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Abstract: It is shown that the inflationary model is the result of the symmetry of the generalized
F(R, T, X, ϕ)-cosmological model using the Noether symmetry. It leads to a solution, a particular
case of which is Starobinsky’s cosmological model. It is shown that even in the more particular case
of cosmological models F(R, X, ϕ) and F(T, X, ϕ) the Monge–Ampère equation is still obtained, one
of the solutions including the Starobinsky model. For these models, it is shown that one can obtain
both power-law and exponential solutions for the scale factor from the Euler–Lagrange equations. In
this case, the scalar field ϕ has similar time dependences, exponential and exponential. The resulting
form of the Lagrangian of the model allows us to consider it as a model with R2 or X2. However, it is
also shown that previously less studied models with a non-minimal relationship between R and X
are important, as one of the possible models. It is shown that in this case the power-law model can
have a limited evolutionary period with a negative value of the kinetic term.

Keywords: symmetry; inflation; alternative gravity; cosmology; torsion; scalar

1. Introduction

Constantly appearing new cosmological data, on the one hand, call attention to the
generalized theory of gravity. However, on the other hand, this leads to the need to clarify
the general theory of relativity. It should help determine the causes of the accelerated
expansion of the universe in the initial period and in our time SNe Ia [1,2]. The current
accelerated expansion of the Universe can be described by different models. The simplest
of these is the model of general relativity with the cosmological constant Λ. This model is
currently referred to as the ΛCDM standard cosmological model. This model can describe
the current state of the universe. However, there is a need to include in the description the
initial inflationary period of the development of the Universe. A more complex version of
the description is the inclusion of various fields in the cosmological model such as scalar
field φ. Here, to generalize the influence of the scalar field on the cosmological model, we
use the k-essence model with the Lagrangian density in generalized form L = F(φ, X) [3,4]
based on the k-inflation model [5]. We do not consider other forms of fields here, like
tachyon field, phantom (ghost) field, dilatonic dark energy, Chaplygin gas, or generalisation
of scalar and fermion fields g-essence [6–8].

The next way, used to describe the observed inflationary phenomena, is F(R)-gravity.
As a special case, it includes a model of gravity with a square member of the Ricci scalar R2,
which can be seen as a generalization of general relativity, which describes the Starobinsky
inflation. As an alternative to this model, a teleparallel gravity model is being devel-
oped, which in generalized form can be represented as F(T) [9], where T is the torsion
scalar [10,11].

As a generalization of these two ways of describing the universe, the model of the
F(R, T) modified theory-Myrzakulov gravity [12,13] was used. Here, the Lagrangian is a
function of two variables, such as the Ricci scalar and torsion scalar [14–16]. In this paper,
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we will try to consider the most generalized model, which would include in an arbitrary
form F(R, T, X, φ) both Myrzakulov’s gravity and a scalar field in the form of k-essence.

To consider this model, the Noether symmetry is used here. m is the matter part of the
action To study the model, we use the Noether symmetry. This approach is widely used
in various branches of physics, including cosmology. Here, we consider the Friedmann–
Lemaitre–Robertson–Walker (FRW) metric with zero curvature.

To simplify the consideration, we will consider a model without the matter part of the
action, since the purpose of the article is to consider the generalized model by symmetry
methods, for which the influence of the material part is not significant. In addition, for
simplicity, consider the model in the framework of the Friedman–Lemaitre–Robertson–
Walker (FRW) metric with zero curvature.

2. F(R, T , X, φ) Gravity

Consider a general manifold with curvature and torsion, for which a standard torsion-
free Riemannian manifold will be a part of it. In this manifold, we define the metric gµν

and the metric-compatible path connection Γ so that the scalar curvature R and the torsion
scalar T correspond to the dynamical connection Γ. In general, this relationship can be
written as [17–19]

Γ h
ij = L h

ij − K h
ij + N h

ij , (1)

where L h
ij is the Levi–Civita connection associated with the given metric g, K h

ij denotes

the contorsion tensor and N h
ij is the disformation tensor. Here,

Nα
µν =

1
2

gαβ(Qβµν −Qµβν −Qνβµ), (2)

where

Qαµν = ∇αgµν. (3)

and

Qαµν = −gαβ∇βgµν. (4)

Here, we assume that

Qαµν = ∇αgµν = 0. (5)

