the cross section and discussion of the dependence of the cross section on
the pion distribution amplitudes are presented in Section 4. Finally, our conclusions and the
highlights of the study are listed in Section 5.

2. HIGHER-TWIST AND LEADING-TWIST CONTRIBUTIONS TO
INCLUSIVE GLUON PRODUCTION
The higher-twist Feynman diagrams for the inclusive gluon production in the pion-proton
collision πp → gX are shown in Fig.1. For the process πp → gX , we write invariant amplitude
as in the form (as called by Brodsky-Lepage formula [24] )

M(ŝ, t̂) =

∫ 1

0
dx1

∫ 1

0
dx2δ(1− x1 − x2)ΦM (x1, x2, Q

2)TH(x1, x2;Q
2, µ2

R, µ
2
F ) (1)

where TH is the sum of the graphs contributing to the hard-scattering part of the subprocess.
For the higher-twist, the subprocess is taken as πqp → gq , which contributes to πp → gX, where
qp is a constituent of the initial proton target. As seen from Fig.1, the processes π+p → gX
and π−p → gX arise from subprocesses as π+dp → gu and π−up → gd, respectively. The
production of the hadronic gluon in the large transverse momentum is available at the high
energy, especially at the Large Hadron Collider. Finally hadronic gluon is a product of the hard-
scattering processes, before hadronization. In the final state, this hadronic gluon is fragmented
to hadron. The main dynamical properties of the gluon, which carried one part of the four
momentum, are close to the parent parton. In order to understand the parton kinematics one
should consider the gluon production process [25]. The higher-twist cross section for πp → gX
process has the form:

E
dσ

d3p
(πp → gX) =

∫ 1

0
dxδ(ŝ+ t̂+ û)ŝGq/p(x,Q

2)
1

π

dσ

dt̂
(πqp → gq), (2)

where Gq/p(x,Q
2) is the quark distribution function inside a proton.

For higher-twist subprocess πqp → gq the Mandelstam invariant variables are writen in the
form:

ŝ = (p1 + pg)
2 = (p2 + pπ)

2, t̂ = (pg − pπ)
2, û = (p1 − pπ)

2. (3)

Then the parton-level cross section within running coupling constant method becomes

dσ

dt̂
(πqp → gq) =

256π2

81ŝ2
[D(ŝ, û)]2

(
− t̂

ŝ2
− t̂

û2

)
, (4)

where

D(ŝ, û) =

∫ 1

0
dxα3/2

s (Q2
1)

[
Φπ(x,Q

2
1)

x(1− x)

]
+

∫ 1

0
dxα3/2

s (Q2
2)

[
Φπ(x,Q

2
2)

x(1− x)

]
. (5)

By the way it must be denoted that as a special case we can directly get the result [26] from
Eq(4) by the applying the frozen coupling constant approximation.

According BLM approach transfer momentum of the hard gluon in Fig.1 for s and u channels
get the forms

Q2
1 = (1− x)ŝ and Q2

2 = −xû, (6)

respectively.
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Figure 1. Full set of QCD Feynman diagrams for higher-twist subprocess πq → gq.

In the soft regions x → 0 and x → 1 (for u and s channels) integrals (5) diverge, therefore in
these regions for their calculations some regularization methods of αs(Q

2) are needed. One of
the simple method is called frozen coupling constant approximation for the regularization these
singularity.

There are few forms of the pion distribution amplitude available in the literature. In the
present numerical calculations, we use several choices, such as the asymptotic distribution
amplitude derived in pQCD evalution [27], the Vega-Schmidt-Branz-Gutsche-Lyubovitskij
(VSBGL) distribution amplitude [28], distribution amplitudes predicted by AdS/CFT [30,
29], the Chernyak-Zhitnitsky(CZ) [31], the Bakulev-Mikhailov-Stefanis (BMS) [32] and pion
distribution amplitudes in which Gegenbauer coefficients C2 and C4 are extracted from BELLE
experiment [33, 34]:

Φasy(x,Q
2 → ∞) =

√
3fπx(1− x), (7)

