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Abstract In this paper, we investigate a simple class of
Horndeski models where the scalar field plays the role of
a k-essence fluid. We present several solutions for early-
time universe, namely inflation and cosmological bounce,
by making use of some reconstruction technique. More-
over, we furnish the formalism to calculate perturbations in
FRW space-time and we compute the spectral index and the
tensor-to-scalar ratio during inflation.
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1 Introduction

The interest in modified theories of gravity has consider-
ably grown up in the last years, due to the possibility to
reproduce with their wide choice of models a huge variety
of cosmological scenarios (see Nojiri and Odintsov 2006,
2011; Capozziello and Faraoni 2010; Capozziello and De
Laurentis 2011; Myrzakulov et al. 2013 for some reviews).
The field equations of modified gravity are much more in-
volved with respect to the ones of General Relativity, but
in 1974 Horndeski found a class of scalar tensor theories
where the equations of motion appear at the second order
like in the theory of Einstein (Horndeski 1974), making their
investigation quite simple despite the complexity of the La-
grangian. A natural application of this kind of theories is
related to the early-time acceleration that universe under-
went after the Big Bang, namely the inflation (Linde 2008;

B L. Sebastiani
l.sebastiani@science.unitn.it

1 Eurasian International Center for Theoretical Physics and
Department of General Theoretical Physics,
Eurasian National University, Astana 010008, Kazakhstan

2 Kazakh National University, Almaty 050040, Kazakhstan

Gorbunov and Rubakov 2011). In inflationary cosmology, a
scalar field subjected to some suitable potential drives the
accelerated expansion. In Horndeski models, the scalar field
is coupled with gravity and higher curvature terms appear in
the Lagrangian. Since it is expected that in hot universe sce-
nario higher curvature corrections (motivated by quantum
effects or string theories) emerge in the theory of gravitation,
the studies of inflation in Horndeski gravity are popular and
have been carried out in many works (Deffayet et al. 2011;
De Felice et al. 2011; Kobayashi et al. 2011; Kamada et al.
2011; Qiu and Wang 2015; Maselli et al. 2015; Shirai et al.
2012; Rabochaya and Zerbini 2016; Myrzakulov and Se-
bastiani 2016; Cognola et al. 2016; Anabalon et al. 2014;
Cisterna and Erices 2014; Cisterna et al. 2015a, 2015b).

In this paper, we will consider a simple class of Horn-
deski models where the scalar field represents a k-essence
fluid (Armendariz-Picon et al. 1999, 2000; Garriga and
Mukhanov 1999), whose Lagrangian contains non-standard
higher order kinetic term (see also Babichev 2016). We
should note that k-essence is motivated by string theory and
offers a valid alternative description with respect to the stan-
dard canonical scalar field, since it brings to the suppression
of the sound speed and therefore to an extremely small value
of tensor-to-scalar ratio which is strongly favored by obser-
vations. Several solutions for early-time universe, namely
inflation and cosmological bounce, will be investigated. We
will see how the Horndeski contribution to the Lagrangian
influences the perturbations left at the end of inflation. The
perturbations reveal the short scale of initial conditions of
the universe and must be in agreement with cosmological
data. We also observe that quantum gravity corrections may
include all quadratic higher-derivative corrections (Buch-
binder et al. 1992), what leads to very interesting quan-
tum gravity induced inflation (see Myrzakulov et al. 2015a,
2015b; Bamba et al. 2014b; Sebastiani et al. 2014).

http://crossmark.crossref.org/dialog/?doi=10.1007/s10509-016-2846-5&domain=pdf
mailto:l.sebastiani@science.unitn.it
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The paper is organized in the following way. In Sect. 2,
we will present the model and we will derive the equations
of motion on flat Friedmann-Robertson-Walker metric. Sec-
tion 3 is devoted to the study of inflation. Some forms of
k-essence models will be considered and a reconstructive
method by starting from the solutions will be discussed. In
Sect. 4 the cosmological bounce is investigated. In Sect. 5
the perturbations during inflation will be analyzed and the
spectral index and the tensor-to-scalar ratio for our theory
will be derived. Conclusions and final remarks are given in
Sect. 6.

We use units of kB = c = � = 1 and denote the gravi-
tational constant, GN , by κ2 ≡ 8πGN , such that G

−1/2
N =

MPl, MPl = 1.2 × 1019 GeV being the Planck mass.