Here, we define the torsion tensor as

T h
ij = Γ h

ij − Γ h
ji . (6)

Then, in terms of the torsion tensor, the contorsion tensor expressed as

K h
ij =

1
2

(
−T h

ij + T h
j i − Th

ij

)
, (7)

where the contorsion tensor with the antisymmetry property K j h
i = −K h j

i . The Ricci
curvature of the dynamical connection has the form

Rij = R̃ij + ∇̃jK h
hi − ∇̃hK h

ji + K p
ji K h

hp − K p
hi K h

jp . (8)

Hence, we get the scalar curvature as

R = Rl + u, (9)
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where the function u has the form

u = ∇̃jK
jh

h − ∇̃hK jh
j + K jp

j K h
hp − K jp

h K h
jp . (10)

Here, R̃ij and Rl are the Ricci and the scalar curvature of the Levi–Civita connection induced
by the metric gµν. Similarly to the curvature scalar R, now we introduce the following
invariant that is the torsion scalar as

T = SρµνTρµν, (11)

where

Sρµν = 0.5(Kµνρ − gρνTσµ
σ + gρµTσν

σ). (12)

As the curvature scalar R, we now can decompose the expression for the torsion scalar
as

T = Tw + v, (13)

where v is some real function to be defined as the other function u. We are now ready to
write the action of this gravity that is given by [10–12]

S =
1

2k2

∫
d4x
√
−gF(R, T) + Sm, (14)

where

Sm =
∫

d4x
√
−gLm, (15)

R = Rl + u, (16)

T = Tw + v. (17)

Here, k2 = 8πG, g and Lm are metric determinant and the matter Lagrangian, respec-
tively, and F(R, T) is an arbitrary function of curvature scalar R and torsion scalar T, Rw is
the curvature scalar for the Weitzenböck spacetime, Tr is the torsion scalar for the Riemann
spacetime, Rl is the curvature scalar of the Riemann spacetime, and Tw is the torsion scalar
of the Weitzenböck spacetime. In the above,

u = u
(

xj, gij,
∂gij

∂xk , ...
)

, (18)

v = v
(

xj, gij,
∂gij

∂xk , ...
)

, (19)

are some real functions with the necessary properties and their arguments, (i, j, k =

0, 1, 2, 3). We define |e| ≡ det
(

ei
µ

)
=
√−g in order to connect the two formalisms. It

is to verify that, from the MG, both F(T) and F(R) gravities can be immediately recovered.
Variation of the action gives the following field equations [13]

1
4 eµ

A f (R, T) + e−1
(

eeσ
ASµν

σ

)
∂ f (R,T)

∂T ∂ν + eAν

[(
∇µ∇ν − gµν∇λ∇λ

) ∂ f (R,T)
∂R − ∂ f (R,T)

∂R Rµν
]

+eσ
ASµν

σ

(
∂2 f (R,T)

∂T2 ∂νT + ∂2 f (R,T)
∂T∂R ∂νR

)
− ∂ f (R,T)

∂T eγ
ASρβµTρβγ = 4πG e ν

A T(m)
ν

µ .
(20)

Traditionally cosmological models are considered within the FRW metric. Consider it
similar to the interval ds2 = dt2 − a(t)2(dx2 + dy2 + dz2). Let us start with the model in its
most general form as F(R, T, X, φ) gravity, the action for which has the following form:

S = 2π2
∫

dt a3
{

F− λ1

[
R− u− 6

(
ä
a
+

ȧ2

a2

)]
− λ2

[
T − v + 6

(
ȧ2

a2

)]
− λ3

[
X− 1

2
φ̇2
]}

. (21)
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Here, a-scale factor, u, v -some functions u = u(Γρ
µν; xi; gij, ġij, g̈ij, ...; f j), v =

v(Γρ
µν; xi; gij, ġij, g̈ij, ...; gj), but, for this paper, we will consider them as functions of t, ṫ, ẗ.
As is well known, we can write the Euler–Lagrange equations for FRW model as

d
dt

∂L
∂ȧ

=
∂L
∂a

d
dt

∂L
∂Ṙ

=
∂L
∂R

d
dt

∂L
∂Ṫ

=
∂L
∂T

d
dt

∂L
∂Ẋ

=
∂L
∂X

d
dt

∂L
∂φ̇

=
∂L
∂φ

(22)

with the energy condition

EL =
∂L
∂ȧ

ȧ +
∂L
∂Ṙ

Ṙ +
∂L
∂Ṫ

Ṫ +
∂L
∂Ẋ

Ẋ +
∂L
∂φ̇

φ̇− L = 0 . (23)

Here,

R = u + R(LC), (24)

T = v + T(WC). (25)

Here, R(LC) is the curvature scalar corresponding to the Levi–Civita connection with
the vanishing torsion, and T(W) is the torsion scalar for the purely Weitzenböck connection
with the vanishing curvature.