Φhol
V SBGL(x, µ

2
0) =

A1k1
2π

√
x(1− x)exp

(
− m2

2k21x(1− x)

)
, (8)

Φhol(x, µ2
0) =

4√
3π

fπ

√
x(1− x), (9)
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ΦCZ(x, µ
2
0) = Φasy(x)

[
C

3/2
0 (2x− 1) +

2

3
C

3/2
2 (2x− 1)

]
, (10)

ΦBMS(x, µ
2
0) = Φasy(x)

[
C

3/2
0 (2x− 1) + 0.20C

3/2
2 (2x− 1)− 0.14C

3/2
4 (2x− 1)

]
, (11)

ΦBELLE(x, µ
2
0) = Φasy(x)

[
C

3/2
0 (2x− 1) + 0.12C

3/2
2 (2x− 1) + 0.08C

3/2
4 (2x− 1)

]
, (12)

here Cλ
n(2x− 1) are Gegenbauer polynomials.

Substituting Eq.(4) into Eq.(2) then the differential cross section for the process πp → gX
takes the form [26]

E
dσ

d3p
(πp → gX) =

s

s+ u
xGq/p(x,Q

2)
256π

81ŝ2
[D(ŝ, û)]2

(
− t̂

ŝ2
− t̂

û2

)
. (13)

It should be noted that, as seen from Eq.(4) and Eq.(13), the higher-twist cross section is linear
with respect to t̂, so the cross section vanishes, if the scattering angle between the final gluon
and incident pion is approximately equal to zero. From Eq.(13) we see that the higher-twist
cross section proportional to ŝ−3, which is equivalent to the higher-twist contributions to the
πp → gX cross section have the form of p−6

T f(xF , xT ).
In the expression (6) we fixed the variable x by taking it is mean value. So, average values

for x we take x = 1/2. Thus, for the calculations higher-twist cross sections within frozen

coupling constant approach we substitute Q
2
= ŝ/2 and Q

2
= −û/2 in Eq.(13) for the transfer

momentum of the hard gluon, respectively.
The extracting of higher-twist contribution from the inclusive gluon production cross section

is also complicated. One can also consider the comparison of higher-twist corrections with
leading-twist contributions. For the leading-twist subprocess in the inclusive gluon production,
we take qq̄ → gγ as a subprocess of the quark-antiquark annihilation. The differential cross
section for subprocess qq̄ → gγ is

dσ

dt̂
(qq̄ → gγ) =

8

9
παE

e2q
ŝ2

(
αs(−û)

t̂

û
+ αs(−t̂)

û

t̂

)
. (14)

As is seen from Eq.(14) leading-twist cross section strongly depend of the running coupling
constant where the running coupling constant depends on the transfer momentum. However
running coupling constant depends on the channels of the process. Here running coupling have
been evaluated in the momentum subtraction scheme, for momentum scales u and t, which
define the off-shell momenta carried by the quark propagators.

The leading-twist cross section for production of inclusive gluon is [35]

ΣLT
M ≡ E

dσ

d3p
(πp → gX) =

∫ 1

0
dx1

∫ 1

0
dx2δ(ŝ+ t̂+ û)Gq/M (x1, Q

2
1)Gq/p(x2, Q

2
2)

ŝ

π

dσ

dt̂
(qq̄ → gγ),

(15)
where

ŝ = x1x2s, t̂ = x1t, û = x2u.

3. HIGHER TWIST MECHANISM WITHIN PERTURBATIVE AND
HOLOGRAPHIC QCD AND THE ROLE INFRARED RENORMALONS
Mainly object of this study is beside the calculations of the higher twist cross section with running
coupling constant approach within holographic and perturbative QCD and renormalon effect’s
contribution to the cross section, and also comparisons between higher-twist cross sections which
are calculated by the running coupling constant method and the principle maximum conformality

XXIII International Conference on Integrable Systems and Quantum Symmetries (ISQS-23) IOP Publishing
Journal of Physics: Conference Series 670 (2016) 012001 doi:10.1088/1742-6596/670/1/012001