2 The model

Horndeski Lagrangian (Horndeski 1974) collects the most
general class of scalar-tensor models with field equations at
the second order like in General Relativity (GR),

I =
∫
M

dx4√−g

[
R

2
+LH + Lm

]
,

LH =
5∑

i=2

Li , (1)

with

L2 = P(φ,X)

L3 = −G3(φ,X)�φ,

L4 = G4(φ,X)R + G4,X

[
(�φ)2

− (∇μ∇νφ)
(∇μ∇νφ

)]
, (2)

L5 = G5(φ,X)Gμν

(∇μ∇νφ
)

− 1

6
G5,X

[
(�φ)3 − 3(�φ)(∇μ∇νφ)

(∇μ∇νφ
)

+ 2
(∇μ∇αφ

)(∇α∇βφ
)(∇β∇μφ

)]
.

In Eq. (1), M represents the space-time manifold, g is the
determinant of the metric tensor gμν , R is the Ricci scalar of
the Hilbert-Einstein action of GR, Lm is the Lagrangian of
the matter contents of the space-time, while LH includes
the higher curvature corrections to GR expressed by (2),
where we see that a scalar field is coupled with gravity. Here,
Gμν := Rμν − Rgμν/2 is the usual Einstein’s tensor, Rμν

being the Ricci tensor, while P(φ,X) and Gi(φ,X) with
i = 3,4,5 are functions of the scalar field φ and its kinetic
energy X = −gμν∂μφ∂νφ/2.

We will consider the following simplified subclass of
Horndeski models in absence of matter:

I =
∫
M

d4x
√−g

[
R

2
+ P(φ,X)

]
+ IH , (3)

where1

IH =
∫
M

d4x
√−g

[
α
(
Gμν∇μφ∇νφ

)

+ γφGμν∇μ∇νφ − βφ�φ
]
, (4)

with α,β, γ constants. We observe that after integration by
part we also have,
∫
M

d4x
√−gGμν∇μ∇νφ

=
∫
M

d4x
√−g

[
−gμν∂μφ∂νφR

2

+ (�φ)2 − ∇μ∇νφ∇μ∇νφ

]
, (5)

and in the spacial case α = γ we obtain a total derivative and
the corresponding contributes disappear from the field equa-
tions. This theory is rich of cosmological applications (see
Rabochaya and Zerbini 2016; Myrzakulov and Sebastiani
2016) and in this paper we will identify φ with a k-essence
field whose stress energy-tensor is given by (Armendariz-
Picon et al. 1999; Garriga and Mukhanov 1999),

T
μ

(φ)ν = (
ρ(φ,X) + p(φ,X)

)
uμuν + p(φ,X)δμ

ν ,

uν = ∂νφ√
2X

, (6)

such that P(φ,X) ≡ p(φ,X) corresponds to the effective
pressure of k-essence and ρ(φ,X) to its energy density, due
to the fact that the variation respect to the metric leads to

ρ(φ,X) = 2X
∂p(φ,X)

∂X
− p(φ,X). (7)

For canonical scalar filed one has p(φ,X) = X − V (φ),
V (φ) being a function of the field only, but in general the
Lagrangian of k-essence contains higher order kinetic term.

We will work in flat Friedmann-Robertson-Walker
(FRW) space-time,

ds2 = −dt2 + a(t)2dx2, (8)

where a ≡ a(t) is the scale factor depending on the cosmo-
logical time. We immediately have

X = φ̇2

2
, (9)

1For a comparison with De Felice et al. (2011), we have to set G3 =
βφ, G4 = αX, G5 = γφ with X = φ̇2/2.
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and the equations of motion (EOMs) read

3H 2(1 − 3αφ̇2 + 3γ φ̇2) = ρ(φ,X) − βφ̇2, (10)

− (
2Ḣ + 3H 2)

= p(φ,X) − βφ̇

+ αφ̇2(3H 2 + 2Ḣ
) − 6αH 2φ̇2 − 4αHφ̇φ̈

− 4αḢ φ̇2 + γ
(
2Ḣ φ̇2 + 4Hφ̇φ̈ + 3H 2φ̇2), (11)

the dot being the derivative with respect to the time. Finally,
the continuity equation of k-essence coupled with gravity is
given by

ρ̇(φ,X) + 3H
(
ρ(φ,X) + p(φ,X)

)

= −φ̈φ̇
(−2β + 6αH 2 − 6γH 2)

− 3Hφ̇2(−2β + 6αH 2 − 6γH 2)

− 12HḢφ̇2(α − γ ), (12)

where ρ(φ,X) + p(φ,X) = 2XpX(φ,X).