For FRW, we can write it as

R = u + 6
(

Ḣ + 2H2
)

, (26)

T = v− 6H2, (27)

X =
1
2

φ̇2. (28)

From the Euler–Lagrange equations for F(R, T, X, φ) by R, T, and X, we obtain

λ1 = FR, λ2 = FT , λ3 = FX . (29)

Here, and after denoting F(R, T, X, φ) as F, and FR, FT , FX are derivations of the F
function by R, T, and X, respectively. Integrate by parts, and, if we consider that u, v
depends linearly on a, ȧ, ä and R, T, respectively, then we can rewrite the Lagrangian as

L = a3[F− b1(R− u)FR − b2(T − v)FT ]− 6aȧ2[b1FR + b2FT ]

−6a2 ȧ
[
ṘFRR + ṪFRT + ẊFRX + φ̇FRφ

]
− a3FX

[
X− 1

2 φ̇2
]
.

(30)

Here, b1, b2 are some constants. A similar result is obtained for u(a, ȧ) and v(a, ȧ).
Thus, there is not a big difference between u, v which linearly depends on R, T or only a, ȧ.
Furthermore, we can use point-like Lagrangian, where u, v are some functions of a, ȧ only
as

L = a3[F− (R− u)FR − (T − v)FT ]− 6 aȧ2[FR + FT ]− 6a2 ȧ[ṘFRR

+ṪFRT + ẊFRX + φ̇FRφ]− a3FX

[
X− 1

2 φ̇2
]
.

(31)

For this most general form of the cosmological model with a scalar field, the Euler–
Lagrange equations will have the following very complex form:

F− AFR − BFT −
(

uȧ
a
3
− 4H

)
ḞR −

(
vȧ

a
3
− 4H

)
ḞT − 2F̈R − FX

(
X− 1

2
φ̇2
)
= 0 (32)

where

A = R− u− a
3

ua + uȧ ȧ + uȧa ȧ
a
3
+ uȧȧ ä

a
3
− 4Ḣ + 6H2 (33)

B = T − v− a
3

va + vȧ ȧ + vȧa ȧ
a
3
+ vȧȧ ä

a
3
− 4Ḣ − 6H2 . (34)
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Klein–Gordon equation here is

Fφ − 3HFX φ̇−
[
ṘFXR + ṪFXT + ẊFXX + φ̇FXφ

]
φ̇− FX φ̈ = 0. (35)

The energy condition [10] gives

EL = a3[FX(X + 1
2 φ̇2)− F + FR(ȧuȧ + 6H2 + R− u) + FT(ȧvȧ − 6H2 + T − v)

+6H(ṘFRR + ṪFRT + ẊFRX + φ̇FRϕ)] = 0 .
(36)

As is evident from these equations, it is very difficult to solve them in their most
general form. To solve it, it is important to obtain an analytical solution to the Lagrangian
of the model.

3. The Noether Symmetries Approach

The use of symmetry methods has a long history in physics. It provides conserva-
tion laws. Thus, the Standard Model is built on local gauge symmetry. The Yang–Mills
theory used to construct the Standard Model, in particular, uses the Slavnov–Taylor–Ward–
Takahashi identities. Here, we use the analogue of the Ward–Takahashi identity is the
Noether symmetry. In other words, we can say that conservation laws are manifestations
of Noether’s theorem. By this theorem, for a dynamical system with coordinates, which
is described by the Lagrangian with the system of Euler–Lagrange equations, there exists
a vector field X for which the derivative of the Lagrangian with respect to X must vanish.
Noether symmetries are often used in cosmology for scalar-tensor theory—for example, one
of the first [20]. Thus, from the point of view of applying Noether symmetry to models with
a scalar field, our work is not original. The novelty here lies only in the application of the
Noether symmetry to the generalized model of gravity, which gives new results. The choice
of this symmetry is widely used in alternative theories of gravity and cosmology [21]. The
shape of the Lagrangian can be found from the Noether symmetry condition [22–25]:

XL = 0, (37)

where

X = α
∂

∂a
+ β

∂

∂R
+ γ

∂

∂T
+ δ

∂

∂X
+ ε

∂

∂ϕ
+ α̇

∂

∂ȧ
+ β̇

∂

∂Ṙ
+ γ̇

∂

∂Ṫ
+ δ̇

∂

∂Ẋ
+ ε̇

∂

∂ϕ̇
. (38)

Here, the functions α, β, γ, δ, ε depend on the variables a, R, T, X, ϕ.
By this, we have:
For F(R, X, ϕ)

6(αFR + βaFRR + δaFRX + εaFRϕ + 2αaaFR + βaa2FRR + δaa2FRX + εaa2FRϕ)ȧ2

+ϕ̇2(εϕa3FX − 6αϕa2FRϕ +
3
2

αa2FX +
1
2

βa3FXR +
1
2

δa3FXX +
1
2

εa3FXϕ)

+6aȧṘ(βaFRRR + δaFRRX + εaFRRϕ + 2αRFR + (αaa + βRa + 2α)FRR + δRaFRX + εRaFRϕ)

+6aȧẊ(2αX FR + aβX FRR + βaFRXR + δaFRXX + εaFRXϕ + (2α + αaa + δXa)FRX + εXaFRϕ)

+6aȧϕ̇(aβϕFRR + 2αFRϕ + βaFRϕR + δaFRϕX + εaFRϕϕ + αaaFRϕ + δϕaFRX + εϕaFRϕ)

+12aȧϕ̇αϕFR + 6Ṙ2αRa2FRR + 6Ẋ2αXa2FRX − a3 ȧϕ̇εaFX + 6a2ṘẊ(αX FRR + αRFRX)

+Ṙϕ̇a2(6αϕFRR − εRaFX + 6αRFRϕ) + Ẋ ϕ̇(−εXa3FX + 6αXa2FRϕ + 6αϕa2FRX)

+3a2α

[
F− (R− u)FR +

1
3

auaFR

]
− βa3(R− u)FRR − δa3(R− u)FRX

+a3uȧFR(ȧαa + ṘαR + ẊαX + ϕ̇αϕ)−
(
α3FX + βaFXR + δaFXX + εaFXϕ

)
Xa2

+εa3[Fϕ − (R− u)FRϕ

]
= 0. (39)

In addition, as a system of equations:
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ȧ2 : αFR + βaFRR + δaFRX + εaFRϕ + 2αaaFR

+βaa2FRR + δaa2FRX + εaa2FRϕ = 0, (40)

Ṙ2 : 6αRa2FRR = 0, (41)

Ẋ2 : 6αXa2FRX = 0, (42)

ϕ̇2 : εϕa3FX − 6αϕa2FRϕ +
3
2

αa2FX +
1
2

βa3FXR +
1
2

δa3FXX

+
1
2

εa3FXϕ = 0, (43)

ȧṘ : 2αFRR + βaFRRR + δaFRRX + εaFRRϕ

+2αRFR + αaaFRR + βRaFRR + δRaFRX + εRaFRϕ = 0, (44)

ȧẊ : 2αX FR + aβX FRR + 2αFRX + βaFRXR

+δaFRXX + εaFRXϕ + αaaFRX + δXaFRX + εXaFRϕ = 0, (45)

ȧϕ̇ : 2αϕFR + aβϕFRR − εa
a2

6
FX + 2αFRϕ

+βaFRϕR + δaFRϕX + εaFRϕϕ + αaaFRϕ + δϕaFRX + εϕaFRϕ = 0, (46)

ṘẊ : αXa2FRR + αRa2FRX = 0, (47)

Ṙϕ̇ : 6αϕa2FRR − εRa3FX + 6αRa2FRϕ = 0, (48)

Ẋ ϕ̇ : −εXa3FX + 6αXa2FRϕ + 6αϕa2FRX = 0, (49)

3α

[
F− (R− u)FR +

1
3

auaFR

]
− βa(R− u)FRR − δa(R− u)FRX

+εa
[
Fϕ − (R− u)FRϕ

]
+ ȧαaauȧFR + ϕ̇αϕauȧFR + ṘαRauȧFR

+ẊαXauȧFR −
(
α3FX + βaFXR + δaFXX + εaFXϕ

)
X = 0. (50)