4



approach. It should be noted that, in the exclusive processes, the coupling constant αs runs
not only due to the loop integration but also the integration in the process amplitude over the
light-cone momentum fraction of hadron constituents. Therefore, it is worth noting that the
renormalization scale according to Fig.1 should be chosen equal to µ2

R1
= Q2

1 = (1 − x)ŝ, and

µ2
R2

= Q2
2 = −xû. The integral in Eq.(5) in the framework of the running coupling approach

takes the form

D(µ2
R) =

∫ 1

0

α
3/2
s ((1− x)ŝ)ΦM (x, µ2

F )dx

x(1− x)
+

∫ 1

0

α
3/2
s (−xû)ΦM (x, µ2

F )dx

x(1− x)
. (16)

At the leading order of perturbative QCD calculations the hard scattering amplitude
TH(x1, x2;Q

2, µ2
R, µ

2
F ) does not depend on the factorization scale µ2

F , but strongly depends
on µ2

R. The one-loop QCD correction to the hard scattering amplitude TH(x1, x2;Q
2, µ2

R, µ
2
F )

generates its explicit dependence on the scales µ2
F and µ2

R.
As we noted above in the regions x → 0 and x → 1 the integral (16) diverges, because in

this regions running coupling constants αs((1− x)ŝ) and αs(−xû) have the infrared singularity.
The other words the singularity of the integrand of x=0 and x=1 is due to only by αs((1− x)ŝ)
and αs(−xû). Thus for the regularization of the integral, by expressing the running coupling
at scaling variable αs(µ

2
R), we use renormalization group equation with the fixed αs(ŝ) and

αs(−û) for s and u channels, respectively. The solution of renormalization group equation for
the running coupling α ≡ αs/π is in the form [22]

α(λ)

α
=

[
1 + α

β0
4

lnλ

]−1

. (17)

Then, for αs((1− x)ŝ), we get

α((1− x)s) =
αs

1 + ln(1− x)/t
(18)

where t = 4π/αs(Q
2)β0 = 4/αβ0.

If we insert Eq.(18) into Eq.(16), we obtain

D(ŝ, û) =

∫ 1

0
dx

α
3/2
s ((1− x)ŝ)Φπ(x,Q

2
1)

x(1− x)
+

∫ 1

0
dx

α
3/2
s (−xû)Φπ(x,Q

2
2)

x(1− x)

= α3/2
s (ŝ)t

3/2
1

∫ 1

0
dx

Φπ(x,Q
2
1)

x(1− x)(t1 + lnλ1)3/2
+ α3/2

s (−û)t
3/2
2

∫ 1

0
dx

Φπ(x,Q
2
2)

x(1− x)(t2 + lnλ2)3/2
(19)

where t1 = 4π/αs(ŝ)β0 and t2 = 4π/αs(−û)β0.
Although the integral (19) is still has singularity, this expression can be transformed to

more convenient form by the change of variable as, z = lnλ and after applying the integral
representation of 1/(t+ z)ν [36, 37],

1

(t+ z)ν
=

1

Γ(ν)

∫ ∞

0
e−(t+z)uuν−1du,Reν > 0 (20)

then the singularity in (19) disappears and we obtain

D(ŝ, û) =
α
3/2
s (−ŝ)t

3/2
1

Γ(32)

∫ 1

0

∫ ∞

0

Φπ(x,Q
2
1)e

−(t1+z1)uu1/2dudx

x(1− x)
+

+
α
3/2
s (−û)t

3/2
2

Γ(32)

∫ 1

0

∫ ∞

0

Φπ(x,Q
2
2)e

−(t2+z2)uu1/2dudx

x(1− x)
, (21)
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Figure 2. Higher-twist π+p → gX
inclusive gluon production cross section
(ΣHT

g )0 as a function of the transverse
momentum of the gluon pT at the c.m.
energy

√
s = 62.4 GeV .
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Figure 3. Higher-twist π+p → gX
inclusive gluon production cross section
(ΣHT

g )res as a function of the trans-
verse momentum of the gluon pT at the
c.m.energy

√
s = 62.4 GeV .