3 Models for inflation

The considered simplified subclass of Horndeski models
(3)–(4) presents a sufficiently quite involved Lagrangian
with the account of several higher curvature corrections to
Einstein’s gravity. It is expected that such a kind of terms
(maybe related to quantum effects) modify the theory of
Einstein at high energy, when inflation takes place. In our
case, the early-time de Sitter expansion is supported by k-
essence, which is a valid alternative description with re-
spect to the standard canonical scalar field of “old inflation-
ary scenario”. We should note that k-essence is strictly con-
nected with string theory and permits to suppress the sound
speed leading to a negligible tensor-to-scalar ratio according
with cosmological observations (see Sect. 5). On the other
side, the curvature corrections coupled with the k-field con-
tribute to the graceful exit from inflation. In fact, posing that
φ̇2 = H 2x2, in the FRW-field equations we aquire additional
terms proportional to ∼ H 4. During inflation x2 � 1 (in
Planck units) and this terms appear in the perturbations at
the origin of the anisotropies in our universe. In this respect,
despite the arena of models for inflation is in principle in-
finite, the accuracy of cosmological data are offering com-
pelling bounds for deviations of Einstein’s gravity and dis-
criminate between viable and not viable models. Thus, the
introduction of additional extra-degrees of freedom renders
the theory more flexible and may help to reach at least some
intermediate results in the study of the primordial phases of
the expansion of our universe.

The evolution of inflationary universe is described by the
e-folds left to the end of inflation, namely

N = log

[
a(t0)

a(t)

]
, (13)

with a(t0) the scale factor at the time t0 when acceleration
finishes. By recasting this expression in Equations (10), (12)
and by taking into account that dN = −Hdt , we get

3H 2 + 9α̃H 4φ′2 = ρ(φ,X) + β̃H 2 φ′2

2
, (14)

− ρ′(φ,X) + 3H 2φ′2(pX(φ,X)
)

= H 2φ′φ′′(β̃ − 6α̃H 2) + HH ′φ′2(β̃ − 18α̃H 2)

− 3H 2φ′2(β̃ − 6α̃H 2). (15)

Here, the prime denotes the derivative with respect to N and
for simplicity we posed

α̃ = γ − α, β̃ = −2β. (16)

Moreover, one has X = H 2φ′2/2. Given a de Sitter expan-
sion, the field must move very slowly and we may assume
H 2φ′2 � |1/α̃|, such that Eqs. (14), (15) read, in the slow-
roll regime with |H ′/H | � 1 and |φ′′| � |φ′|,
3H 2 � ρ(φ,X),

ρ′(φ,X) − 3H 2φ′2pX(φ,X) � 3H 2φ′2(β̃ − 6α̃H 2). (17)

At the beginning of accelerated phase, the field is negative
and its magnitude and energy density very large, while at the
end, when N → 0, they tend to vanish. Thus, we have φ′ < 0
and 0 < ρ′(φ,X), while X increases when N decreases to
permit a graceful exit from inflation.

During inflation, the slow-roll parameter

ε = H ′

H
, (18)

is positive and small. Inflation ends when ε = 1 and must
lead to a total e-folds N ≡ N(a(ti)), where ti is the initial
time of acceleration, large enough to explain the thermaliza-
tion of observable universe, namely 55 < N < 65.

Let us see some examples of k-essence models for infla-
tion.

3.1 k-essence with p(φ,X) = F(X) − V (φ)

A suitable form of k-essence for inflation is given in the
form,

p(φ,X) = F(X) − V (φ), (19)

where F(X) and V (φ) are two functions depending on X

and φ, separately. The mechanism for the early-time accel-
eration is the following: the potential V (φ) supports the de
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Sitter expansion as long as the magnitude of φ is almost a
constant, while the “kinetic” part F(X) makes inflation to
end when φ′2 increases.

For example, we may consider,

F(X) = μXλ, 0 < μ, 1 ≤ λ, (20)

where λ,μ are positive parameters and in the limits μ = λ =
1 we recover the case of canonical scalar field. From (7) we
get

p(φ,X) = μXλ − V (φ),

ρ(φ,X) = μ(2λ − 1)Xλ + V (φ).
(21)

If we require that

Xλ � V (φ → −∞), V
(
φ → 0−) � Xλ, (22)

the solutions of (17) are derived as

H 2 = V (φ)

3
,

φ′ � Vφ(φ)

3H 2[μλ(H 2φ′2/2)λ−1 + β̃ − 6α̃H 2] . (23)

If λ = μ = 1, one finds the case analyzed in Myrzakulov
and Sebastiani (2016) for canonical scalar field in Horn-
deski gravity. If 1 < λ, we can avoid the contribute of
(H 2φ′2)λ−1 � 1 in the second expression above. In this
case, if β̃ �= 0, the analysis of the model is the same of the
one of canonical scalar field in Horndeski theory after the
redefinition β̃ → 1 + β̃ . On the other hand, if β̃ = 0, we
have

ε = −3α̃φ′2H 2, α̃ < 0. (24)

For example, to obtain

H 2 = H 2
0 (N + 1), ε = 1

2(N + 1)
, (25)

with H0 the Hubble parameter at the end of inflation, we
need

φ′ = −
√

− 1

6α̃

1

H0(N + 1)
,

φ = φ0 −
√

− 1

6α̃

1

H0
log[N + 1],

(26)

φ0 being the value of the field at the end of inflation. As a
consequence, the potential is given by

V (φ) = 3H 2
0 eH0(φ0−φ)

√−6α̃, (27)

where we remember φ < 0.