For F(R, T, X, ϕ)

6ȧ2(α[FR − FT ] + βa[FRR − FTR] + γa[FRT − FTT ] + δa[FRX − FTX ] + εa
[
FRϕ − FTϕ

]
)

+6ȧ2(αa2a[FR − FT ] + βaa2FRR + γaa2FTR + δaa2FRX + εaa2FRϕ) + Ṙ26αRa2FRR

+Ṫ26αTa2FRT + Ẋ26αXa2FRX

+ϕ̇2(εϕa3FX − 6αϕa2FRϕ + α 3
2 a2FX + β 1

2 a3FXR + γ 1
2 a3FXT + δ 1

2 a3FXX + ε 1
2 a3FXϕ)

+ȧṘ6a(βaFRRR + γaFRRT + δaFRRX + εaFRRϕ + γRaFTR + δRaFRX + εRaFRϕ)

+ȧṘ6a(2αR[FR − FT ] + (αaa + βRa + 2α)FRR)

+ȧṪ6a(βaFTRR + γaFTRT + δaFTRX + εaFTRϕ + 2αT [FR − FT ])

+ȧṪ6a((αaa + 2α + γTa)FTR + βTaFRR + δTaFRX + εTaFRϕ)

+ȧẊ6a(2αX [FR − FT ] + aβX FRR + aγX FTR + βaFRXR + γaFRXT + δaFRXX + εaFRXϕ)

+ȧẊ6a((2α + αaa + δXa)FRX + εXaFRϕ)

+ȧϕ̇6a(2αϕ[FR − FT ] + aβϕFRR + aγϕFTR + εa
a2

6 FX + 2αFRϕ)

+ȧϕ̇6a(βaFRϕR + γaFRϕT + δaFRϕX + εaFRϕϕ + αaaFRϕ + δϕaFRX + εϕaFRϕ)

+ṘṪ6a2(αRFTR + αT FRR) + ṘẊ6a2(αX FRR + αRFRX)

+6ṪẊa2(αX FTR + αT FRX) + Ṙϕ̇a2(6αϕFRR + εRaFX + 6αRFRϕ)

+Ṫ ϕ̇(6αϕa2FTR + εTa3FX + 6αTa2FRϕ) + Ẋ ϕ̇(εXa3FX + 6αXa2FRϕ + 6αϕa2FRX)

+3a2α
[

F− (R− u)FR − (T − v)FT + 1
3 a(uaFR + vaFT)

]
+βa3[−(R− u)FRR − (T − v)FTR] + γa3[−(R− u)FRT − (T − v)FTT ]

+δa3[−(R− u)FRX − (T − v)FTX ] + εa3[Fϕ − (R− u)FRϕ − (T − v)FTϕ

]
+a3[uȧFR + vȧFT ](ȧαa + ṘαR + ṪαT + ẊαX + ϕ̇αϕ)

−
(
α3FX + βaFXR + γaFXT + δaFXX + εaFXϕ

)
Xa2 = 0.

(51)
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In addition, as a system of equations:

ȧ2 : α[FR + FT ] + βa[FRR + FTR] + γa[FRT + FTT ]

+δa[FRX + FTX ] + εa
[
FRϕ + FTϕ

]
+ αa2a[FR + FT ]

+βaa2FRR + γaa2FTR + δaa2FRX + εaa2FRϕ = 0, (52)

Ṙ2 : 6αRa2FRR = 0, (53)

Ṫ2 : 6αTa2FRT = 0, (54)

Ẋ2 : 6αXa2FRX = 0, (55)

ϕ̇2 : a3(εϕFX − 6
αϕ

a
FRϕ +

3α

2a
FX +

β

2
FXR +

γ

2
FXT +

δ

2
FXX +

ε

2
FXϕ) = 0, (56)

ȧṘ : 2αFRR + βaFRRR + γaFRRT + δaFRRX + εaFRRϕ

+2αR[FR + FT ] + αaaFRR + βRaFRR + γRaFTR + δRaFRX + εRaFRϕ = 0, (57)

ȧṪ : 2αFTR + βaFTRR + γaFTRT + δaFTRX + εaFTRϕ

+2αT [FR + FT ] + αaaFTR + βTaFRR + γTaFTR + δTaFRX + εTaFRϕ = 0, (58)