Then the Eq.(21) can be written, for Φhol(x,Q2), as

D(ŝ, û) =
32

√
πfπ

β0
√
3β0Γ(

3
2)

∫ ∞

0
due−t1uu1/2B

(
1

2
,
1

2
− u

)
+

32
√
πfπ

β0
√
3β0Γ(

3
2)

∫ ∞

0
due−t2uu1/2B

(
1

2
,
1

2
− u

)
,

(22)
for Φasy(x,Q

2 → ∞) distribution amplitude, as

D(ŝ, û) =
8π

√
3πfπ

β0
√
β0Γ(

3
2)

∫ ∞

0
due−t1u

[
u1/2

1− u

]
+

8π
√
3πfπ

β0
√
β0Γ(

3
2)

∫ ∞

0
due−t2u

[
u1/2

1− u

]
, (23)

for ΦCZ(x,Q
2) distribution amplitude, as

D(ŝ, û) =
8π

√
3πfπ

β0
√
β0Γ(

3
2)

∫ ∞

0
due−t1uu1/2

 1

1− u
+ 0.84

[
4

1− u
− 20

2− u
+

20

3− u

](
αs(Q

2
1)

αs(µ2
0)

) 50
81

+

8π
√
3πfπ

β0
√
β0Γ(

3
2)

∫ ∞

0
due−t2uu1/2

 1

1− u
+ 0.84

[
4

1− u
− 20

2− u
+

20

3− u

](
αs(Q

2
2)

αs(µ2
0)

) 50
81

 .
(24)

4. NUMERICAL RESULTS AND DISCUSSION
We discuss the numerical results for higher-twist and renormalon mechanism with higher-twist
contributions calculated in the context of the running and frozen coupling approaches on the
dependence of the chosen pion distributions amplitudes in the inclusive gluon production process.
For the numerical calculations, we take supprocess π+dp → gu and π−up → gd for π+p → gX
and π−p → gX process, respectively.

Inclusive direct gluon production represents a significant test case in which higher-twist terms
dominate those of leading-twist in certain kinematic domains. For the dominant leading-twist
subprocess for the gluon production, we take the quark-antiquark annihilation qq̄ → γg. In
the numerical calculations, for the quark distribution functions inside the pion and proton we
used expressions as given in [38, 39], respectively. Results obtained in our calculations are
visualized in Figs. 2-7. In all figures we represent the choice of pion distribution amplitudes
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twist contribution are calculated for the
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s = 62.4 GeV as function of the gluon
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Figure 5. Higher-twist π+p → gX
inclusive gluon production cross section
(ΣHT

g )0, as function of the rapidity of the
gluon y at the transverse momentum of the
gluon pT = 4.9 GeV/c, at the c.m. energy√
s = 62.4 GeV .

Eqs.(7)-(12) by different line types: Φasy(x) as solid black line, Φhol(x) as dashed red line,
Φhol
V SBGL(x) as dotted blue line, ΦCZ(x,Q

2) as dash-dot magenta line, ΦBMS(x,Q
2) as dash-

double dot olive line, and ΦBELLE(x,Q
2) as short dash navy line. Firstly, it is very interesting

to compare the higher-twist cross sections obtained within holographic QCD with ones obtained
within the perturbative QCD and also with the leading-twist cross section. In Fig.2 and Fig.3
we show higher-twist cross sections (ΣHT

g )0, (ΣHT
g )res calculated in the context of the frozen

(frozen cross section) and running coupling constant (resummed cross section) approaches as a
function of the gluon transverse momentum pT for the pion distribution amplitudes presented
in Eqs.(2.6)-(2.11) at y = 0. It is seen from Fig.2 and Fig.3 that the higher-twist cross section
is monotonically decreasing with an increase in the transverse momentum of the gluon. In
the region 2 GeV/c < pT < 30 GeV/c the resummed cross sections of the process π+p → gX
decreases in the range between 3, 172 · 10−6µb/GeV 2 to 4, 912 · 10−16µb/GeV 2.