3.2 k-essence with p(φ,X) = g(φ)Xλ − V (φ)

Let us assume the following form of Lagrangian for k-
essence,

p(φ,X) = g(φ)Xλ − V (φ), 1 ≤ λ, (28)

where g(φ) and V (φ) are functions of the field an λ is a
positive number. For g(φ) = μ, we recover the case of the
preceding subsection. Now the energy density of k-essence
is given by

ρ(φ,X) = (2λ − 1)g(φ)Xλ + V (φ). (29)

Inflation is realized under the conditions

g(φ → ∞)Xλ � V (φ → ∞),

V
(
φ → 0−) � g

(
φ → 0−)

Xλ, (30)

and the solutions of (17) are

H 2 = V (φ)

3
,

φ′ � Vφ(φ)

3H 2[λg(φ)Xλ−1 + β̃ − 6α̃H 2] . (31)

Thus, some interesting configurations can be found. For the
special choice λ = 1, one obtains a fluid model with standard
kinetic term coupled with the field. In this case, for

g(φ) = 2α̃V (φ), λ = 1, (32)

and β̃ = 1, one recover the results of chaotic inflation,

φ′ � Vφ(φ)

3H 2
, β̃ = 1. (33)

Otherwise, if g(φ) = μV (φ), μ �= 2α̃ being a generic pa-
rameter, the behavior of the model turns out to be the one of
simple canonical scalar field in Horndeski gravity analyzed
in Myrzakulov and Sebastiani (2016),

φ′ � Vφ(φ)

3H 2(β̃ + 3H 2(μ − 2α̃))
. (34)

When 1 < λ, if we avoid the contributes of higher correc-
tions of Horndeski Lagrangian, namely,

|β̃ − 6α̃H 2| � λg(φ)Xλ−1 � 3H 2

X
, (35)

we obtain from (31),

φ′ �
[

2λ−1Vφ(φ)

3H 2λλg(φ)

] 1
2λ−1

. (36)
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In this context, we may consider

V (φ) = ν
(−φ)n

n
, g(φ) = μ(−φ)m, 0 < n,m, (37)

where 0 < μ,ν are dimensional positive parameters and
m,n positive numbers. Therefore, we get

φ′ � −ξ(−φ)ζ , φ � −(
(1 − ζ )ξN

)1/(1−ζ )
, (38)

where

ξ =
[

6λ−1nλ

νλ−1λμ

] 1
2λ−1

, ζ = n − 1 − nλ − m

2λ − 1
, (39)

and we can verify that, given 1 ≤ λ, condition (35) may be
satisfied under the additional restriction 2 − m/(λ − 1) < n.
Note that ζ < 0, such that φ′ � 1 and φ � 0 during infla-
tion. Finally, the Hubble parameter results to be

H 2 � ν

3n

(
(1 − ζ )ξN

) n
1−ζ , ε � n

2N(1 − ζ )
. (40)

In considering higher corrections of Horndeski Lagrangian
we will pose λ = 3/2, such that from (31) we can easily
derive

φ′ � −
√

2(

√
H − √

2gVφ − √
H)(β̃ − 6α̃H 2)

3gH 3/2

� Vφ

3H 2

(
β̃ − 6α̃H 2), (41)

where 0 < β̃ − 6α̃H 2 and we assume |g(φ)Vφ | � H . As an
example, we may take

V (φ) = ν
(−φ)2

2
, (42)

where 0 < ν is positive constant and g(φ) ∝ 1/(−φ). In
this case, the kinetic term of k-essence results to be propor-
tional to (−φ)2(−φ′)3, namely g(φ)X3/2 ∝ (−φ)2(−φ′)3.
We have

φ′ � 2(β̃ − να̃φ2)

φ
, φ � −

√
β̃

α̃ν

√
1 − e−α̃νN , (43)

such that

H 2 � β̃(1 − e−να̃N )

6α̃
, ε � 1

2(eα̃νN − 1)
, (44)

and we see that ε � 1 for large values of N .