ȧẊ : 2αX [FR + FT ] + aβX FRR + aγX FTR + 2αFRX + βaFRXR

+γaFRXT + δaFRXX + εaFRXϕ + αaaFRX + δXaFRX + εXaFRϕ = 0, (59)

ȧϕ̇ : 2αϕ[FR + FT ] + aβϕFRR + aγϕFTR − εa
a2

6
FX + 2αFRϕ

+βaFRϕR + γaFRϕT + δaFRϕX + εaFRϕϕ + αaaFRϕ

+δϕaFRX + εϕaFRϕ = 0, (60)

ṘṪ : αRa2FTR + αTa2FRR = 0, (61)

ṘẊ : αXa2FRR + αRa2FRX = 0, (62)

ṪẊ : αXa2FTR + αTa2FRX = 0, (63)

Ṙϕ̇ : 6αϕa2FRR − εRa3FX + 6αRa2FRϕ = 0, (64)

Ṫ ϕ̇ : 6αϕa2FTR − εTa3FX + 6αTa2FRϕ = 0, (65)

Ẋ ϕ̇ : −εXa3FX + 6αXa2FRϕ + 6αϕa2FRX = 0, (66)

3α

[
F− (R− u)FR − (T − v)FT +

1
3

a(uaFR + vaFT)

]
+βa[−(R− u)FRR − (T − v)FTR] + γa[−(R− u)FRT − (T − v)FTT ]

+δa[−(R− u)FRX − (T − v)FTX ] + εa
[
Fϕ − (R− u)FRϕ − (T − v)FTϕ

]
+ȧαaa[uȧFR + vȧFT ] + ϕ̇αϕa[uȧFR + vȧFT ]

+ṘαRa[uȧFR + vȧFT ] + ṪαTa[uȧFR + vȧFT ] + ẊαXa[uȧFR + vȧFT ]

−
(
α3FX + βaFXR + γaFXT + δaFXX + εaFXϕ

)
X = 0. (67)

4. The Noether Symmetries Solution

The solution for the cases F(R, T, X, ϕ) and F(R, X, ϕ) looks the same. Thus, from a
system of equations from equations for Ṙ2, Ṫ2 and Ẋ2, we have two solutions. The first
solution is a linear equation F = s1(ϕ)R + s2(ϕ)T + s3(ϕ)X + s4(ϕ) from FRR = FRT =
FRX = 0. In addition, for the second variant for a nonlinear solution, we have found that
αR = αT = αX = 0. From equations for Ṙϕ̇, Ṫ ϕ̇ and Ẋ ϕ̇, we have the next system of
equations:

εR
FRR

=
εT
FRT

=
εX

FRX
= −

6αϕ

aFX
. (68)
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The last system of equations can be transformed to another form for F(R, T, X, ϕ) as

FRRFXT = FRT FRX , (69)

FRT FXX = FRX FXT , (70)

FRRFXX = F2
RX . (71)

The last equation here is a homogeneous Monge-Ampere equation, but without
dependence on T. Now, combine equations for ȧṘ, ȧṪ and ȧẊ as

Z(a, ϕ)R = Z(a, ϕ)T = Z(a, ϕ)X = 0, (72)

where Z(a, ϕ) = (2α + αaa)FR + βaFRR + γaFRT + δaFRX + εaFRϕ. This substitution is very
useful because it allows for excluding functions β, γ, and δ from calculations. Now, it is
possible with ȧ2 to obtain the additional Monge–Ampere equation FRRFTT = F2

RT . Solutions
of Monge–Ampere equations involving one arbitrary function give the next result:

F = f (C1(ϕ)R + C2(ϕ)T + C3(ϕ)X, ϕ) + C4(ϕ)R + C5(ϕ)T + C6(ϕ)X + C7(ϕ), (73)

where C1, C2, C3, C4, C5, C6, C7 are the functions of ϕ. Another solution is a solution
involving arbitrary constants

F = (C1(ϕ)R + C2(ϕ)T + C3(ϕ)X)2 + C4(ϕ)R + C5(ϕ)T + C6(ϕ)X + C7(ϕ). (74)

This solution gives us the same results as recent observations about the early time
inflation well known as the Starobinsky model. The solution for the model F(R, X, ϕ) is
obtained similarly in a simpler way. Here, the Monge–Ampere equation is immediately
obtained. In addition, since there are fewer model components, this equation is sufficient
to solve from the next equation

FRRFXX = F2
RX . (75)

In this case, the solution involving arbitrary constants looks like

F = (C8(ϕ)R + C9(ϕ)X)2 + C10(ϕ)R + C11(ϕ)X + C12(ϕ), (76)

where C8, C9, C10, C11, C12 are functions of ϕ.