In Fig.4 we show (ΣHT
g )res/(ΣHT

g )0, for the process π+p → gX as a function of pT for the
pion distribution amplitudes presented in Eqs.(7)-(12) at y = 0. We see in Fig.4, that in the
region 15 GeV/c < pT < 22 GeV/c, the ratio (ΣHT

g )res/(ΣHT
g )0 for ΦCZ(x,Q

2) is enhanced
by about two orders of magnitude relative to one for Φasy(x). However, the enhancement is
one order of magnitude for Φhol(x) and half an order for ΦBMS(x,Q

2) and ΦBELLE(x,Q
2)

pion distribution amplitudes. Through Fig.5 to Fig.7 the dependence of higher-twist cross
sections (ΣHT

g )0, (ΣHT
g )res, ratios (ΣHT

g )res/(ΣHT
g )0 are shown for the processes π+p → γX

and π−p → γX as a function of the rapidity of the gluon y at the transverse momentum
of the gluon pT = 4.9 GeV/c. It is seen from figures in Fig.5 and Fig.6, that frozen and
resummed cross sections for all distribution amplitudes of pion have two maxima, where the
first maximum is approximately at the point y = −2 and second maximum is approximately
at the point y = 2. Notice that distribution amplitude of frozen and resummed cross sections
for ΦCZ(x,Q

2) are enhanced by about half and two orders of magnitude relative to all other
distribution amplitudes. As is seen from the figures cross sections vary slowly and smoothly
with the angle of the scattering. We think that this feature of infrared renormalons may
help theoretical interpretations of the future experimental data for the direct inclusive gluon
production cross section in the pion-proton collisions. Higher-twist cross section obtained in our
study should be observable at hadron collider.
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Figure 6. Higher-twist π+p → gX
inclusive gluon production cross section
(ΣHT

g )res, as a function of the rapidity of
the gluon y at the transverse momentum
of the gluon pT = 4.9 GeV/c, at the c.m.
energy

√
s = 62.4 GeV .
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at the c.m. energy

√
s = 62.4 GeV .

5. CONCLUSIONS
In this study the inclusive single gluon production are calculated via higher twist mechanism
within perturbative and holographic QCD. In the calculation of the cross sections the running
and frozen coupling constant approaches are employed and infrared renormalon poles in the
cross section expression are revealed. Infrared renormalon induced divergences are regularized
by means of the principal value prescripton and the Borel sum for the higher twist cross section
is found. It is observed that, the resummed higher-twist cross section differs from that found
using the frozen coupling approximation, especially in some regions, considerably.

Concerning the study of the higher-twist contribution, it is primarily important to analyze
its relative magnitude of contribution compared to the leading-twist contribution, since only
leading-twist diagrams are commonly considered in usual studies of the hadron-hadron collision.
However, in our studies the difference of the higher-twist results for the frozen and running
coupling constant approaches have been studied with importance. The following results can be
concluded from the experiments: the higher-twist contributions to single gluon production cross
section in the pion-proton collisions have important phenomenological consequences. Therefore
they will be helpful for detailed investigation dynamical properties of nucleon. Also the higher-
twist gluon production cross section in the pion-proton collisions depends on the form of the
pion distribution amplitudes and may be used for future study. Moreover the contributions
of renormalon effects within holograpich QCD in these process are essential and may help to
analyze experimental results. We compared frozen and resumed cross sections of the direct
gluon production in the processes π−p → gX and π+p → gX. Our calculations show in both
cases, running and frozen coupling constant approaches that the inclusive gluon production cross
section for the process π−p → gX is suppress over the direct gluon production cross section of
the process π+p → gX. Notice that, the direct gluon production spectrum can be measured
with large precision, so results obtained in this study will helpful further tests of the hadron
dynamics at large pT . As is seen from Eqs.(4,13) higher- twist cross sections in both cases
are proportional to the third power of αs(Q

2), but the leading-twist is linearly proportional to
αs(Q

2). Therefore their ratios strongly depend on the α2
s(Q

2).
Further investigations are needed in order to clarify the role of higher-twist effects in QCD. In

hadron-hadron collisions, real gluons at high transverse momentum can serve as a short distance
probe of the incident hadrons. Especially, the future experimental measurements will provide
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further tests of the dynamics of large-pT hadron production beyond the leading twist.
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