3.3 Reconstruction of k-essence models for inflation

The Lagrangian of k-essence leads to a huge variety of mod-
els to reproduce inflation. In this subsection, we will see how

it is possible to reconstruct the form of the Lagrangian by
starting from a given solution. We note that the general re-
construction technique in this class of models has been car-
ried out in Shirai et al. (2012), where the method has been
applied for general solutions.2

Let us consider the following behavior of the Hubble pa-
rameter,

H 2 = H 2
0 (N + 1), ε = 1

2(N + 1)
, (45)

where the constant H0 represents its value at the end of in-
flation. Thus, from (17) we have

ρ(N) � 3H 2
0 (N + 1),

pX(N) = 1 + (1 + N)(6H 2
0 α̃(1 + N) − β̃)φ′2

(1 + N)φ′2 ,

(46)

with ρ(φ,X) ≡ ρ(N),p(ρ,φ) ≡ p(N). In this case, we
may assume

φ = φ0(1 + N), X = H 2
0

2
(1 + N)φ2

0 , (47)

where φ0 < 0 is the value of the field at the end of the early-
time acceleration. Thus, the pressure of k-essence could
have the form

p(φ,X) = −β̃X + 6α̃X2

φ2
0

+ H 2
0

2
log[X/X0] − V (φ), (48)

X0 � 1 being the kinetic energy of k-essence at the end of
inflation, namely X0 = H 2

0 φ2
0/2, and V (φ) a function of the

field only fixed by (7) and the first equation in (46). In our
case,

V (φ) = H 2
0

2

(
4 − 9H 2

0 α̃φ2
0 − 9H 2

0 N2α̃φ2
0 + β̃φ2

0

+ N
(
6 − 18H 2

0 α̃φ2
0 + β̃φ2

0

) + log[1 + N ]), (49)

and by using (47) one finally derives

p(φ,X) = −β̃X + 6α̃X2

φ2
0

+ H 2
0

2
log[X/X0] − H 2

0

2
Z, (50)

where

Z = 4 − 9H 2
0 α̃φ2

0 − 9H 2
0 (φ/φ0 − 1)2α̃φ2

0 + β̃φ2
0

+ (φ/φ0 − 1)
(
6 − 18H 2

0 α̃φ2
0 + β̃φ2

0

)
+ log[φ/φ0]. (51)

2In Shirai et al. (2012) the authors express the scale factor as a(t) =
exp[g(t)], where g(t) is a function of the cosmological time such that
H(t) = ġ(t). In our case, we express the results in terms of the e-folds
N in (13). For a comparison, one must pose N = g(t0) − g(t).
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Other possibilities are allowed. For example, from (47) we
can also require

p(φ,X) = X(1 + φφ0(6α̃H 2
0 (φ/φ0) − β̃))

φφ0
− V (φ), (52)

such that

V (φ) = −H 2
0 (φ/φ0)(φ0 + 6α̃H 2

0 φ2φ0 − φ(6 + β̃φ2
0))

2φ
.

(53)

One may also pose

pX(φ,X) = 1 − V (φ), (54)

with

φ′ = −(
1 + N − 6H 2

0 α̃ − 12α̃H 2
0 N

− 6α̃H 2
0 N2 + β̃ + β̃N

)−1/2
, (55)

and one finds the result of Myrzakulov and Sebastiani
(2016) for canonical scalar field models.

A generalization of the preceding example is given by
(45) with

φ = φ0(1 + N)n, 0 < n, (56)

φ0 < 0 being a negative constant. This solution can be real-
ized (in the limit 1 � N ) for the following k-essence model,

p(φ,X) = X

(
6α̃H 2

0 (φ/φ0)
1/n − β̃ + (φ/φ0)

1/n−2

n2φ2
0

)
, (57)

with

V (φ) � −1

2
H 2

0 n2φ2
(

φ

φ0

)−1/n

×
(

−β̃ + 6α̃H 2
0

(
φ

φ0

)1/n)
. (58)

Let us now have a look for the (quasi)-de Sitter solution

H 2 = H 2
dS

[
1 − 1

(N + 1)

]2

, ε � 1

(N + 1)2
, (59)

where HdS is the constant de Sitter parameter during infla-
tion, when H � HdS at 1 � N . By assuming (56) again, we
may derive the following form of the k-essence,

p(φ,X) = X

(
6α̃H 2

dS − β̃ + 2

φ2n2

)
− V (φ), (60)

with

V (φ) � −H 2
dSφ2

0

2φ2

(
2 + 6α̃H 2

dSn2φ2 − β̃n2φ2)( φ

φ0

)2−2/n

.

(61)

It is understood that other reconstructions are permitted.