5. Conclusions

In the resulting form, the Lagrangian is convenient and can be used to solve the above
Euler Lagrange equations. However, the general solution is rather complicated. A special
case can be found for the exponential scale factor for F(R, T, X, ϕ), where, for simplicity,
we take that u = v = 0 and a = a0eH0t, where a0, H0 are constants. For this case, if we
accept that C1, C2, ..., C6 - constants, then ϕ will have an exponential solution

ϕ = ϕ0et. (77)

Another special case is the power-law scale factor a = a0tn, where n, a0 are constants
with the same conditions as before. This scale factor will be a solution to the Euler–Lagrange
equations if the scalar field also has a power-law dependence on time

ϕ = ϕ0tm, (78)

where m, ϕ0 are constants. Solutions similar to those considered by us were widely studied
earlier for special cases of k-essence and, for example, F(R, X, φ) cosmology (the last
was considered for the model with linear X, which does not give the Monge-Ampere
equation) [26]. Here, we have shown that these models that are power-law and exponential
models can be obtained for a more general form of solutions. Such solutions can find
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application in models with f loop quantum cosmology and others [27–32]. Similar results
can be found for the F(R, X, φ). It will be important to note here that the n in the power-law
solution will depend only on C8, C9, C10, and ϕ0. Here, for the power-law solution, the
parameter of the equation of state ω tends to −1. Such models have already been discussed
earlier, including models with R2 and X2 components. In fact, the F(R, X, ϕ) model is
reduced to these models, with the exception of the RX component, which we can both
zero out by obtaining the Starobinsky model at C9 = 0, or X2 at C8 = 0. In the presence
of the XR component, in this case, the behavior of X changes, which behaves as in the
Figure 1. A feature of the solution will be the existence of a solution when C8 and C9 are
not equal to zero. If we take the power-law solution for the scale factor here, we obtain a
complex nonlinear differential inhomogeneous equation for the kinetic term X. Numerical
analysis shows at some point in time that the value of X in this model can be negative from
the initial period of time to some point, which in general depends on the values of the
functions C. Of course, such a decision cannot be considered completely correct, since, in
this case, we considered only a power-law solution without an exponential one, which of
course will prevail in the initial period of the evolution of the Universe. On the other hand,
it should be noted that we used only a part of the Monge–Ampere solution. In the general
case, it includes both a solution with a free function and possibly other solutions that can
also affect the form of the scale factor and the kinetic term of the scalar field.

Figure 1. Qualitative demonstration of the dependence of the kinetic term X on time t for a power-law
scale factor a for a Lagrangian with a non-minimal dependence of X on R.

In any case, here we were able to show that, when considering a generalized model
with a scalar field, including F(R) and F(T)-gravity, both together or separately, when
using the Noether symmetry method, one can obtain the Starobinsky solution. It is also
important that Starobinsky’s solution is obtained even if we consider separately only F(R)
or only F(T)-gravity. That is, we will not be able to refute the necessity of F(T)-gravity
here. In general, the solution for the Lagrangian can include more complex solutions. That
is, include not only R2, but also any other kinds of functions, such as exponential and/or
high-order power functions, which can also be a source of inflation. In other words, it is
shown here that, if the cosmological model includes the k-essence, the inflationary model
of the Universe is a necessary consequence of the presence of symmetry. Unfortunately,
since we took the model in its most general form, we do not have the opportunity to refine
it more precisely in order to confirm the influence of symmetry on the evolution of the
Universe through observations. A good opportunity for confirmation would be to detect
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the influence of the bound component of the RX Lagrangian. However, in fact, this will not
be a sufficient limitation of the model, since there is a possibility that the constants C9 or C3
are equal to zero. The model is then reduced to a family of well-designed k-essence models.
Thus, the only way to confirm this mechanism of inflation of the Universe is to confirm the
existence of the kinetic term of k-essence or non-minimally coupled kinetic term X with R.
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