4 Cosmological bounce

As an alternative description to the Big Bang theory, one
may consider the cosmological bounce, where, instead from
an initial singularity, the expanding universe emerges from
a preceding contracting phase (see Novello and Bergliaffa
2008 and reference therein for review). The Hubble param-
eter reads

H = h0(t − t0)
2n+1, 0 < h0, (62)

with h0 a positive dimensional constant, n a natural number,
and t0 the fixed time of the bounce. Thus, for t < t0,H < 0
we have a contraction, while for t0 < t,0 < H we have an
expansion.

We will study the bounce in terms of the e-folds (13),
where now a(t0) is the scale factor at the time of the bounce.
With this prescription, N is negative defined, being a(t0) the
minimal value of a(t). Since

a(t) = a(t0) exp

[
h0(t − t0)

2+2n

(2 + 2n)

]
, (63)

we obtain

N = −h0(t − t0)
2+2n

2 + 2n
. (64)

From (62) we have

|H | = h̃0(−N)q,

h̃0 = h
1

2+2n

0 (2 + 2n)
1+2n
2+2n , (65)

q = 1 + 2n

2 + 2n
.

Some simple solutions can be inferred from (14), (15) in or-
der to reconstruct the k-essence models realizing the bounce.
Given a specific bounce solution, one can find ρ(φ,X) ≡
ρ(N) from (14) and therefore plug it inside (15). Thus, the
Lagrangian of k-essence can be reconstructed for simple be-
haviors of the field.

As an example, we take the simplest case q = 1/2,
namely n = 0 in (62), and we pose φ = φ0

√−N , φ0 be-
ing a constant, when bounce is realized, such that in general



k-essence in Horndeski models Page 7 of 10 254

0 < φ and φ = 0 at t = t0,N = 0. In this case Eq. (15) holds
true if

pX(φ,X) ≡ pX(N) = −h̃0(α̃ + 6Nα̃) − β̃ − 4

φ2
0

. (66)

Since −N = (φ/φ0)
2, if we want to satisfy also Eq. (14), it

must be

p =
(

−h̃0
(
α̃ − 6(φ/φ0)

2α̃
) − β̃ − 4

φ2
0

)
X

− h̃0(12φ2(2 + h̃2
0α̃φ2

0) + φ2
0(4 + h̃2

0α̃φ2
0))

8φ2
0

. (67)

This is the Lagrangian of a model with kinetic term coupled
with the field realizing the bounce solution (62) for n = 0.

As an other example we consider q = 3/4, namely n = 1
in (62). If we assume again φ = φ0

√−N , φ0 constant, from
Eq. (15) we derive

pX(N) = − h̃2
0

√−N(5 + 12N)α̃φ2
0 + 2(6 + β̃φ2

0)

2φ2
0

. (68)

Thus, by using the fact that X = h̃2
√−Nφ2

0/8, we see that
the k-essence fluid with

p = − X

φ2
0

(
6 + 2

(
5 − 12(φ/φ0)

2)α̃X + β̃φ2
0 − K

)
, (69)

where

K = 3h̃2
0

32φ2
0

(
8

√
φ2

φ2
0

(
4φ2 + φ2

0

)

+ h̃2
0α̃φ2(12φ2 + 5φ2

0

))
(70)

realizes the bounce (62) with n = 1.

5 Cosmological perturbations

In this section, we will discuss perturbations during the
early-time acceleration for our class of Horndeski models
with k-essence. Scalar perturbations in flat FRW metric (8)
reads (Deffayet et al. 2011; De Felice et al. 2011),

ds2 = −[(
1 + α(t,x)

)2

− a(t)−2e−2ζ(t,x)
(
∂ψ(t,x)

)2]
dt2

+ 2∂iψ(t,x)dtdxi + a(t)2e2ζ(t,x)dx, (71)

where α(t,x),ψ(t,x) and ζ ≡ ζ(t,x) are functions of
space-time coordinates. A direct computation inside the ac-
tion (3) leads to

I =
∫
M

dx4a3
[
Aζ̇ 2 − B

a2
(∇ζ )2

]
, (72)

where

A ≡ φ̇2(1 + α̃φ̇2)

2(H + 3Hα̃φ̇2)2
A1,

B ≡ 1

(H + 3Hα̃φ̇2)2
B1, (73)

where

A1 = −6H 2α̃ + pX(φ,X) + β̃ + pXX(φ,X)φ̇2

+ α̃
(
18H 2α̃ + pX(φ,X) + β̃

)
φ̇2

+ α̃pXX(φ,X)φ̇4 (74)

B1 = −(
1 + 3α̃φ̇2)(−4H 2α̃2φ̇4 + Ḣ

(
1 + α̃φ̇2)2)

+ 2Hα̃φ̇
(
1 + α̃φ̇2)(−1 + 3α̃φ̇2)φ̈.

Thus, one has

I =
∫
M

dx4a3A

[
ζ̇ 2 − c2

s

a2
(∇ζ )2

]
, (75)

where the square of the sound speed is given by

c2
s = −2(1 + 3α̃φ̇2)Q + 4Hα̃φ̇S(−1 + 3α̃φ̇2)φ̈

φ̇2(1 + α̃φ̇2)P
, (76)

where

Q = −4H 2α̃2φ̇4 + Ḣ
(
1 + α̃φ̇2)2

S = 1 + α̃φ̇2

P = −6H 2α̃ + pX(φ,X) + β̃ + pXX(φ,X)φ̇2

+ α̃
(
18H 2α̃ + pX(φ,X) + β̃

)
φ̇2

+ α̃pXX(φ,X)φ̇4 (77)

It is necessary to require 0 < A,B to avoid ghost and insta-
bilities. By introducing the e-folds parameter one obtains in
the limit |φ̇2| � 1/|α̃|,

c2
s � 2H ′

Wφ′2 , (78)

where

W = (
Hβ̃ + HpX(φ,X) − 6H 3α̃

+ pXX(φ,X)H 3φ′2)φ′2. (79)

By using the conservation law in (17) one immedi-
ately has that in the case of canonical scalar field with
pXX(φ,X) = 0, c2

s = 1. However, for k-essence and higher
order kinetic term with 0 < pXX , the sound speed results to
be smaller than one since c2

s � 2H ′/(2H ′ + pXXH 3φ′4).
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By substituting

v ≡ v(t,x) = z(t)ζ(t,x), z ≡ z(t) =
√

a3A, (80)

from (75), after integration by part, we obtain

I =
∫

dx4
[
v̇2 − c2

s

a2
(∇v)2 + z̈

v2

z

]
, (81)

which leads to

v̈ − c2
s

a2
� v − z̈

z
v = 0. (82)

By decomposing v(t,x) in Fourier modes vk ≡ vk(t) whose
explicit dependence on k is given by exp[ikx], we get

v̈k +
(

k2 c2
s

a2
− z̈

z

)
vk = 0. (83)

The short-wave solution of this equation for 1 � k2/a2 is
given by

vk � cke±ik
∫

cs
a

dt , (84)

where ck is a constant. On the other hand, for long-wave per-
turbations with k2/a2 � 1 we obtain the implicit solution

vk � c1z + c2z

∫
dt

z2
, (85)

with c1, c2 integration constants. The explicit solution for
perturbations in quasi de-Sitter space-time can be derived as
(De Felice et al. 2011),

vk(t) � c0

√
a

2

aH

(csk)3/2
e±ik

∫
cs
a

dt

(
1 + icsk

∫
dt

a

)
, (86)

where in the given limits one can recovers (84)–(85) by
taking into account that z � τ 2√a/2 and Ha = −1/τ ,
with τ = ∫

dt/a the conformal time, and c1 = 0. The con-
stant c0 is fixed by the Bunch-Davies vacuum state vk(t) =√

a exp[±ik
∫

csdt/a]/(2√
csκ) in the asymptotic past such

that c0 = i/
√

2 and finally

ζk ≡ vk√
Aa3

= i
H

2
√

A(csk)3/2
e±ik

∫
cs
a

dt

(
1 + icsk

∫
dt

a

)
. (87)

Thus, the variance of the power spectrum of perturbations
on the sound horizon crossing csκ � Ha reads

PR ≡ |ζk|2k3

2π2

∣∣∣∣
csk�Ha

= H 2

8π2c3
s A

∣∣∣∣
csk�Ha

. (88)

As a consequence, the spectral index results to be

1 − ns = −d lnPR
d lnk

∣∣∣∣
k=aH/cs

= 2ε + ηsF + s, (89)

with (De Felice et al. 2011),

ε = − Ḣ

H 2
, ηsF = ε̇sF + εsḞ

H(εsF )
,

s = ċs

Hcs

, εs = Ac2
s

F
,

(90)

and

F = 1 + αφ̇2. (91)

In a similar way, the tensor-to-scalar ratio is derived from
the tensor perturbations in flat FRW space-time as

r = 16csεs . (92)

Therefore, in the case of k-essence models where cs < 1,
this quantity may be easily suppressed. By plugging the e-
folds (13), we obtain for our class of Horndeski models

(nS − 1)

� (
φ′(3HH ′′(β̃ + H 2(pXXφ′(t)2 − 6α̃

) + pX

)

− H ′(H ′(9H 2(pXXφ′2 − 6α̃
) + 7(β̃ + pX)

)

+ H
(
H 2p′

XXφ′2 + p′
X

)))

− 2HH ′φ′′(β̃ + H 2(2pXXφ′2 − 6α̃
) + pX

))

× 1

2HH ′φ′(β̃ + H 2(pXXφ′2 − 6α̃) + pX)
, (93)

The last Planck satellite data (Ade et al. 2015) lead to ns =
0.968 ± 0.006(68%CL) and r < 0.11(95%CL). If we pose
N ≡ N � 60, the scenario is viable if (ns − 1) � −2/N .

When pX = 1 (canonical scalar field) and α̃ = β̃ = 0
(chaotic inflation) we obtain

(ns − 1) � −7H ′

2H
+ 3H ′′

2H ′ − φ′′

φ′ ,

r � 16
√

2φ′2
(

H ′

Hφ′2

)3/2

,

(94)

or, in terms of the cosmological time, by using equations
(17),

(ns − 1) � 4Ḣ

H 2
− Ḧ

ḢH 2
, r � −16

Ḣ

H 2
, (95)

which correspond to the usual relations for chaotic canoni-
cal scalar field inflation. In the case of model (21) for solu-
tion (25), the spectral index reads (ns −1) � −7/(2(N +1)),
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while for the tensor-to-scalar ratio one can see that r ∝
(N + 1)3/2. In the case of model (50) for solution (45), the
spectral index results to be (ns −1) � −9/(2(N +1)), while
for the tensor-to-scalar ratio one finds r ∝ (1 + N)−5/2. It
means that this models predict a total e-folds extremely large
(100 < N ) in order to be in agreement with the cosmological
observations.

For the class of models (29), we may consider the exam-
ple in (37) with λ = 2 and m = 1. Given the solution (47),
we find

(ns − 1) � − (11 + 10n)

2(5 + n)(N + 1)
(96)

Thus, if we assume N � 60, the model is in agreement with
Planck data when n = 3/2. In this case the tensor-to-scalar
ratio,

r � 54( 3
13 )4/13221/26

13N17/13

√
− 1

α̃νξ21/13
, (97)

is small enough and the model is viable. Note that the given
values of λ,m and n bring to satisfy also condition (35).

The class of models (57) or (52) for the specific case
n = 1, which admit the inflationary solution (45), leads to

(ns − 1) � − 2

N
, r � 8

N
, (98)

like in the case of canonical scalar field with quadratic po-
tential in the background of General Relativity. Here, the
tensor-to-scalar ratio is slightly larger respect to the ob-
served one.

Finally, for the model in (59)–(60), we find

(ns − 1) � −2 + n

N
,

r � 8

√
2

3

√
1

H 2
dSn2α̃φ2

0

1

Nn+3/2
.

(99)

Thus, by considering N � 60, this theory is viable for small
values of n.

6 Conclusions

In this paper, we investigated cosmological solutions for
early-time universe in a simple class of Horndeski models
where the scalar field plays the role of k-essence. The La-
grangian of the theory is quite involved and higher curva-
ture corrections to General Relativity emerge at large cur-
vatures contributing to the primordial acceleration. The ad-
vantage of Horndeski models is that the field equations are
at the second order like in General Relativity. Moreover, k-
essence is one of the possible descriptions for inflation and

its Lagrangian includes higher order kinetic term and may
describe a huge variety of effective fluids, appearing as a
quite general theory (see also Sebastiani and Myrzakulov
2016).

Solutions for early-time acceleration have been investi-
gated. In this respect, we considered different forms of La-
grangian for k-essence and we used a reconstruction method
to infer Lagrangian by starting from the given solutions.
Since a model for inflation must lead to a correct amount
of e-folds and a correct prediction for the spectral index and
the tensor-to-scalar ratio, we furnished the formalism to cal-
culate perturbations and we applied the results to our exam-
ples. A section has been devoted to the study of cosmolog-
ical bounce as an alternative description to the Big Bang.
k-essence in Horndeski gravity admitting bounce solutions
has been reconstructed.

For bouncing cosmology in modified gravity see also
Odintsov and Oikonomou (2015), Odintsov et al. (2015) and
Bamba et al. (2014a). For some reviews of inflation in mod-
ified gravity see Bamba and Odintsov (2015) and Sebastiani
and Myrzakulov (2015). Since a special class of Horndeski
models can be recasted in the form of Gauss-Bonnet modi-
fied gravity, it may be useful to compare our results with the
ones in De Laurentis et al. (2015). Other useful references
can be found in Myrzakul et al. (2015, 2016), Myrzakulov
et al. (2015c, 2015d).
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